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Abstract: Despite advances achieved in medicine, chemotherapeutics still has detrimental side effects
with ovarian cancer (OC), accounting for numerous deaths among females. The provision of safe,
early detection and active treatment of OC remains a challenge, in spite of improvements in new
antineoplastic discovery. Nanosystems have shown remarkable progress with impact in diagnosis
and chemotherapy of various cancers, due to their ideal size; improved drug encapsulation within
its interior core; potential to minimize drug degradation; improve in vivo drug release kinetics; and
prolong blood circulation times. However, nanodrug delivery systems have few limitations regarding
its accuracy of tumour targeting and the ability to provide sustained drug release. Hence, a cogent
and strategic approach has focused on nanosystem functionalization with antibody-based ligands
to selectively enhance cellular uptake of antineoplastics. Antibody functionalized nanosystems
are (advanced) synthetic candidates, with a broad range of efficiency in specific tumour targeting,
whilst leaving normal cells unaffected. This article comprehensively reviews the present status of
nanosystems, with particular emphasis on nanomicelles for molecular diagnosis and treatment of OC.
In addition, biomarkers of nanosystems provide important prospects as chemotherapeutic strategies
to upsurge the survival rate of patients with OC.
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1. Introduction

Globally, ovarian cancer (OC) is a lethal condition that accounts for millions of deaths annually
in females, making this condition a major health issue [1–6]. In the last five-year survey, statistics
reflected approximately 21.9 million new patients clinically diagnosed with OC on a yearly basis, with
14,270 deaths predicted in the United States every year [7]. According to the World Health Organization
(WHO), OC is one of the most lethal genital malignancies in females in developing countries, with
this asymptomatic disease exacerbated by lack of early diagnostic strategies and access to expensive
chemotherapeutic drugs [1]. In Africa (South Africa), the Cancer Council of Southern Africa (CANSA)
confirmed more than 500 cases of OC [8]. Globally, the five-year survival rate ranges from 15%–20% for
the population with advanced stage ovarian cancer, even though patients undergo operative surgery
and platinum chemotherapy [9].

The treatment of OC employs invasive surgery for the removal of infected ovaries, uterus, fallopian
tubes, cervix and lymph nodules in the abdomen. The surgical approach is followed by external
beam radiotherapy or systemic chemotherapy, depending on the stage at which the OC disease is
identified. Intravenous paclitaxel and alkylating cisplatin are conventional therapeutics employed
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for treatment of OC with antimetabolite methotrexate also considered as a possibility. However,
conventional treatment has its own share of drawbacks, including toxicities and subsequent disease
relapse, due to the development of multidrug resistance. In addition, the chemodrug is not specific for
OC destruction, hence exhibiting dose cytotoxicity [10–12]. Furthermore, the long-term prognosis is
usually adversative with expression and development of chemoresistant tumours. Patients undergo
diverse side effects including excessive nausea, hair loss and deterioration in plasma cell counts linked
with the administration of chemotherapy for OC treatment [13]. To circumvent treatment drawbacks of
conventional antineoplastics, several targeted drug delivery platforms have been developed to direct
antineoplastics to specific tumour sites [14].

New advances in polymeric nanotechnology—with particular emphasis on nanomicelles—provide
feasible alternatives for early detection and targeted treatment of metastatic OC, thereby minimizing
systemic toxicity associated with administration of chemotherapeutic drugs. The nanosystems
employed as theranostics include polymeric nanoparticles, nanomicelles, nanoconjugates, as well as
dendrimers [14–16].

In order to improve diagnosis and chemotherapeutic efficacy in ovarian cancer treatment,
this article presents a critique of, (a) formulation of nanoparticulate delivery systems (including
nanomicelles), and (b) nanoparticulate delivery systems functionalized with ligands such as antibodies
to expedite specific elimination of tumours, imaging analysis and aid in decreasing drug-related side
effects (Figure 1). Thus, the basics of design of these delivery systems are to improve blood circulation
in vivo, polymeric biodegradability, and theranostic compatibility with adequate retention time, for
nanocarrier-related therapeutics. Furthermore, the synthetic building blocks of the carrier systems
are nontoxic, noninteractive with inflammatory responses, and biocompatible. Other significant
properties of polymeric carrier systems are biodegradability and clearance by hepatic/ renal pathways
post-drug release, with the prospect to be further traced with additional benefits in molecular imaging
technologies [17].

This review thus aims to present advances in nanosytems-based molecular diagnosis and
treatment of OC. A particular focus is on nanomicelles as one of the most researched nanoarchetypes
for imaging/diagnosis and targeted OC treatment. The status of OC biomarkers is concise, with
the integration of studies conducted on mucins and possible application in early diagnostics and
management of OC. These approaches are defined to potentially identify the disease at an early stage,
halt disease progression and promote recovery.

2. Current Nano-Based Drug Delivery Approaches for Ovarian Cancer Theranostic

Numerous nanodrug delivery vehicles have been developed including nanoconjugates, branched
dendrimers, liposomes, nanostructured lipid formulations and polymer nanomicelles (Table 1) [18,19].
These drug delivery systems have many advantages including the promotion of therapeutic drug
delivery and fulfilling several (biopharmaceutical) parameters, such as a marked increase in therapeutic
impact compared to the free drug, good biodegradability and biocompatibility, nontoxic and
noninflammatory characteristics, as well as future prospects in scaling-up manufacturing [20].
In chemotherapeutic systems, a nanoformulation must possess high drug-loading capacity, the
ability to dissolve drugs within the inner core and selectively accumulate in tumour tissue through
permeability and retention influence (passive or active targeting). Targeted chemotherapy, such
as intraperitoneal implantable treatment, provides targeted therapy within the peritoneal cavity
(Figure 1) [21–25]. In addition, the preparation of nanoformulations functionalized with specific
ligands facilitates preferential targeting of OC tumours and ultimately increases the therapeutic effect
in comparison to nonfunctionalized nanosystems [25–30].
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Table 1. Outline of the distinguishable nanotherapeutic tools designed for ovarian cancer treatment [19].

Nanosystems Polymer–Drug
Conjugates Dendrimers Polymer Micelles Liposomes Solid Lipid

Nanoparticles

Size ≤10 nm 2–10 nm 10–100 nm 100–200 nm 50–1000 nm

Structural
characteristics

Macromolecular
structure

Macromolecular
Tree-like
structure

Spherical
Supramolecular

Core shell structure

Spherical bilayer
vesicle structure

Spherical,
bilayer-nanocapsular

structure

Carrier
composition Water-soluble polymer Hyperbranched

polymer chains
Amphiphilic di and
tri-block copolymers

Phospholipid,
cholesterol

membrane lipids

Solid lipid emulsifier
water

Drug
incorporation

strategy

Covalent conjugation
requiring functional
groups on drug and

polymer

Covalent
conjugation

requiring
functional

groups on drug
and polymer

Noncovalent
encapsulation/

compatible with
hydrophobic drugs

Noncovalent
encapsulation/

compatible with
hydrophilic drugs

Noncovalent
encapsulation/

compatible with
hydrophilic drugs

PEG-paclitaxel & HPMA
copolymer-doxorubicin—

phase II trials
SMANCS & CDP870
(Cimza)- Approved

Dendrimer-
docetaxel &

Viva gel- phase
II & III trials

PSMA-targeted
dendrimers &

Avidimer-
dendrimers-
Approved

CRLX-
101&NKTR-102-

phase II/III clinical
trials

Genexol- PM-
Approved

SGT53-01& MCC- 46
phase I clinical trials
Doxil, Ambisome &

DaunoXome-
Approved

SLNs with
[Gd-DTPA(H2O)]2−

and
[Gd-DOTA(H2O)]−

compounds
preclinical trials [31].

Diazemuls &
Diprivan- Approved
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Figure 1. Illustration of the expression of cancer-associated mucins, accompanying the development 
of ovarian cancer and the intraperitoneal implant treatment, providing targeted therapy within the 
peritoneal cavity (Adapted with permission from [21]. 

In this context, there is a significant need to develop stable molecular biomarkers for early 
detection of OC [14]. Various prospective biomarkers of OC are reported. Epithelial ovarian tumours 
display modified cell antigens including, Human Epididymis Protein 4 (HE4 gene), Cancer Antigen 
72-4(CA 72-4), Renal Estimated Glomerular Filtration Rate (EGFR), Soluble Mesothelin-Related 
Peptides (SMRP), Mesothelin, Osteopontin (OPN), Alpha-Fetoprotein (AFP), Cytotoxic T-
Lymphocyte-associated Protein 4 (CTLA4), Interferon-alpha (IFNα), Kallikrein-6 (KLK6), 
phospholipase A2 group 2A (PLA2G2A), Erythroblastic Oncogene B2 (ErbB2), Interleukin-10 (IL-10) 
and Mucin-16 (MUC1–16), that differentiate cancerous cells from healthy ovarian tissue and other 

Figure 1. Illustration of the expression of cancer-associated mucins, accompanying the development
of ovarian cancer and the intraperitoneal implant treatment, providing targeted therapy within the
peritoneal cavity (Adapted with permission from [21].

In this context, there is a significant need to develop stable molecular biomarkers for early
detection of OC [14]. Various prospective biomarkers of OC are reported. Epithelial ovarian tumours
display modified cell antigens including, Human Epididymis Protein 4 (HE4 gene), Cancer Antigen
72-4(CA 72-4), Renal Estimated Glomerular Filtration Rate (EGFR), Soluble Mesothelin-Related Peptides
(SMRP), Mesothelin, Osteopontin (OPN), Alpha-Fetoprotein (AFP), Cytotoxic T-Lymphocyte-associated
Protein 4 (CTLA4), Interferon-alpha (IFNα), Kallikrein-6 (KLK6), phospholipase A2 group 2A
(PLA2G2A), Erythroblastic Oncogene B2 (ErbB2), Interleukin-10 (IL-10) and Mucin-16 (MUC1–16),
that differentiate cancerous cells from healthy ovarian tissue and other ordinary cells covering the
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intraperitoneum [23–30]. Mucin proteins (specifically MUC16) show prospective as biomarkers and
antibody functionalized micelles to provide a broad range of prospects for OC therapy [32].

Nanomicelles are synthetic nanovehicles, with high potential loading capacity for chemotherapeutics
designed for site-specific ovarian tumour targeting [33–36]. A size range of a micelle between 10–100 nm
promotes significant permeability, endocytosis by OC cells and decreases nonselective targeting of
normal cells [37]. Nanomicelles can perforate and assemble in regions with permeated vasculatures,
including tumours and inflamed tissues [37–39]. In addition, improved biocompatibility, in vivo
stability, ability to incorporate a wide range of hydrophobic chemotherapeutics, as well as extended
plasma circulation periods, are achieved [40,41].

3. Critical Comparison of Nanosystems to Nanomicelles for OC Treatment

Polymer–drug conjugates or prodrugs are macromolecular dispersed systems that require covalent
binding of the active principle while nanoparticles on the contrary are physically attached to the active
principle. Polymer–drug conjugates have low molecular weight (specific to polymer incorporation),
which permits molecular targeting within the cancer cell [42,43]. Physicochemical properties of
polymer–drug conjugates (pH, enzymatic-alteration, acid (H+)-catalytic chemical reactions) are vital for
drug release at a tumour site. Polymer–drug conjugates are extensively evaluated for prolonged drug
release in cancer cells, tumour mass invasion, and enhancement of anti-tumour proliferation [44–46].
Therapeutics in ovarian cancer also utilize branched dendrimers formulated from several polymers
and genetic DNA, however acrylamide branched nanodendrimers are usually utilized [46]. Branched
dendrimers have characteristic design components including (i) peripheral surface with several
potential attachment sites, (ii) the central inner core where diverse dendrons demarcate the alienated
constituent stratums covering the inner core and (iii) the location for dendronic conjugation. The three
fragments of branched dendrimers are modified for several uses, including drug transport and DNA
delivery [47]. Polymer–drug conjugates and dendrimers have covalently bonded drug molecules to
the polymeric carriers. This consecutively necessitates the association of the complex with specific
biochemical processes, shielding the complex from in vivo catalytic enzymatic destruction and protonic
acid-hydrolytic reactions [48–50]. Furthermore, the minute-size of these carriers (normally 10 nm),
enables perforation through plasma membranes of the glomeruli [17]. Significant assemblies and
differentiating properties of these delivery systems are demonstrated in Table 1, as well as in Figure 2.
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Figure 2. Schematic depicting examples of nanosized delivery systems; (a) liposomes, (b) nanomicelles,
(c,d) polymer–drug conjugates, and (e) dendrimers, which are currently explored in detail for transport
of chemotherapeutic agents (adapted with permission from (a) Trucillo et al. [31], (b) Brandta et al. [51],
(c,d) Tong et al. [52], (e) Huang &Wu [53].
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Liposomes are similar to nanomicelles due to microscopic spherical shape, consisting of a lipid
bilayer, encapsulating aqueous components for hydrophobic drug incorporation. Nonpolar lipophilic
drugs are incorporated within the lipid bicoating, while water-soluble drugs reside in the vesicle.
Entrapment of antineoplastic therapies in lipophilic liposomes result in pharmacokinetic modifications
and pharmacodynamics features, with a resultant decline in drug degradation and improved dose
cytotoxicity [31,51–53]. These lipophilic nanocarriers can be utilised for specific targeting and imaging
of tumour tissues; however, ligands applied to the phospholipid coating improve cellular uptake
thus enabling a pronounced therapeutic effect to the targeted specific-sites [31,51–54]. Solid lipid
nanoparticles (SLNs) also have similar properties to nanomicelles. On the contrary, the major challenges
with liposomes include instability and difficulty in large-scale synthesis.

Poorly water-soluble drugs are encapsulated in the hydrophobic interior of SLNs, but the
distribution ability is hindered by membrane destabilization. However, most liposomal and SLNs
are above 90 nm in size, due to intrinsic structural parameters which significantly restrict delivery
to ovarian tumour tissue. To surmount the setbacks associated with liposomes and SLNs, other
nanoplatforms, including nanoemulsions, polymeric nanoparticles and polymeric nanomicelles are
employed [19].

Nanoemulsions are used as templates for polymeric nanoparticle preparation. Therapeutic-loaded
nanoemulsions are formed by oil-in-water (o/w) solvent evaporation techniques, employing miscible
organic solvents (diethyl ether, chloroform, N, N-dimethylformamide (DMF), acetonitrile, THF).
Simple liquid emulsions are either oil-suspended in an aqueous state (o/w), or water-suspended in oil
(w/o). Nanoemulsions are aqueous emulsions with sizes normally between 20–200 nm. Nanoemulsions
are formulated employing low-energy emulsification procedures, in which the nanosize is adjusted
by the physicochemical parameters of the process [55], allowing the development of small-scale and
homogeneous droplets, employing a high-energy system, in which a nanosized droplet is adjusted by
the degree of the peripheral energy contribution. Among the low-energy emulsification approaches,
the Phase Inversion Composition (PIC) system is highly beneficial for structures with thermo-labile
composites, including therapeutics, as it can be accomplished at ambient temperature. In the PIC
system, the emulsification process is activated by the variations in the voluntary amphiphilic curvature
generated in emulsification, changing the constituent at stable temperatures [55].

Morphology, Composition and Mechanism of the Formation of Nanomicelles

Nanomicelles are spontaneously self-assembled or aggregated as versatile nanoparticles formed
in water at certain physicochemical parameters including concentration (above Critical Nanomicelle
Concentration-CNC), temperature and conductivity; employing surfactants (hydrophilic–hydrophobic
polymers), with opposite affinities towards a particular solution [55]. The assembly of amphiphilic
components generates the structure or shape of nanomicelles. The copolymer sequence controls
the configuration of the prepared nanomicelles. Thin rod designed nanomicelles are also generated
when the water-insoluble component is greater than the water-soluble component. Sphere-shaped
nanomicelles are usually indicative of a longer hydrophilic component with a minor hydrophobic
component, or possibly a result of equal degrees of the amphiphilic components [56]. Constituents of
the prepared supramolecular structure of polymeric micelles are usually di- or tri-segment/block, or a
stable copolymer (Figure 3). Poly (ethylene oxide) (PEO) forms a barrier to nanomicelles, collapsing
and displaying dissolution in an aqueous solvent [33,57]. The inner central component normally
possesses a biodegradable polymer such as PEO/β-amino polyesters that can be utilised as an inner core
to dissolve hydrophobic pharmaceutical drugs, thus shielding loaded constituents from the aqueous
environment; increasing the bioavailability and in vivo efficacy [58–60].

At low ratios in aqueous media, copolymers exist separately, however, once the molar concentration
is increased, aggregation occurs [61]. The aggregates known as nanomicelles, comprises of several
copolymers in a spherical arrangement [62,63]. When attachments to the polymer functional groups
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joined as the sequence terminating clusters [33].Cancers 2020, 11, x  6 of 25 

 
Figure 3. Schematic representation of the supramolecular structure of polymeric micelles (adapted 
with permission from Lu and Park [47]). 

At low ratios in aqueous media, copolymers exist separately, however, once the molar 
concentration is increased, aggregation occurs [61]. The aggregates known as nanomicelles, 
comprises of several copolymers in a spherical arrangement [62,63]. When attachments to the 
polymer functional groups are anticipated, complexes including carboxylic (COO−) conjugate bases 
and amine (NH) bases are joined as the sequence terminating clusters [33]. 

4. Classification of Nanomicelles 

Nanomicelles are classified into three key distinct nanosystems i.e., colloidal nanomicelles 
formulated from an aggregation of polar and nonpolar molecules in an aqueous solution 
(amphiphilic aggregates), polyionic nanomicelles formulated from oppositely charged polymers 
generating an agglomeration due to electrostatic interaction, and nanomicelles originating from 
metal complexation [63–66]. 

4.1. Amphiphilic Nanomicelles 

Amphiphilic colloidal nanomicelles are formed from hydrophobic interactions between the 
inner core and the outer shell of the surfactant molecules in a solution [60]. An active surfactant 
retains amphiphilic configurations, comprised of hydrophobic and hydrophilic functional groups 
[66]. The hydrophilic groups form the polar clusters constructed from several moieties including 
ionised carboxyl, conjugated sulfonate, ammonium, active hydroxyl and amides. Hydrophobic 
clusters are nonpolar ends, including molecular hydrocarbon chains with eight or additional carbon 
molecules, and can be rectilinear or separated structures. Lipophilic and hydrophilic polymers self-
assemble into nanomicelles with adequate surfactant concentration. The resultant concentration of 
surfactant for the formation of nanomicelles is known as critical micelle concentration (CMC). Figure 
4 depicts the settings of surfactant alignment on air/aqueous interface to form nanomicelles when 
subjected to a particular solution with opposite charge affinities to hydrophobic and hydrophilic 
molecules. The polar ends form the outer surface of nanomicelles with the nonpolar portions, 
establishes the inner central core. The quantity of drug incorporated into copolymeric nanomicelles 
is influenced by physicochemical parameters that result in hydrophobic interactions between the 
drug and the hydrophobic segment of the polymers. Hence, a consideration of physicochemical 
trends is an invaluable tool in the synthesis of drug loaded copolymeric nanomicelles. The 
amphiphilic block copolymer, Pluronic® poloxamer, generates amphiphilic nanomicelles in response 
to electrostatic interactions [63,67]. 

Figure 3. Schematic representation of the supramolecular structure of polymeric micelles (adapted
with permission from Lu and Park [47]).

4. Classification of Nanomicelles

Nanomicelles are classified into three key distinct nanosystems i.e., colloidal nanomicelles formulated
from an aggregation of polar and nonpolar molecules in an aqueous solution (amphiphilic aggregates),
polyionic nanomicelles formulated from oppositely charged polymers generating an agglomeration due
to electrostatic interaction, and nanomicelles originating from metal complexation [63–66].

4.1. Amphiphilic Nanomicelles

Amphiphilic colloidal nanomicelles are formed from hydrophobic interactions between the
inner core and the outer shell of the surfactant molecules in a solution [60]. An active surfactant
retains amphiphilic configurations, comprised of hydrophobic and hydrophilic functional groups [66].
The hydrophilic groups form the polar clusters constructed from several moieties including ionised
carboxyl, conjugated sulfonate, ammonium, active hydroxyl and amides. Hydrophobic clusters are
nonpolar ends, including molecular hydrocarbon chains with eight or additional carbon molecules,
and can be rectilinear or separated structures. Lipophilic and hydrophilic polymers self-assemble into
nanomicelles with adequate surfactant concentration. The resultant concentration of surfactant for the
formation of nanomicelles is known as critical micelle concentration (CMC). Figure 4 depicts the settings
of surfactant alignment on air/aqueous interface to form nanomicelles when subjected to a particular
solution with opposite charge affinities to hydrophobic and hydrophilic molecules. The polar ends
form the outer surface of nanomicelles with the nonpolar portions, establishes the inner central core.
The quantity of drug incorporated into copolymeric nanomicelles is influenced by physicochemical
parameters that result in hydrophobic interactions between the drug and the hydrophobic segment of
the polymers. Hence, a consideration of physicochemical trends is an invaluable tool in the synthesis
of drug loaded copolymeric nanomicelles. The amphiphilic block copolymer, Pluronic® poloxamer,
generates amphiphilic nanomicelles in response to electrostatic interactions [63,67].
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4.2. Polycharged Composite Nanomicelles

Polycharged complex nanomicelles (PCCMs) are formulated by the self-assembly of oppositely
charged polymers that form aggregates when distributed in an aqueous solution by hydrophilic groups,
usually poly(ethylene glycol) (PEG), and are covalently attached to one of the two ionic polymers.
Electrostatic interactions are the intermolecular cohesive forces of the assembled composite; with
electrostatic and hydrophobic exchanges employed in formulated nanomicelle complexes. PCCMs are
prepared using various synthetic methods, including common synthetic procedures and spontaneous
self-assemblage or aggregation in solution. PCCMs are prepared from segment copolymers in an
aqueous solution, thus circumventing associated cytotoxicity of organic solvent. These nanomicelles
are stable with low CMC values—as low as 10−6 M. The central core of PCCMs encapsulates several
therapeutics, such as hydrophilic and hydrophobic drugs employing intermolecular cohesive forces
and hydrogen bond interactions. Therapeutics such as cisplatin and ionic large-scale drugs are released
from PCCMs, subsequent to induction from appropriate stimuli [68].

4.3. Noncovalent Connected Polymeric Nanomicelles

These nanomicelles are prepared to employ homopolymeric material or monomer units for
nanomicelle agglomeration. The inner and the outer surface are bonded at the polymer edges via
specific intermolecular interactions including hydrogen bonds or metal coordinate bonds; for this
reason, are known as noncovalently linked nanomicelles. Poly (4-vinylpyridine) functionalized with
carboxyl-terminated polybutadiene are the mainstay of intermolecular interaction due to the formation
of hydrogen linkages in a common organic solvent such as chloroform [63].

5. Surfactants Employed in Nanomicelle Targeted Platforms for Ovarian Cancer

Surfactant nanomicelles utilized for drug delivery have hydrophobic esters, including polypropylene
oxide (PPO), poly(L-lactide) (PLA), poly(D,L- lactide) (PDLLA), as well as amino functional groups such
as poly lactide-co-gycolide (PLGA), polycaprolactone (PCL), poly (β-amino ester), and polylactic acid
(PLA) in their inner core segment for dissolving hydrophobic chemotherapeutics, as illustrated in Table 2.
The hydrophobic core segment is compatible, nontoxic, biodegradable and permitted by the U.S. Food and
Drug Administration (FDA) for biopharmaceutical application. On the contrary, the soluble hydrophilic
corona surface of the nanomicelle used in therapeutic release is composed of poly(ethylene glycol) PEG,
poly(ethylene oxide) PEO, poly N-vinyl pyrrolidone (PVP), poly N-isopropyacrylamide (PNIPAM), poly
N-vinyl alcohol (PVA), and poly N-2-hydroxyproyl methacrylamide (PHPMAm), as displayed in the
first section of Table 2. In this context, the surfactants self-assemble to form micelles in an aqueous
solution with the central amino or ester section, which is structurally neutral/uncharged and connected
to the hydrophilic corona. Protein copolymers (including drug peptide copolymers) employed in
chemotherapeutic delivery enhance the accumulation at pathological sites and improve endocytotic
uptake into the tumour cells. Modification of a specific sequence of the amino acid alters enzymatic
functioning and the degree of immune system response [53].
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Table 2. Building block copolymers employed in micelle drug transport nanosystems (adapted from Sutton et al., 2007) [69].

Copolymers Abbreviation Repeating Unit Structure

Corona segment

Poly (ethylene glycol) PEG, PEO
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6. Preparation of Drug-Loaded Nanomicelles for Application in Ovarian Cancer

Preparation of therapeutic-loaded nanomicelles involves two major categories of therapeutic
loading, reliant on the physicochemical properties of a block copolymer (Figure 5) [69]. The first
category is the dissolution of co-polymer with a drug in a solution. This method is used in insoluble
polymers, including Pluronics poloxamers, and necessitate the warming of the solution for nanomicelle
aggregation, utilizing the dehydrated core profiling portion. This dissolution technique is also employed
in preparation of PCCMs, with therapeutic polymer dissolved separately, and nanomicelle aggregates
impelled by mixing of the two solutions to stabilize therapeutic–polymer ionic proportions [70,71].
The drawback of this technique is the low drug loading that occurs in nanomicelles [60,72].
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The second method of therapeutic loading involves the surfactant, which are partially water-soluble
and for which an organic solvent (such as, tert-butyl alcohol, ethyl acetic acid, methyl alcohol, toluene,
dichloromethane (DCM), aprotic diethyl ether and chloroform/trichloromethane) is required to dissolve
the polymer and therapeutic [73]. Nanomicelle aggregation is reliant on the liquid extraction technique.
For homogenous solutions, nanomicelle formulations are extracted via a dialysis exchange method,
with slow extraction of the organic solvent that activates nanomicelle aggregation. A drawback of the
dialysis technique is that the dissolving of a drug–polymer involves the use of chlorinated solvents,
which are toxic and thus necessitate extra time (<36 h) for the adequate encapsulation of therapeutics
into the nanomicelles. Alternatively, the solvent-evaporation technique is utilized for the removal
of organic solvents by air diffusion to form a polymeric film. The introduction of water to the film
with heating facilitates the aggregation of drug-loaded nanomicelles. Nanomicelles synthesized from
solvent-evaporation technique have increased potential of dissolving high quantities of partially
soluble drugs. These methods all require sterilization and freeze-drying stabilization processes for
preservation of the synthesized formulations. Figure 5 depicts the drug loading techniques for
nanomicelle formulation.

The limitations in preparations of therapeutic-loaded nanomicelles are surmounted by employing
improved approaches such as the tert-butanol (TBA) method, which incorporates the solution of
copolymer and therapeutic liquid/TBA medium followed by freeze-drying, to form a dry powdered
lyophilized cake. Stable nanomicelles spontaneously self-aggregate, upon resuspension of the
lyophilized powdered polymer–therapeutic cake in an aqueous solution [74,75].
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7. Applications of Nanomicelles in Ovarian Cancer

Nanomicelles are considered as prospective carriers for imaging agents and therapeutics due
to their extended circulatory times, improved drug stability, specific targeting and proliferation into
tumour tissue. Nanomicelles are employed as multifunctional molecular probes for identification
(diagnosis), noninvasive screening and early treatment of ovarian cancer [72].

7.1. Diagnosis of Ovarian Cancer Employing Nanomicelles

Ovarian carcinoma is commonly identified in late stages due to comparative lack of early detection
and diagnostic techniques in early stages [44]. The delivery and controlled release of therapeutics
for site-specific targeted chemotherapy and imaging for early cancer identification are of great
pertinence [76,77]. Imaging involves visualization of OC disease development, treatment efficacy and
bio-distribution of therapeutics to the tumour, or investigation of molecular biomarkers [78]. Disease
inspection and monitoring of therapeutic efficiency can be achieved by employing current medical
visualizing modalities such as basic radiography, anatomical probes (CT scanning), ultrasound and
magnetic resonance imaging (MRI) [74].

These imaging techniques can be categorized according to the energy utilized to develop visual
images (heterogeneous X-ray beams, positron emissions, photon emissions), spatial specific resolution
accomplished (macroscopic-, meso-scale, microscopic), or the nature of the captured information
(anatomical, physiological or molecular/cellular imaging) [44,75]. However, these imaging techniques
rely on a diagnosis of cancer when tumours have developed to approximately 1 cm3, and at this stage,
the malignancy has around 1 billion metastatic tumour cells [79]. Furthermore, imaging probes have
low signal transmission, instability, imprecise interactions, and rapid degradation from the circulatory
system [80].

Nanotherapeutic applications incorporating noninvasive tumour molecular imaging have
prospects in early prognosis by increasing the precision, efficacy of chemotherapeutics, and facilitating
improved infection detection [44]. If image modalities are utilized to image tumours, improved tumour
intensity is assimilated with contrast nanocarrier systems. Nanoparticles have distinct techniques
for molecular-targeted delivery, drug encapsulation, or improvement of pathological areal imaging.
Polymeric nanoparticles, including PEG-b-poly(Lysine) copolymers have great potential in analytic
molecular imaging, monitoring of cancer development or regression [44]. Small particles within
nanometer range, such as gold-plated-based molecules and coated metallic quantum molecules, are
the most usually employed; however, other nanoparticles and biomarkers display possibilities as
potent tools for potential transmission development and therapeutic delivery in diagnosis of infected
sites [44]. Various one-off administered nanomicelle-based therapeutic delivery systems for tracking
and targeting of ovarian cancer are outlined in Table 3.
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Table 3. Polymeric micellar systems employed for treatment and diagnosis (adapted from Kedar et al. [80]; Chen et al. [81]).

Polymer Structural Formula Method of Synthesis Method of Micellization Delivered Agent Mode of Delivery References

PLGA-b-PPO-b-PLGA and PEG-b-PPO Ring-opening
polymerization Dialysis method Doxorubicin (DD) P [82]

Poly(ε-caprolactone)-b-PEO Anionic ring opening
polymerization Dialysis method Pyrene (hydrophobic fluorescent

probe) (DA) P [83]

Poly(lactic acid)-polyurethane Step condensation Microphase separation method Gliclazide (DD) P [84]

PMPC-b-PBMA RAFT technology Self-emulsion evaporation
method Paclitaxel (DD) P [85]

Poly(ethylene glycol-b-lactide) Anionic ring opening
polymerization Oil-in-water emulsion method Taxol (DD) P [86]

Poly(lactide-b-PEG) Solvent polymerization Self-emulsion solvent
evaporation method Paclitaxel (DD) P [87]

mPEG-b-p(HEMAm-Lacn) Free-radical
polymerization Rapid heating procedure Pyrene (DA) P [88]

γ-Benzyl l-glutamate N- Carboxyanhydride Polymerization Dialysis Adriamycin (DD) P [89]

Acetal-PEG-b-PLA Ring-opening
polymerization Dialysis method Docetaxel, 125 I (DD), (DA)

Tyrosine-A,
tyrosyl-glutmic acid-A [90]

COOH-PEG-b-PLGA Polymerization Dialysis method Docetaxel, paclitaxel (DD) RNA aptamer-A
DNA aptamer-A [91]

PEG-b-PCL Free-radical
polymerization Dialysis method Paclitaxel, rapamycin (DD) Folate- A [92]

PEG-b-PLLA and P(HEMA)-b-p(His) Solvent polymerization Dialysis method Doxorubicin (DD) - [93]

P(HEMA)-b-p(His) Solvent polymerization Dialysis method Doxorubicin(DD) Folate-A [94]

PEG-b-PLA and HEMA-co-his)-g-PLA Anionic ring opening
polymerization Oil-in-water emulsion method Doxorubicin, Cy 5.5 (DD), (DA) Folate-A [95]

PEG-b-PLA and P(NVI-co-NVP)-g-PLA Anionic ring opening
polymerization Oil-in-water emulsion method Doxorubicin, 123 I (DD), DA Folate-A [96]

mPEG-b-PLA and
P(NIPAAm-co-MAAc)-g-PLA Solvent polymerization Self-emulsion solvent

evaporation method Doxorubicin, FITC (DD), DA Galactosamine-A [97]

Abbreviations: P-passive targeting, A-active targeting, DD-Delivered Drug & DA-Delivered Agent.
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Several nanomicellar technologies have been established and are presently undergoing extensive
preclinical and clinical trials for application in chemotherapeutics and diagnostic imaging of ovarian
cancer. Amphiphilic block-copolymers aggregate to form dual-layered nanomicelles and are future
carriers of hydrophobic treatments and diagnostic probes. Partially soluble drugs and imaging agents
are encapsulated into the inner core with hydrophilic surface of amphiphilic nanomicelles, forming a
stable outer shell in an aqueous solution [77].

Diagnostic modalities for three main imaging probes are radioactive metals, including indium-111
(111 In), and radioactive metal complexes such as ortechnetium-99 m (99 m Tc), used for scintigraphy;
clustered/chelated magnetic metals, including gold, for magnetic resonance imaging (MRI); and iodine
for conventional X-ray computed tomography (CT). The conventional contrast agents employed in
medical therapeutics are low-molecular-weight complexes composed of these chemical probes. Several
diagnostically significant amphiphilic composites have been effectively integrated into nanomicelles,
including diethylene-triamine penta-acetic acid (DTPA), which are chelating agents for diagnostic
imaging of various nanomicellar platforms utilized in MR diagnostic imaging. Polymeric nanomicelle
systems, including iodine-containing PLL-PEG nanomicelles, are employed for cancer diagnostic
imaging, utilizing conventional sectional tomography (CT) imaging and Single Photon Emission
Computed Tomography SPECT using gamma rays. Furthermore, to monitor nanomicelles formulations
and exchanges in cancer disease, nanomicelle co-encapsulated with imaging clustered/chelated metallic
groups have been employed, for example, in gold compounds, manganese oxide-loaded nanoparticles,
as well as being utilized with ultrasound (US) and magnetic resonance imaging (MRI) [76]. Currently,
gadolinium (Gd)-contrast medium, including Magnevist®, are medically employed where visual
contrast is increased by limiting the T1 reduction period (period of high longitudinal magnetization
with brighter image) of aqueous protons. Integration of Gd compound on the nanomicelles’ surface
upsurge the T1 reductivity and reactivity of diagnosis. The reactivity is improved by utilization of
various developed architectural iron oxide nanoparticles such as surface designed Super Paramagnetic
Iron Oxide Nanoparticles (SPIONS) that assemble in nanomicelle inner core and exhibit MRI reactivity
at a nanomolar rate. Nanomicellar loading with therapeutics and imaging tools such as fluorescence
Rhodamine and FITC probes are used for drug released imaging at specific tumour sites with distinctive
designed image. Hence, nanomicelles are favourable as carriers for combinational chemotherapeutics
and nanodiagnostic tools [98–100].

7.2. Treatment of Ovarian Cancer Using Nanomicelles

Nanomicelles are mainly administered intravenously (IV) and are usually exposed to several
challenges of the blood circulatory system with resultant cytotoxicity before reaching the peritoneal
cavity [101]. The intraperitoneal (IP) cavity is the principal site of OC disease [102]. Metastatic OC cells
accountable for high mortality rate disseminate and recur at the intraperitoneal site [103]. Hence, IP
nanomicellar chemotherapy is the favorable route of administration of OC treatment, with improved
patient compliance as compared to intravenous (IV) treatment [104–106].

7.3. Targeting Strategies of Nanomicelles

Targeted delivery of polymeric nanomicelles loaded with chemotherapeutic agents, present many
diverse advantages [107]. Targeting is usually achieved using two delivery mechanisms as depicted in
Figure 6; (i) passive targeting with improved vascular permeability and absorbency effect [39],
(ii) specific active receptor-mediated targeting, employing ligand functionalized-nanomicelles,
including the attachment of antibodies [63].
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Figure 6. Schematic representation of drug loaded micelles (spheres) with imaging agents, from the
administration site to the tumour tissue. After administration, micelles (10–200 nm) display specific
targeting of tumour growth via passive targeting with cellular endocytotic uptake from exterior fluid to
the cancer cells. Active targeting through receptor-mediated internalization is achieved by attachment
of antibody ligand molecules, to the surface of micelles (Adapted with permission from Chen et al. [81]).

7.3.1. Passive Targeting by Enhanced Permeability Effect of Tumour Tubular Blood Vessels

When nonfunctionalised nanomicelles have significant continual blood circulation period and
successfully accumulate in tumour tissue through the passive enhanced permeability effect (EPR),
this is indicative of passive targeting [76,108]. The therapeutic payloads are distributed to the tumour
extracellular matrix and dispensed into the tumour cells and tissues. EPR targeting is ascribed to
pathophysiological properties of tumours that are not identified in health tissue. These properties
include the architecture of leaky tumour blood vasculature, impaired lymphatic drainage scheme, and
increase in formation of permeability agents [109–112]. Several passive targeting nanocarrier systems
have a PEG coating for stealth and “concealment” properties, including Genexol-PM, SP1049C, NK911,
Opaxio™ (formerly Xyotax™), CRLX101, ProLindac™, SPI-77 and CPT-11 [76].

7.3.2. Specific Active Receptor-Mediated Targeting

The active targeting approach involves the attachment of functional ligands to the nanomicelle
surface. These ligands identify tumour-specific receptors that are overexpressed on the cancer cell
plasma membranes, resulting in increased uptake and increased internalization of nanomicelles into
tumour tissue via the receptor-mediated endocytosis process [113–115]. Commonly utilized affinity
ligands are classified into the following categories: small unrefined molecules, nucleotides (RGD
sequence), oligopeptides, sugar groups, folates, monoclonal antibodies (mAb), and nucleic DNA/RNA
aptamers [116].

There are several tools that are being utilized to target particles to tumour tissue. The use of
an activating ligand is a dynamic approach that is reliant on specific receptors at an attachment
site. These interactions include (glycoproteins/antibody), antigens and activating attachment groups
(Figure 7). The “magic bullet concept” Ehrlich hypothesized that antibody-bounded nanocarriers have
progressed into a model using three components: a therapeutic, a copolymer and active functionalizing
agents associated with one formulation. This targeting therapeutic strategy provides rewards,
including high target specificity for the pathological/infected area and minimal toxicity to the healthy
cells. Furthermore, this therapeutic strategy also improves tumour treatment, chemotherapeutics
of metastatic cancer of early stage carcinoma, when the primary papillary fallopian tubes are still
immature [113–115].
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Figure 7. Schematic depiction of (a) active targeting, (b–g) confocal images of A431 cellular uptake
incubated with cetuximab encapsulated micelles and lysotracker. The fluorescence intensity of A431 cells
(b–d) treated with targeting micelles was 1.45 times higher than in cells incubated with antibody-free
micelles (e–g) (Adapted with permission from Sudimack et al. [117]; Liao et al. [118].

8. Mucins as Targets for Antibodies in Chemotherapeutics

Most ovarian carcinomas are of epithelial origin and express mucins utilized as prospective
diagnostics and treatment targets. Mucin glycoproteins are extracellular, glycosylated protein molecules,
originating in the mucus coating and increased expression has been linked with various types of
malignant pathology including OC. Currently, there are 20 identified mucins with two classifications:
epithelial mucins (gelating, nongelating, film attached mucins) and lycoproteins (MUC9, MUC10,
MUC18 and MUC20) [116–118]. Various research studies on the expression of mucin antigen in ovarian
cancer have identified overexpression of film-attached mucins, especially MUC4, MUC5AC, and
MUC16, but their biological applications are not defined. Mucin 16 (CA125) is used as a clinical
biological marker in OC due to its elevated expression which results in CA125 release into the blood
serum [119,120]. CA125 is a very huge cell surface mucin, first established by Robert Knapp in 1981.
He identified this glycoprotein whilst exploiting identical monoclonal antibody-mAb [121]. Serum
levels of CA125 are clinically utilized to diagnose OC patients on basis of regression or progression
of the disease, subsequent to standard chemotherapy [122]. Moreover, abnormal mucin expression
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can trigger immunity and probably cause a strong antibody response. The antibody response is
symptomatic of disease expression [123]. Immunoglobulin Ig (antibodies) affiliated with mucins, can
have potential application in the progression towards the detection and therapy of ovarian cancer;
however, there are still few studies conducted to date [121–123].

9. Stimulus-Responsive Nanomicelles

Stimuli-responsive nanomicelles (SRM) are smart nanoparticles engineered to respond to internal/
external stimuli of physical, chemical or biochemical origin, to control and release drug payloads at
specific sites. SRM deliver drug payloads by structural alterations in response to the eliciting stimulus.
The response presents with the degradation/disruption, polymerization or assembly of nanomicelles.
The common internal stimuli in a cancer microenvironment are acidic pH, electrochemical redox
potentials of the cell, and the availability of certain over-produced matrix enzymes, while external
stimuli include temperature, attraction via magnetic field, light illumination (UV, visible, infrared) and
ultrasound waves [95]. In this context, the formulation of nanomicelle, sensitive to external or internal
stimuli is an alternative approach to targeted therapeutic release. In vitro models have provided
evidence of progress for a number of stimuli-responsive approaches, however only a small proportion
have been validated in animal preclinical prototypes, and also few (thermosensitive liposomes and iron
oxide nanoparticles) are clinically approved by the FDA in terms of treatments and diagnostics [81].

10. Nanomicelles in Clinical Evaluations

Several therapeutic-loaded nanomicelles for chemotherapy have been evaluated for determination
of toxicity and bioavailability [124]. While the impetus is on ovarian cancer, some examples of polymeric
nanomicelles cited are for other types of cancer and applied for OC treatment. Preclinical evaluations
and findings have revealed lots of positive data utilizing nanomicelles as therapeutic delivery systems
for loading hydrophobic chemotherapeutic drugs [125]. Several micellar nanoformulations that are
now under clinical evaluations are all stealth nanomicelle formulations, and specifically have a surface
coating for stabilization to guarantee a compact conformational covering and protection against
opsonisation by plasma proteins (Table 4) [69]. Genexol-PM micelle formulation is paclitaxel-loaded
PEG-PLA micelle preparation [126]. NK012 micellar nanoformulation is also composed of a
PEG coating with amino-acid repeat units, polyglutamate (PGlu) combined with antineoplastic
7-ethyl-10-hydroxy-camptothecin (SN-38) [69]. The hydrophobic PGlu component results in micelle
aggregation. In vivo trials with NK012 micelle formulations validated the potency of antineoplastic
action in a mice model. Recently, the accomplishments and applicability of NK012 were also screened
in phase II trials in prominent breast tumour patients [69]. New paclitaxel (PTX) experimental
formulations evaluated include NK105 that are composed of PEG coating and modified polyaspartate
hydrophobic ration [69]. PTX drug is incorporated in the central core by hydrophobic links with the
hydrophilic portion. Furthermore, a major decrease in cytotoxicity, from Cremophor EL and ethanol
subsequent to primary PTX administration, was practical with NK105. In phase I trials with NK105
formulation, minor allergic reactions were identified in patients with bile duct, pancreatic, gastric, and
colonic cancers compared to primary PTX treatment [69].
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Table 4. Polymeric micelle-based formulations containing chemotherapeutic drugs in clinical trials.

Formulation Trade
Name Incorporated Drug Purpose Polymer Particle Size (nm) Drug Loading (%) Phase References

Genexol-PM Paclitaxel Solubilization MPEG-PDLLA <50 16.7 III, IV [127]

NK-105 Paclitaxel Targeting PEG-P(Asp) 85 23.0 II, III [128]

SP-1049C Doxorubicin Anti-MDR effect Pluronic L61, F127 30 8.2 I, II, III [69]

DTXL-TNP Doxorubicin Targeting PLA-PEG,
PLA-PEG-ACUPA 100 10 I [129]

NC-6004 Cisplatin Targeting PEG-P(Glu)-Cisplatin 30 39 I, II [130]

NC-4016 DACH-platin Targeting PEG-P(Glu)-DACH-platin 20–100 25 I [131]

NK 012 SN-38 Targeting PEG-P(Glu)-SN38 20 20.0 II [132]

NK911 Doxorubicin Targeting PEG-(Asp)-Dox 40 n. a II [133]
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A SP1049C phase II cancer trial in cases with advanced stomach cancer has been conducted.
SP1049C has been formulated as doxorubicin (DOX)-loaded Pluronic micelles [69]. In these phase II
cancer trials, SP1049C displayed to be more effective than clinical doxorubicin in therapy of various
types of carcinoma [69]. SP1049C displayed superior antineoplastic action, efficiency and increased in
cancer cells in several pre-clinical carcinoma models as well as doxorubicin-resistant malignancies as
compared to clinical doxorubicin [69]. SP1049C formulations have been screened in phase III trials in
patients with metastatic adenocarcinoma of the gastrointestinal route [69]. To minimise toxicity and
increase the efficacy of cisplatin, the micellar pharmaceutical preparation NC-6004 (Nanoplatin™)
was developed. The NC-6004 consists of PEG coating with poly (γ-benzyl L-glutamate)/CDDP
composite [69]. A small phase I pilot showed that NC-6004 was acknowledged by carcinoma patients
that were affected by colorectal carcinoma, upper oesophageal carcinoma, and lung carcinoma [69].
The Genexol-PM formulation was a micellar PTX nanoformulation formulated from PEG with polylactic
acid [68,134,135]. Preclinical in vivo trials with Genexol-PM formulation exhibited a threefold increase
in average dissolution time and a significantly improved antineoplastic efficacy as compared with
clinical paclitaxel [69].

11. Patents in Micellar Technologies for Targeted Chemotherapeutic Drug Delivery

In a patent by Kwon and associates (2015), solubilisation of cotton gossypol (a yellow, natural
phenolic aldehyde plant pigment for inhibition of various dehydrogenase enzymes) with nanomicelles
was conducted. Polymeric-nanomicelles integrated chemodrugs such as gossypol, and a combination of
chemodrugs were evaluated, including mixture of a platinum-derived (cisplatin-(CDDP) or carboplatin)
as well as a taxane (paclitaxel (PTX) or docetaxel-(DTX)), commonly used to cure nonsmall cell-lung
(NSCLC) and ovarian cancers. The nanomicelle carrier’s composition enabled efficacious incorporation
of the hydrophobic drugs [135–137]. Hence, this discovery provided stable and nontoxic biocompatible
therapeutic formulations that potentially increased drug bioavailability. In another patent, nanomicelles
encapsulating SN-38 formulation for chemotherapy of carcinoma were investigated. This development
provided a nanomicelle formulation, including extended multiblock co-polymer with a SN-38 resulting
from encapsulated camptothecin [61,138]. This SN-38 formulation is dominant over its camptothecin
derivative since it is not reliant on stimulation by the detoxifying liver in vivo (Table 5) [138].

Bodrati in 2018 demonstrated the application of block-co-polymer nanomicelle of
poly(oxyethylene)–block-poly(oxypropylene) copolymer in the administration of chemotherapeutic
agents, providing noncovalent dissolvation, which minimized solubility issues [61]. Several copolymers
are readily obtainable under the generic name of “poloxamers”/ “pluronics”. Innovation by Hao et al.
(2017) comprised of nanomicelle aggregates, composites with self-aggregated/assembled nanomicelles
and methods for formulating nanomicelle aggregates and composites. Nanoformulation also included a
plant prolamin proteins attached to polyethylene glycol (PEG)-coated nanomicelle [139]. This invention
further derived methods for integration of drugs utilizing the conjugates of the protein nanomicelle
formulation. In a patent by Rhymer (2008) micellar structures, techniques of micellar assemblies,
methods of nanoimaging, approaches of chemotherapeutic delivery and life biological composites were
investigated [140]. This patent presented a therapeutic technique utilizing hydrophilic, high molecular
mass block copolymer for facilitation of an intraperitoneally dosed antineoplastic agent for prolonged
release in the peritoneal region. The patent further described a therapeutic-loaded nanomicelle
formulation, consisting of a copolymer with an exterior water-soluble moiety, a polycarboxylic acid
functional group; and an anti-tumour agent attached to or incorporated in the nanomicelle. Patents in
micellar technologies for antineoplastic drugs delivery are presented in Table 5.
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Table 5. Micellar patents issued in the area of cancer drug delivery (Adapted and modified from Mishra et al. [138]).

Patent Type Title Patent No. Chemical Formula Action Year Inventor/Assignee

Micelles C6-c18-acylated derivative of hyaluronic acid WO2014082609 A1 (HA)-[0(C:=O)NH-M]p AC 2014 Contipro Biotech S.R.O.

Micelles Polymer conjugated protein micelles EP 2678001 A2 PEG-Prolamine AC 2014 South Dakota State
University

Paclitaxel Micelle
(NK105)

Micellar preparation containing sparingly
water-soluble anticancer agent and novel

block copolymer
09705599.0 (poly(ethylene glycol)-copoly

(L-aspartic acid) AC 2013 Nanocarrier Co. Ltd.
Nippon Kayaku Co., Ltd.

Nanoplatin® (NC-6004) Pharmaceutical composition and combined agent 098101554 (poly(ethylene glycol)-copoly
(amino acid) AC 2013 TOUDAI TLO Ltd.

DACH-Platin Micelle
(NC-4016)

Coordination compound composed of
diaminocyclohexane platinum (Ii) and block copolymer 2007-520209 (poly(ethylene glycol)-copoly

(amino acid) AC 2013 The University of Tokyo

Protein Micelle Electrostatic bonding type macromolecular micelle
drug carrier EP2583563 A1 polyethylene glycol and

poly(α,-β -aspartic acid) AC 2013 TOUDAI TLO Ltd.

siRNA Micelle Polyethylene glycol/polycation block copolymer EP2087912 A1 PEG-PLys AC 2013 The University of Tokyo

Sensor Linked Micelle Active targeting polymer micelle encapsulating drug,
and pharmaceutical composition 2008-539901

poly(ethylene
glycol)-b-poly(2-aminoethyl

methacrylate)-b-poly(styrene)
AC 2013 Nanocarrier Co. Ltd.

pH-Sensitive Micelle Novel block copolymer used for preparing
pH-responsive polymer micelles 2009-7007877 [PEG-p(Asp-Hyd-Adr)] AC 2013 The University of Tokyo

Docetaxel Micelle Docetaxel polymer derivative, method for producing
same and use of same 2009250393 (mPEG-PDLLA) AC 2013 Nanocarrier Co. Ltd.

Bortezomib Micelle Pharmaceutical composition that includes block
copolymer containing boronic acid compound EP 2692777 A1 polyethylene

glycol-polyglutamic acid AC 2013 Nanocarrier Co. Ltd.

Micelles Micelles for the solubilisation of gossypol 20120321715 Poloxamer or PEG-PCL AC 2012 Wisconsin Alumni Research
Foundation., US

Abbreviations: AC (Anticancer activity including ovarian cancer and various cancers such as lung and prostate cancer), MA Microaggregates), PEG/PEG 2000 (poly(ethylene glycol-2000),
Hyaluronic acid (HA), C = O (carbonyl group), -PLys (polylysine), Asp(Aspartate), Hyd-Adr(hydrazone Adriamycin, poly-DL-lactide (PDLLA), PCL(polycaprolactone).
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12. Future Recommendations

Nanomicelles are employed as drug carrier nanosystems or imaging agents. Extensive
differentiation in physicochemical, pharmacological and immunological platforms is necessary
prior to approval for application in humans. Antineoplastic efficacy of most chemotherapeutic
nanoformulations has not advanced to an appropriate degree to evolve the formulated nanomedicines
into clinical application. Thus, great research studies are conducted on optimization of physicochemical
profiles of nanomicelles. Combinational chemotherapy against ovarian cancer is another approach used
to enhance antineoplastic efficacy. Future trends in nanomicelle development and delivery includes
circulatory computational evaluations, simulating ecosystems of the pathogens and patient-derived
cell lines, induced pluripotent stem cell (iPSC) technology, three-dimensional coculture, organotypic
systems, improvements in cell imaging, microfluidics, nanotechnologies and gene-editing technologies.

The main challenge is now linked with the interpretation of various productive and validated
experimental findings into clinical translation. The efficacy of the therapeutics is limited due to
degradation, interactions with cells, and poor tissue permeability. Furthermore, encapsulation of two
or more therapeutics in a single nanocarrier system can be challenging due to different solubilities of
the optimal drug combination. Nanotheranostics are therapeutics activated by a positive diagnosis of
an ovarian cancer disease and will be in use in the near future for chemotherapeutics.

13. Conclusions

Novel nanomicellar technologies developed to date are focused on improving pharmacodynamics
and pharmacokinetic profiles of the incorporated therapeutic agents, whilst increasing safety and
compliance, to upsurge the five-year survival rate of OC patients. Nanomicellar systems have advanced
as significant chemotherapeutic delivery platforms. These nanocarriers can be specifically loaded with
a wide range of active drug compounds, providing a strategy to improve the bioavailability of drugs,
including those abandoned due to insoluble characteristics and cytotoxicity challenges. Nanomicelles
have also shown to be applicable for theranostic applications. Multipurpose polymeric nanomicelles
have more attributes as therapeutic carriers, as shown by their considerable outcomes in the scope
of clinical diagnosis and chemotherapeutics. These include nanomicelles attached with ligands, the
enabling of specific active targeting of tumour metastasis, increased restorative effects, and reduced
side effects—thus promoting more effective therapy. Although no panacea may be eminent at this
time, it is anticipated that through tailored, safe, multifaceted, and rational design of nanomicelles,
advanced drug delivery systems will be developed for the future treatment and diagnosis of OC.
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