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Hand explorations are 
determined by the characteristics 
of the perceptual space 
of real‑world materials from silk 
to sand
Dicle N. Dövencioǧlu1*, F. Seyhun Üstün2, Katja Doerschner3,4 & Knut Drewing3

Perceiving mechanical properties of objects, i.e., how they react to physical forces, is a crucial ability 
in many aspects of life, from choosing an avocado to picking your clothes. There is, a wide variety 
of materials that differ substantially in their mechanical properties. For example, both, silk and 
sand deform and change shape in response to exploration forces, but each does so in very different 
ways. Studies show that the haptic perceptual space has multiple dimensions corresponding to the 
physical properties of textures, however in these experiments the range of materials or exploratory 
movements were restricted. Here we investigate the perceptual dimensionality in a large set of real 
materials in a free haptic exploration task. Thirty-two participants actively explored deformable and 
non-deformable materials with their hands and rated them on several attributes. Using the semantic 
differential technique, video analysis and linear classification, we found four haptic dimensions, 
each associated with a distinct set of hand and finger movements during active exploration. Taken 
together our findings suggest that the physical, particularly the mechanical, properties of a material 
systematically affect how it is explored on a much more fine-grained level than originally thought.

The perceived properties of a material guide critical decisions about how to interact with an object, for example, 
whether we should eat it, buy it, sit on it or how we should pick it up. How we perceive materials has been a 
topic of longstanding interest in the haptic domain, yet only recently we begin to understand how the haptic 
perceptual space for materials might be structured. For example, on the basis of a meta-analysis of 18 studies, 
Okamoto et al.1 characterized this space to vary along five main factors: macro and fine roughness, warmness 
(cold-warm), hardness (hard-soft), and friction (moistness-dryness, stickiness-slipperiness). More recently, using 
a much larger set of materials (120), these five factors have been replicated and extended by two (volume and 
naturalness) by Sakamoto and Watanabe2. However, in these studies the actual exploration of the materials has 
been restricted to passive, or single digit active lateral or indentation movements. Yet, when we naturally interact 
with the materials around us, we typically engage the entire hand and all digits and perform much more complex 
movements than lateral motion or pressing down.

In haptic object perception we know that animals, including humans, adapt their exploratory hand move-
ments while perceiving 3D shapes, in order to stimulate the appropriate skin receptors3. Such stereotypical hand 
movement patterns in active touch have been coined exploratory procedures (EPs) by Lederman and Klatzky4, 
and they are thought to be optimal for perceiving a particular object property, e.g. its shape and texture, but also 
its material properties such as temperature or softness. When hand motion is restricted1,2 there is a risk that the 
perceiver has only limited access to the material property needed to make a perceptual judgement about a mate-
rial quality. This, in turn, might affect how the perceptual space obtained from these experiments is structured. 
Our own informal observations showed that under natural exploration conditions observers use a great variety 
of hand movements during interactions with materials (e.g. in Drewing et al.5). This might be particularly pro-
nounced when exploring nonrigid materials: we explore fur or velvet with stroking motion, we tend to run our 
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fingers through fine sand, and we press them into playdough. Velvet, beach sand and playdough are all nonrigid 
materials but they differ substantially in their mechanical properties, i.e. how they deform in reaction to force, 
and we seem to interact with each one of them in idiosyncratic ways, that seems to be modulated primarily by 
those mechanical properties (e.g. as opposed to temperature). Given this, in the present study we focus on the 
perception and exploration of mechanical material properties, with a two-folded goal: (1) to test the dimensional 
architecture of the haptic perceptual space for mechanical material properties when participants explore samples 
unrestricted and (2) to assess whether the obtained perceptual dimensions are associated with distinct patterns 
of exploratory hand movements2,3.

Using a free manual exploration in conjunction with a rating paradigm and video analysis we find, consistent 
with previous work, that there are several perceptual dimensions that represent mechanical material properties, 
several of them related to the construct of “softness”. In addition, we show that each perceptual dimension is 
associated with a different set of EPs, and that these EPs are much more fine-grained than those described by 
Lederman and Klatzky4.

Results
Ratings.  Consistency.  First we wanted to know whether different participants judged the materials in simi-
lar ways. In order to assess interindividual consistency of the ratings, we calculated correlations and Cronbach’s 
alpha (formulated from the number of adjectives, covariance, and variance in the data). The pairwise correla-
tions for all materials and all adjectives between all participants were on average r = 0.58. Cronbach’s alpha was 
in the range of 0.9–0.99 across the set of adjectives, suggesting, high consistency among participant’s ratings.

Exploratory factor analysis.  To explore the patterns in the adjective ratings, we used a factor analysis that gath-
ers similar responses together (in particular adjectives with highly correlated ratings) in a factor and represents 
the whole dataset with less dimensions. Since we did not know how many factors this dataset would reveal, we 
used an exploratory factor analysis. Before the analysis, we wanted to see the variance adequacy of our sample 
with a KMO test and whether the variances for each item (adjective rating) are equal with the Bartlett scores. The 
KMO score was .703 and Barlett’s test of sphericity was significant ( χ2(465) = 2574.59, p < 0.0001 ), suggesting 
that the data were appropriate to conduct a Factor Analysis and that the overall significance of all correlations 
within the matrix was meaningful (and correlations were not just random). Applying the Kaiser-criterion, the 
factor analysis revealed five factors in the data, explaining the 87.26% of the variance in total. Table 1 shows fac-
tor loadings after varimax rotation. In order to obtain a criterion value to determine relevant factor loadings, 
communalities of adjectives (ranging from min = 0.36 to max = 3.66 with mean = 2.46) were used. The square 
root of 30% of the mean communality is obtained as a criterion score (c = 0.736). Each adjective above this cut-
off value is highlighted with italics in the Table 1. Adjectives, highlighted in bold have maximal loadings across 
factors.

The first rotated factor explains 25.68% of variance in data. The adjectives, “elastic”, “compliant”, “delicate”, 
“soft”, “spongy”, “malleable”, “doughy” (positive loadings) and “inflexible”, “hard” (negative loadings) load highly 
in this factor. Taken together, the elasticity (elastic, compliant, doughy delicate, and inflexible, hard in reverse 
meaning) of the material might explain this factor loading. Furthermore, for negative loadings, non-compliant 
seems to contribute to the loadings of the adjectives inflexible and hard. Thus, we labeled this factor compliance. 
The second factor explains 22.62% of variance. Adjectives “moisturous”, “gooey”, “sticky”, “slimy” and “gelatinous” 
load high on this factor. Slipperiness, wetness and density features of materials seem to play a combined role in 
the loading of this factor. Therefore, this factor was labeled viscosity. The third factor explains 12.44% of variance. 
Adjectives “velvety”, “silky” and “hairy” load on this factor. This factor was labeled surface softness. The fourth 
factor explains 16.92% of variance. “Sandy”, “powdery”, “granular” load very highly on this factor, along with a 
relatively lower loading of “scaly”. We suggest that material properties which explain this factor loading are the 
those related to the size and weight of individual material particles: thus, this factor was labeled as granularity. 
The fifth factor explains 9.6% of variance. “Roughened”, “textured” load high on this factor along with “slippery” 
and “glossy” (negative loadings). Therefore, this factor was labelled as surface roughness.

Video analysis.  Event coding.  From our video data we extracted a new set of EPs with the following tax-
onomy. Examples are shown in Fig. 1.

Pressing Applying directional normal force to the material at hand either by squeezing the material between 
fingers and palm, or applying force to a part of the material with one or more fingers. This would also be catego-
rized as pressure by Lederman and Klatzky4.

Rubbing Applying torque and lateral force on the materials, sometimes by sweeping thumb and index finger 
tips against each other, or by forcefully stroking the material with the thumb while using other four digits to 
stabilize the material. Regardless of the material being picked up or not, rubbing here is defined by the force and 
torque of the fingers. This EP can be applied in multiple directions.

Stroking Moving the hand gently against the material surface. Most frequently the inside of the hand is 
used to stroke but we encounter stroking with the back of the hand as well (e.g. fur). If it is with the thumb, or 
as strong as to deform the object then it is considered to be rubbing (Stroking would be categorized as lateral 
motion in Lederman and Klatzky4).

Rotating Lifting portions of the material to move and turn its boundary inside the fingers or fingertips.
Stirring Moving one or more fingers immersed in the material, sometimes rotationally.
Pulling Stretching a part of the material by moving the hand away, or separating the fingers from inside for 

sticky viscous materials (e.g., hand cream) or outside the fingers in case of extensile materials, e.g., rubber bands.
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Running through Lifting parts/portions of the material and letting them fall through the fingers. This might 
also be combing through the material, observable also in hairy or viscous materials, e.g., fur or hand cream.

Tapping Hitting the fingertips, knuckles, or the back hand lightly and repeatedly against the material, more 
rapidly but lighter than pressing. This EP would provide similar kinesthetic cues to that defined in Friedman, 
Hester, Green, and LaMotte6 but since here we do not use a stylus, skin cues would also be available to the par-
ticipant. This EP might also include lifting the object and hitting it lightly against the container walls.

Inter‑rater reliability.  Figure 4, right, shows correlation coefficients between raters averaged across materials, 
and across participants all of which are significant at p < 0.0001 (for 10 pairs of raters × 50 videos = 500 com-
parisons) with Pearson correlation coefficients of 10 averages ranging from R = 0.70 to R = 0.95 . This suggests 
that raters’ EP assessments had high degree of agreement, and that our proposed EPs and their descriptions 
provide a valid measure for evaluating exploratory hand movements. In order to check whether the interrater 
reliability also holds at a more fine-grained level we also computed correlations across timeslots of 30 second 
bins, i.e., one correlation per rater pair across 10 materials × 5 subjects × 4 timeslots. These correlations were still 
acceptable, with an average around R = 0.51 . In all following analyses, we will evaluate EP frequencies over the 
whole time series.

EP frequency.  Figure 2 illustrates that participants tended to employ the same EPs for materials that yielded 
high values in the same perceptual dimension (e.g., stress balls and sponge on compliance). For compliant mate-
rials, the most frequent EP was pressing. For viscous, soft surfaced, and rough materials the most frequent EP 
was rubbing. For granular materials such as poppy seeds and sand, most of the time people ran their fingers 
through the material.

EP frequencies obtained from the coding of 50 videos (10 per perceptual dimensions consisting of two exem-
plary materials each) were averaged across 5 raters. We conducted a one-way MANOVA, where the frequencies 

Table 1.   List of 31 adjectives in English and their Turkish translations with Factor loadings after varimax 
rotation.

Adjective in English Turkish translation Compliance Viscosity Surface softness Granularity Roughness

Elastic Elastik 1.508 0.120 0.117 −0.462 0.024

Inflexible Esnemez −1.493 −0.226 −0.394 0.290 −0.191

Compliant Güç uygulanabilir 0.843 0.060 −0.056 −0.305 −0.053

Malleable Biçimlenebilir 0.985 0.378 0.080 −0.073 −0.095

Hard Sert −1.391 −0.681 −1.056 −0.032 −0.191

Soft Yumuşak 1.355 0.814 0.969 −0.203 0.111

Delicate Hassas 0.762 0.183 0.497 −0.099 −0.086

Doughy Hamursu 0.924 0.764 −0.180 −0.119 −0.177

Meaty Et gibi 0.384 0.176 −0.162 −0.131 −0.062

Spongy Süngerimsi 0.783 −0.070 0.388 −0.237 0.721

Woody Odunsu −0.612 −0.254 −0.519 0.003 0.255

Fluffy Kabarık 0.669 −0.068 0.300 −0.111 0.529

Sticky YapıŞkan 0.206 1.408 −0.087 0.017 −0.273

Gooey Vıcık vıcık 0.363 1.552 −0.101 −0.059 −0.296

Slimy Sümüksü 0.336 1.271 −0.143 −0.112 −0.250

Moistrous Nemli 0.119 1.420 −0.019 −0.094 −0.181

Gelatinous Jölemsi 0.534 1.290 −0.176 −0.135 −0.311

Silky Ipeksi 0.146 −0.057 0.923 −0.119 −0.062

Velvety Kadifemsi 0.115 −0.165 1.112 −0.277 0.451

Hairy Tüylü 0.063 −0.154 0.961 −0.218 0.428

Airy Tiril tiril 0.050 −0.124 0.530 0.139 −0.075

Scabby Kabuklu −0.320 −0.191 −0.375 0.215 0.303

Sandy Kum gibi −0.309 −0.050 −0.025 1.548 0.052

Powdery Toz gibi −0.220 0.087 0.081 1.465 0.003

Granular Tanecikli −0.457 −0.120 −0.305 1.747 0.330

Scaly Pul pul −0.227 −0.206 −0.245 0.782 0.361

Leathery Derimsi 0.277 −0.079 0.283 −0.296 −0.008

Textured Dokulu −0.133 −0.293 0.339 −0.015 0.879

Roughened Pürüzlü −0.413 −0.376 −0.053 0.554 1.142

Slippery Kaygan −0.097 0.704 0.253 −0.214 −0.796

Glossy Parlak −0.141 0.187 0.022 −0.201 −0.764
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of the 8 EPs were the dependent variables and the fixed factor was the material’s dominant perceptual dimen-
sion (1–5). We used a 0.05 cut off for significant p values. For each perceptual dimension 10 observations were 
entered (5 participants × 2 materials). The analysis revealed a significant main effect of the perceptual dimension 
( F(28, 142) = 12.67, p < 0.001 , Wilk′s � = 0.011 , partial η2 = 0.68 ), suggesting that the distribution of frequen-
cies of the 8 EPs depended significantly on the materials’ dominant perceptual dimension. Subsequent univariate 
ANOVAs revealed that the main effect of perceptual dimension was significant for all EPs except for stir and tap 
(pressing: F(4, 45) = 30.33, p < 0.001 , partial η2 = 0.73 ; rubbing: F(4, 45) = 19.35, p < 0.001 , partial η2 = 0.63 : 
stroke: F(4, 45) = 4.41, p = 0.004 , partial η2 = 0.28 ; rotating: F(4, 45) = 13.14, p < .001 , partial η2 = 0.54 ; pull: 
F(4, 45) = 4.56, p = 0.004 , partial η2 = 0.29 ; running through: F(4, 45) = 25.27, p < 0.001 , partial η2 = 0.69 ; 
stir: F(4, 45) = 1.47, p = 0.23 , partial η2 = 0.12 ; tap: F(4, 45) = 0.94, p = 0.45 , partial η2 = 0.08 with a Bonfer-
roni corrected alpha value of 0.00625).

We then wanted to understand the specific differences in EP patterns across the perceptual dimensions. To 
this end, we compared each EP’s frequency between any two perceptual dimensions using Tukey’s HSD post-hoc 
test. This yielded several significant differences, which we report next:

Pressing was most frequently observed for compliant materials, significantly more than for materi-
als representing the viscosity, surface softness, or granularity dimensions ( �mcompliant-granular = 60.8 , 
�mcompliant-viscous = 52.6 , �mcompliant-surface soft = 54.8 , �mcompliant-surface rough = 45.5 , each p < 0.001 , where �m 
indicates the percent mean difference in EP frequency with respect to the subscripted perceptual dimensions).

Rotating was most frequently observed for materials representing the granular dimension, 
( �mgranular-compliant = 17.8 , �mgranular-viscous = 27.0 , �mgranular-surface soft = 27.0 , �mgranular-surface rough = 25.2 , 
each p < 0.003).

Pulling was most frequently used for viscous materials. The percent mean difference in EP frequency was sta-
tistically significant between viscous and granular, compliant and soft surface materials ( �mviscous-granular = 14.7 ; 
�mviscous-compliant = 13.7 ; �mviscous-surface soft = 12.8 ; �mviscous-surface rough = 12.3 , each p < 0.029).

Running through was most frequently observed for materials representing the granular dimension, 
( �mgranular-compliant = 50.6 , �mgranular-viscous = 43.8 , �mgranular-surface soft = 53.0 , �mgranular-surface rough = 49.2 , 
maximum p < 0.001).

Figure 1.   Screenshots illustrating the 8 EPs proposed in this study. Arrows show the direction of hand 
movements: pressing sponge pieces, rubbing stress balls, stroking fur, rotating poppy seeds, stirring hand cream, 
pulling slime, running the fingers through sand, and tapping fingertips onto slime.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14785  | https://doi.org/10.1038/s41598-022-18901-6

www.nature.com/scientificreports/

The average rubbing frequency for compliant materials was lower than for any other perceptual dimension 
( �mcompliant-viscous = −40 , �mcompliant-surface soft = −57.9 , �mcompliant-surface rough = −33 , p < 0.001) except for 
granularity ( �mcompliant-granular = −6.8 , p = 0.94).

Overall, stroking occurred most frequently for materials representing the surface roughness dimension. 
The percent mean frequencies of stroking in this dimension were significantly higher than that for compliance, 
granularity and viscosity ( �mroughness−compliant = 16.1 , �mroughness−granular = 16.8 , �mroughness−viscous = 16 , each 
p < 0.013 ), but not different from percent mean frequencies of stroking materials that represent roughness and 
surface softness ( �mroughness−surfacesoft = 12.3 , p = 0.088).

All other remaining comparisons including the percent mean frequencies of stirring and tapping did not 
reveal any significant differences between the perceptual dimensions.

In general, rubbing was the only EP that was coded for nearly all raters used in nearly all video clips. It was 
also the EP with the longest duration (ratio to overall duration, mean of five raters = 49.3%), followed by press-
ing (22.2%), and running through (11.2%). The total duration for the remaining five EPs constitutes 17.2% 
percent of the total time. Rubbing has previously been described as a prolonged event, compared, for example, 
to brief events such as pressing or tap3. Our results are consistent with this observation. Overall, we find that 
there are EPs that appear to be paired specifically with one perceptual dimension: participants tend to primarily 
use pressing for exploring compliant materials, and they tend to use running through and rotating in order to 
explore granular materials.

In order to validate these results, we then increased the number of video sets to be rated to 100 (10 materials × 
10 participants). One of the 5 raters performed the EP coding of this extended set. When we repeat the MANOVA 
on the mean EP frequencies on this larger data set we find very similar results to the analysis described here. 

compliance

Figure 2.   Plots of EP frequencies for each of the 10 materials selected for this analysis. This representation 
disregards the order of EPs. Each pair of materials is representative of a particular perceptual dimension: four 
dimensions are related to mechanical properties and one related to roughness.
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We subsequently used the EP frequencies obtained from these 100 videos as the data set for the classification 
analysis reported next.

Classification.  We wanted to test whether EP frequencies for a given material could predict the perceptual 
dimension that this material most likely represented. A support vector machine (SVM) was iteratively trained to 
discriminate between the five 5 perceptual dimensions using corresponding EP patterns. We trained the model 
with 100 observations for 10 materials. Then we used this dataset (100 observations) in a Matlab crossval func-
tion with its default variables which translate to 10-fold cross validation by leaving 10 percent of the data out for 
each iteration. The function randomly picks 10 observations for test and trains the model with the remaining 
90 observartions. The goal was to predict, for a given EP pattern (obtained from exploring a particular mate-
rial), the perceptual dimension that this material is likely to belong to. Fig. 3 shows that the classification of 
perceptual dimension on the basis of EP patterns was very successful, with the best performance for predicting 
the granularity dimension (96.6%) from the EP patterns, followed by predicting compliance (75.7%), viscosity 
(48.4%), surface softness (46.8%), and roughness (41.6%). Each panel in Fig. 3 shows the corresponding confu-
sion errors for a given EP pattern, organized by perceptual dimension that the materials—from which test EPs 
were obtained—represent. Table 2 shows average values and standard deviations for the corresponding data.

Discussion
Mechanical material properties cover a broad variety of features that can be related to the texture of food, as 
much as to the feel of a velvet cloth or the properties of the ground that we step on. Haptic research on materi-
als, however, has focused often only on 2D textures with a few and limited exceptions of compliant stimuli that 
explicitly vary in mechanical properties such as springs or silicone-like objects. Here, we moved beyond the 
classic set of stimuli used in haptic material research and included a wide range of real, deformable and non-
deformable materials, which we selected to cover a broad variety of materials that are expected to change shape 
through interaction. A few recent studies, that also included a more diverse set of simulated or real deformable 
materials (e.g., viscous materials or fabrics), found that, deformable materials indeed afford more than just a 
percept of elasticity and included also a percept of firmness7 and surface softness8. To our knowledge, here we 
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Figure 3.   We show the performance of a support vector machine predicting the perceptual dimension from EP 
frequencies. The algorithm was trained on relative EP frequencies in order to predict the perceptual dimension 
that a new EP pattern is likely to belong to. Since the classifier was trained to discriminate between five classes, 
the chance performance level was at 20 percent (horizontal gray line). For each tested EP frequency type (where 
type refers to the perceptual dimension that the exploredmaterials scored high on) we also plot the confusions 
that the classifier generated.

Table 2.   Mean posterior probabilities and standard deviations from the classification analysis as shown in 
Fig. 3.

Compliance Viscosity Granularity Roughness Surface softness

Stressballs, sponge 0.76± 0.07 0.09± 0.02 0.04± 0.05 0.08± 0.04 0.03± 0.00

Slime, handcream 0.07± 0.05 0.48± 0.08 0.05± 0.02 0.21± 0.06 0.18± 0.06

Velvet, fur 0.04± 0.05 0.24± 0.05 0.02± 0.01 0.24± 0.04 0.47± 0.05

Sand, poppy seeds 0.01± 0.00 0.01± 0.00 0.97± 0.02 0.01± 0.01 0.01± 0.01

Scourer, sandpaper 0.08± 0.07 0.22± 0.03 0.03± 0.02 0.42± 0.04 0.24± 0.08
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have included granular materials to our stimulus set for the first time. Admittedly, these materials (along with our 
stimulus set) differ in further physical characteristics such as shape, weight, and thermal conductance; but since 
our set of adjectives were knowingly selected to cover compressibility and compliance characteristics of softness, 
our findings predominantly concern the perceptual dimensions that are related to the mechanical properties 
of the material. By using the semantic differential technique, we obtained a total of four perceived dimensions 
that link to mechanical properties: compliance, viscosity, surface softness and granularity. Strikingly, each of 
these perceptual dimensions was also associated with a specific set of exploratory procedures, where six of the 
eight EPs that we found to be relevant for the exploration of deformable (and non-deformable) materials, were 
previously unknown. In fact, we were able to use the frequencies of these eight EPs for a given material to suc-
cessfully predict the perceptual dimension that the material was most likely to be associated with. Our findings 
may also be taken to discuss the prevalent notion of softness. Traditionally, haptic softness has been equated 
with the compliance of elastic materials or springs, degree of softness measured as the degree of compliance 
of elastic materials8–11, where compliance has been defined as an object’s deformation under force. Di Luca12 
described haptic softness more generally, as the subjective impression of the compressibility and compliance 
characteristics of things and materials. Indeed, materials used in this study were all deformable, but how these 
materials deform differs quite a bit: for example, elastic rubber balls bounce back to their original geometry after 
compression, whereas clay keeps its deformed shape after the compressing force is removed. Sand, slime, velvet or 
a rabbit’s fur also deform, but in very different ways than rubber and clay. All of these materials would fall under 
Di Luca’s12 definition of ‘soft’, and also our everyday experience would attribute them some aspect of softness; 
sand, clay, cream or fur can all be called soft. In that way, one may speculate that our four perceptual dimensions 
that link to mechanical properties could represent different softness dimensions (with different associated EPs). 
However, for the present naturalistic stimuli, it is hardly possible to completely isolate the perceptual contribu-
tion of softness from that of other sensory dimensions, and future research is required to test this novel notion 
of a multi-dimensional softness.

It has been proposed that exploratory procedures optimize the gathering of sensory information for the 
purpose or task to which they are linked3,4. For example, in order to gain knowledge about the exact shape of an 
object, it might be the optimal strategy to follow its contour, or in order to learn about the same object’s weight, 
it would be best to lift the object away from any supporting surface4. Thus, the task strongly determines which EP 
is going to be predominantly used. While we vary the task in our study, i.e., the adjectives that the material has 
to be rated on, it always remains—a global level—related to the substance properties of the stimuli. Therefore, 
one might expect that the four EPs, that Lederman and Klatzky4 proposed to be related to the substance—or 
material—of an object (lateral motion, pressure, static contact, unsupported weight) might suffice to perform 
this task. However, this is not what we found.

Instead we found, that EPs vary systematically, depending on which material is explored, which implies that 
they may also be optimized with respect to the material properties, i.e., the specific (mechanic) characteristics 
(granularity, compliance, etc.), of the to-be-explored object. However, there was not a perfect one-to-one map-
ping between EPs and the perceptual characteristics. For example, rubbing was the most frequent EP for two of 
the four perceptual dimensions (surface softness, viscosity), and consequently, rubbing was observed as much 
for velvet and fur as it was for slime and hand cream. Also, for rough (non-deformable) materials rubbing was 
the most frequently observed EP. What might explain this prevalence of rubbing as a particularly informative 
EP in that it provides both vibration and pressure information to the mechanoreceptors which would otherwise 
be missing with other EPs, such as pressure or stroking (duplex theory13,14).

While for some soft surface materials, like silk, rubbing clearly dominated the EP patterns; for other materi-
als, like viscous ones, it was often supplemented by pulling and running through. This suggests, that informa-
tion gathered by rubbing alone might well be sufficient for the judging surface softness of textiles, but that for 
judgments of viscosity additional sensory information is required. For example, by pulling the fingers apart, 
participants assess stickiness of the material, which is related to the viscosity.

Several types of sensory information (and thus several EPs) were apparently also needed for judging granular-
ity, for which we found only a low occurrence of rubbing. Instead, rotating and running through were the most 
prominent EPs for granular materials, such as sand and poppy seeds. Here, rotating might provide information 
about the individual grain size and shape, and running through might help estimating other characteristics of 
the grains by stimulating Meissner receptors, which are known to be good at detecting change and speed. Over-
all, it appears that the EP’s we discovered here are—as much as the â€˜classic’ ones—optimized. What is new 
in our study is the discovery that the selection of EP’s can be fine-tuned to the properties of the to-be-explored 
materials. Specifically, materials that score similarly on a specific perceptual dimension were also explored by 
similar hand motions.

How then, do our EP’s compare specifically to those proposed by Lederman and Klatzky4? As the authors, we 
also propose an EP called pressing. Pressing occurred more frequently for compliant materials such as sponge 
and stress balls, together with rubbing and rotation. However, pressure as defined by Lederman and Klatzky4 
would not be synonymous with our pressing. It would also comprise in part our EP descriptions of rubbing or 
tapping—depending on the visible effects of force and torque. Similarly, lateral motion4,13, would not just map 
directly onto one of our proposed EPs but instead be coded as either stroking or rubbing—depending on the 
observed degree of force applied to the material. Interestingly we found that stroking, was related to both, the 
perceptual dimension of surface softness, as well as to roughness, although it is possible that these two types of 
stroking might differ in ways that we did not capture here. While some of the differences between Lederman and 
Klatzky4 and our material related EPs are clearly attributable to our more diverse set of materials, some might 
be also related to the fact that we did differentiate more finely between EPs.

Are really this many distinct EPs needed to describe the manual exploratory interactions with materials? As 
described above, previous research has nearly exclusively associated pressure with the perception of deformable, 
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in particular compliant materials. However, our results indicate that deformable materials have more than just 
one perceptual dimension. Thus, it appears plausible that different ‘tools’ (sensory input) are needed to gather 
information about these dimensions. The successful classification of EP patterns as belonging to one of the 
proposed perceptual dimensions was only possible because there are distinct EP patterns associated with each 
perceptual dimension: people apply pressure when judging the properties of deformable materials, let grains and 
sand run through their fingers, or pull viscous materials. It is very unlikely that pressing alone would suffice to 
explore all of these perceptual dimensions of soft materials. Nevertheless, this would be an interesting question 
for further study, namely, to test whether by forcing participants to use non-optimal EPs, percepts of material 
properties might be altered by the hand movements.

One may think that not all EPs can be applied to all the materials, and this may have led to overestimation of 
material-specific preferences. Admittedly, it is more difficult to apply some EPs to some materials than others. 
Although we argue that it is not impossible, it may be counterintuitive. For example, one might think it is not 
possible to pull sand, but by our definition pulling also includes separating fingers with material smudged, such 
as checking for stickiness of cream. Hence, it is, in principle, possible to perform pulling with granular materials. 
Similarly, we define run through including a combing like sweeping motion, which is intuitive while petting a 
dog, but also not impossible to apply to the surface of a non-granular, non-hairy material such as slime. Having 
said that, we would like to acknowledge that for a specific material not choosing certain EPs in a few selected 
cases, also might be due to kinematic difficulties with the material. But does that mean that “true” preferences 
for an EP are overestimated? This argument would make sense if there was a finite fully described number of 
potential EPs that are possible at all, and further limitations of the EPs by the material would yield to an over-
estimation of the usage of the residual EPs in the set. However, human movement control is quite flexible and 
adaptive, a manifold of different EPs could have been observed, and the question which of theoretically possible 
EPs are actually used was also part of this study. That is, the baseline for discussing the preferences is not the 
limited number of 8 observed EPs, but the (infinite) number of theoretically possible EPs. Hence, it would not 
change much in the interpretation if a few EPs were not possible. We would also like to note that before the 
experiment we do not know which exploratory movements are possible for a given material, because we only 
know the limited number of EPs that participants use.

It is further worth noting that the materials in our study not only differed in how they were explored but also 
in how long they were explored. For example, the total time of exploration (obtained by adding the durations of all 
coded EPs) for slime and stress balls were longer than that of sand paper (average duration in seconds for slime: 
82.2 s ± 8.3 SEM, stress balls: 78.7 s ± 3.5 SEM, sandpaper 51.5 s ± 6.1 SEM). Thus, participants kept moving their 
hands when making judgements about slime and stress balls, but preferred more sporadic contact with sandpaper. 
These differences can be explained by the different affective responses that these materials elicit: they tend to be 
negative for sandpaper, and are more positive for slime14,15. It is possible though that this affective component 
of tactile judgements not only contributes to the overall time that we spend exploring a material but that it also 
affects how the properties of a material are perceived. Further study is needed to investigate this possibility.

This study primarily investigated the changes of EP patterns as a function of the specific material properties. It 
is, however, also possible that participants not only use different EPs for different materials, but also use different 
EPs when rating different attributes of the same material4,13. Moreover, these two factors, i.e. the rating task and 
material properties could interactively influence which EPs are employed.

Haptic perception of materials is a heterogeneous process and this heterogeneity not only manifested itself 
in the results of a perceptual rating task but also in the EP patterns associated with specific perceptual dimen-
sions. This work endorses the high dimensionality of the haptic representation of mechanical properties and of 
the material space itself by using a diverse set of stimuli and by letting observers interact with these freely. This 
underscores how much the theoretical constructs yielded by a study can be influenced by the choice of stimuli. 
Our work changes the conceptualization of EPs as being solely determined by the perceptual tasks; instead, they 
are also influenced by subtle changes in the material properties of objects.

Methods
We used an adjective rating task, the semantic differential scaling method and principal component analysis 
to determine the perceptual dimensions of mechanical properties of real materials. Materials were selected to 
possess a variety of mechanical properties and to be compressible and deformable in different ways. Adjectives 
were selected to measure sensory aspects that cover a range of compressibility and compliance characteristics. 
We asked participants to haptically explore materials (no visual information was given) while rating them on a 
list of adjectives. During the experimental sessions, we also recorded videos of the hand motions of all partici-
pants. These videos were coded by raters to extract known and novel EPs. After this, we analyzed the differences 
in EP usage for materials scoring high on one of the obtained perceptual dimensions. Subsequently, we used EP 
patterns in a larger set of videos to train a support vector machine that would classify each material according 
to its perceptual dimensions.

Participants.  34 volunteers (17 females) took part in the experiment. The age range was 19–9 years (average 
age: 23.71 years). None of the participants had touch-related disabilities. A 2-point touch discrimination test on 
the right hand’s tips of the index finger was used prior to the experiment to ensure that the touch perception of 
the participant was in the normal range (individual thresholds 2– mm or better). The number of participants in 
the experiment was well above the typical number of 20 used in many previous similar experiments that studied 
perceptual dimensionality16,17. Before the study, participants gave written informed consent. The experiment 
was approved by the ethical review board of Bilkent University and in accordance with the Code of Ethics of the 
World Medical Association (Declaration of Helsinki). Participants were paid for their time after completing the 
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experiment (30 Turkish Liras in total). The hand videos of 6 participants were excluded from the video analyses, 
because of recording errors (overwriting) or incomplete datasets.

Video raters.  Five raters coded the videos: three raters were students of the Justus-Liebig-University of Gies-
sen, Germany; two of these coded the videos as part of their master thesis work; the third rater coded the videos 
as part of an undergraduate internship project. The two remaining raters were undergraduate Erasmus students 
from Konya University, Turkey. All raters participated in initial EP extraction and EP coding of 50 videos, one of 
these raters coded 100 videos used for SVM analyses.

Stimuli.  Materials.  All nonrigid materials have in common that they can be dynamically deformed or 
changed in one way or another12. However, a dynamic deformation or change can occur in many ways: for exam-
ple, running the fingers through sand alters its shape by displacing the individual grains, stroking fur compresses 
or bends the individual hairs, kneading a soft textile, a sponge or play dough deforms it through compression. 
All of these materials deform or change their shape - but they do so in idiosyncratic ways. In order to probe 
these different properties, we created a large set of 50 everyday deformable and non-deformable material items. 
For convenience, we organized these roughly into 5 categories: elastic materials, textiles, deformable materials, 
granulate materials and non-deformable materials (and as a control, to a small extend roughness), with 10 items 
per category. Table 3 provides a complete list of materials which we used.

Videos.  Participants’ hand movements were recorded during the experiment by a Sony camera with a rate of 50 
frames per s and HDMI resolution of 1280 p × 720 p. Video’s files were stored as XAVC SHD.

Adjective list.  We started out with an initial set of 262 touch-related affective and sensory adjectives by adapt-
ing the haptic lexicon of Guest et al.17 to Turkish. We narrowed down the initial set by eliminating emotional 
and non-sensual adjectives and the ones that are too similar, and, finally, established a list of 31 adjectives that 
would describe mechanics (and roughness) related aspects of touch. Table 1 shows the list of adjectives used in 
our study along with their Turkish translation.

Perceptual task.  On a trial, participants reached out to a glass container that was hidden behind a black 
curtain occluder. The opening in the curtain occluder might have constrained the participants’ arms, but they 
were free to move their hands beyond the wrist while exploring. Their nose and ears were plugged and their task 
was to rate the degree to which each of the 31 adjectives would apply to each of the materials. Participants were 
specifically asked to rate the material, the word ‘object’ was not used during the instructions. While exploring 
one material item participants rated it on one adjective at a time (presented on a mini card) by saying out loud a 
number, that was noted down by the experimenter. The number was meant to express how much a given adjec-
tive was applicable/suitable to the material item (Semantic Differential Scale18); 1 indicating that the adjective 
was not applicable at all to the item and 7 indicating that the adjective very much applied. The orders of mate-
rials and adjectives were randomized. Participants had 3 s to respond to an adjective, and received a warning 
beep sound if this time interval passed. Each participant completed the experiment in one session that lasted 
approximately 90 min.

Analysis.  Consistency and exploratory factor analysis.  In order to assess the consistency of the data across 
participants, we computed pairwise correlations of any two participants’ scores across all adjectives and materi-
als, as well as Cronbach’s alpha between participants for individual adjectives. Because, participants’ judgments 
were highly consistent, we subsequently averaged across observers and conducted a covariance-based factor 
analysis with varimax rotation on the averages (for each adjective and material condition). We used the Keyser–
Meyer–Olkin (KMO) test to assess the sampling adequacy of our variables and the model, as well as Bartlett’s 
test for sphericity in order to check for redundancies between variables before proceeding with a Factor Analysis.

Video coding.  We first created a hand movement taxonomy from the recorded videos. This taxonomy included 
eight EPs, as shown in Fig. 1. These EPs were validated and used in subsequent analysis.

EP extraction: One rater watched 1400 videos (50 materials for 28 participants), and coded which parts of 
the hand were in contact with the materials during active exploration. This yielded an initial list of 8 exploratory 
hand movement schemes. Movements that mainly serve to bring a given material into the ‘right’ global position, 
such as dropping or picking up, were not considered as EPs, nor were ‘maintenance’ movements, like cleaning 

Table 3.   Materials that were used in the experiment, organized by salient material property.

Materials

Elastic Bandage, bouncy balls, juicy toy, lady’s stocking, latex, plush pillow, rubber bands, silicone, sponge, white rubber

Textile Cotton, fur, leather, linen, mat, microfiber, polar, silk, velvet, wet cloth

Deformable Aluminum foil, clay, hair gel, hand cream, paper, peeling cream, play dough, shaving cream, slime, wires

Granulate Black pepper, chickpeas, flour, foam, pine cone, poppy seeds, red pepper, sand, sawdust, sugar

Non-soft Brick, cardboard pieces, chalk, glass, hard plastic, metal nuts, sandpaper, stone, straw, wood block
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material parts off the hands (e.g. sand, by shaking). During this refinement stage, we removed hand movements 
from analysis that did not serve any purpose for perception (such as cleaning movements) and also decided to 
pick one EP per time segment, for instance, if four digits were used to hold a material, such as a velvet cloth, and 
the index finger is used to stroke its surface, we decided to code stroking alone.

In a second refinement step, we selected a total of 5 videos: black pepper, sponge, slime, stone, plush pillow. 
The authors watched these videos together with all 5 raters and reiteratively discussed the observed events. 
Through these discussions, we identified eight specific hand movements that were coded the same by all raters 
and that occurred frequently for many materials: pressing, rubbing, stroking, rotating, stirring, pulling, running 
through, and tapping. Examples of each of these EPs are shown in Fig. 1. This second step also trained raters for 
subsequent event coding, EP taxonomy, and software usage.

EP coding: Using the results of the factor analysis described in the Exploratory Factor Analysis Results, we 
selected the two most representative materials for each perceptual dimension (5 in total, Table 1), for the coding 
of video sequences for EPs. Specifically, we chose the video sequences of materials that yielded high factor scores 
for a particular perceptual dimension, while having the lowest sum of factor scores in the remaining perceptual 
dimensions. Using these criteria, we selected stress balls and sponge (which load high on compliance), slime 
and hand cream (loading high on viscosity), velvet and fur (loading high on surface softness), sand and poppy 
seeds (loading high on granularity), and as a control dimension, scourer and sandpaper (which load high on 
roughness).

For each perceptual dimension, we selected 10 videos (5 per exemplary material). Videos were randomly 
drawn from the entire participant pool, allowing to treat observations in the different levels of perceptual dimen-
sion as being independent. Each of the five raters coded the 50 videos. They were asked to focus on the parts of 
the hand that are in contact with the material. Each video clip would start by depicting the grasping and lifting 
of the material (or pieces of it). Raters were asked to start event coding for EPs after this initial period and to 
focus specifically on the subsequent procedures. The maximum duration of a video clip was 2 min. During time 
periods where multiple fingers are in contact with the object, the moving hand parts define the EP: for example, 
when two fingers hold the material, while the index finger starts rubbing the surface, it was coded as rubbing. 
If multiple actions were observable in different parts of the hand, raters coded only the most prominent EP. A 
supplementary movie showing each EP recorded from various participants can be found at: https://​vimeo.​com/​
39342​0896. Raters marked each EP’s start and end times using an event logging software: Behavioral Observa-
tion Research Interactive Software (BORIS19, illustrated in Fig. 4, left). EP coding took a minimum of 20 hours 
per rater—excluding the training period. All further frequency and classification analyses were performed in 
MATLAB (v2018b, The Mathworks, USA) and statistical tests were done with IBM SPSS Statistics for Windows, 
version 23.0 (IBM Corp., Armonk, N.Y., USA).

Inter-rater reliability: We first calculated each EP’s frequency per video by taking the ratio of the duration 
of one EP to the sum of total EP durations coded for that video. Consequently, the relative frequencies of all 8 
EPs add up to 1 (for each video). We use the term frequency because the EP during a prolonged duration period 
would be executed several times. To measure the inter-rater reliability for the five raters, we calculated Pearson 
correlation coefficients of EP relative frequencies for corresponding videos coded by different raters and report 
averaged R values (Fig. 4, right). This allowed us to assess whether our EPs were well-defined and sufficient to 
describe the hand movements in the video material.

Frequency analysis of EPs: After establishing inter-rater reliability and averaging EP data across 5 raters we 
investigated the average relative frequency of the novel set of EPs in the subset of 10 representative materials (5 

Figure 4.   Left: Timeline output from BORIS shows two example observations for sponge (top) and sand videos 
(bottom, of one rater and 1 participant). For sponge, the observation starts with pressing and then rubbing, 
where these two EPs are intermittently coded at the beginning (first 30 s) of the video, then rotating is also 
included. Similarly, for sand, the rater codes running through and rotation; then stroking, rubbing, and stirring. 
For EP frequency analysis, the durations of a given EP are added and divided by the total duration of all EPs. 
Right: Shown are the correlation coefficients between raters for 50 video clips, where each square represents the 
average of correlation coefficients of pairwise correlations of 50 × 8 arrays of EP frequencies per rater. Lighter 
colors indicate higher correlation coefficients.

https://vimeo.com/393420896
https://vimeo.com/393420896
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participants each) described in the Stimuli, Materials section. Our conjecture was that participants would have 
different exploration strategies for different perceptual dimensions. We compared patterns of 8 EP frequencies 
as dependent variables in a one-way MANOVA with perceptual dimensions (compliance, viscosity, surface soft-
ness, granularity, and roughness as a control) as a fixed factor. EP frequencies were averaged across raters. For 
each perceptual dimension 5 × 2 = 10 observations (patterns of EP frequencies) entered the MANOVA given by 
5 participants exploring each of the 2 materials belonging to that dimension. We report Wilk’s lambda for the 
EP frequency in Results section.

Classification.  We tested the performance of a support vector machine with a Gaussian kernel predicting the 
perceptual dimension of a material given the EP frequency data. Our data set consisted of videos from 10 par-
ticipants (5 that were rated before and 5 additional) exploring 10 materials (see above). We fit a multiclass 
model (5 dimensions, chance level 20%) for a support vector machine (Statistics and Machine Learning Toolbox, 
Matlab, The MathWorks, USA) to predict a material’s perceptual dimension given its EP frequency pattern. We 
then perform a 10-fold cross validation where the model randomly trains with 90 videos and tests on 10 videos. 
After repeating this 10 times, each time randomly partitioning the data set 10–9039observations) was similar to 
the test set (remaining 10 observations); for the next iteration the training set would be a different group of 90 
observations. We report mean posterior probabilities for each perceptual dimension.

Data availibility
The datasets generated and/or analysed during the current study are available in the Zenodo repository, under 
the name: Dicle N Dövencioǧlu, Seyhun Ustun, Katja Doerschner, and Knut Drewing. (2020). From silk to sand: 
Multiple dimensions of perceived softness [Data set]. Zenodo. https://​doi.​org/​10.​5281/​zenodo.​69126​71.
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