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Abstract

Primed nephron progenitor cells (NPCs) appear in metanephric mesenchyme by E11.5 and

differentiate in response to the inductive WNT9b signal from the ureteric bud. However, the

NPC WNT-receptor complex is unknown. We obtained M15 cells from E10.5 mesonephric

mesenchyme and systematically analyzed components required for canonical WNT9b-

responsiveness. When M15 cells were transfected with a β-catenin luciferase reporter plas-

mid, exposure to recombinant WNT9b resulted in minimal luciferase activity. We then ana-

lyzed mRNA-expression of WNT-pathway components and identified Fzd1-6 and Lrp6

transcripts but not Rspo1. When M15 cells were treated with recombinant RSPO1 the

response to transfected WNT9b was augmented 4.8-fold. Co-transfection of M15 cells with

Fzd5 (but no other Fzd family member) further increased the WNT9b signal to 16.8-fold and

siRNA knockdown of Fzd5 reduced the signal by 52%. Knockdown of Lrp6 resulted in 60%

WNT9b signal reduction. We confirmed Fzd5, Lrp6 and Rspo1 mRNA expression in

CITED1(+) NPCs from E15.5 embryonic mouse kidney. Thus, while many WNT signaling-

pathway components are present by E10.5, optimum responsiveness of E11.5 cap mesen-

chyme requires that NPCs acquire RSPO1, FZD5 and LRP6.

Introduction

The mammalian kidneys are derived from progenitor cells in the embryonic intermediate

mesoderm, expressing the transcription factor, OSR1. Fate mapping studies of the embryonic

kidney reveal that cells labeled by the Osr1 promoter at embryonic day E7.5 give rise to all ele-

ments of the maturing kidney [1] and Osr1 knockout mice are anephric [2, 3]. Around

E8.5-E9, a subset of OSR1-positive kidney progenitor cells are transformed into polarized

epithelia, forming the paired nephric duct structures that elongate down the embryo [4]. Con-

currently, another subset of cells upregulate Wilms’ tumor 1 (WT1) while retaining a mesen-

chymal phenotype. [5, 6]. The columns of WT1(+) cells flanking each nephric duct are
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du Québec - Santé/ERA-Net for Research

Programs on Rare Diseases (6221 and 7628 –

http://www.cihr-irsc.gc.ca/e/51266.html) who also

gave advice and critical analysis of the manuscript.

http://orcid.org/0000-0002-3442-1407
https://doi.org/10.1371/journal.pone.0215139
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215139&domain=pdf&date_stamp=2019-04-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215139&domain=pdf&date_stamp=2019-04-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215139&domain=pdf&date_stamp=2019-04-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215139&domain=pdf&date_stamp=2019-04-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215139&domain=pdf&date_stamp=2019-04-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215139&domain=pdf&date_stamp=2019-04-12
https://doi.org/10.1371/journal.pone.0215139
https://doi.org/10.1371/journal.pone.0215139
http://creativecommons.org/licenses/by/4.0/
https://www.kidney.ca
http://www.cihr-irsc.gc.ca/e/51266.html


committed to the nephron progenitor cell (NPC) fate; interestingly, Wt1 knockout mice fail to

develop functional kidneys [7]. Development of the metanephric kidney begins in earnest

when ureteric buds emerge from each nephric duct (E10.5), begins to arborize as it grows into

the adjacent column of metanephric mesenchyme and induces local NPCs to begin

nephrogenesis.

In the 1950s, Grobstein demonstrated that the metanephric mesenchyme can generate

renal tubular structures when co-cultured with inductive tissues that mimic the ureteric bud

signal [8]. This fundamental observation showed that the proper signal from the ureteric bud

could trigger differentiation in the committed NPCs from the metanephric mesenchyme. Key

observations by Herzlinger [9] and Carroll [10, 11] established the canonical WNT9b/β-cate-

nin signaling pathway as the central mechanism by which the ureteric bud initiates nephro-

genesis. Secretion of WNT9b by the ureteric bud is required for the early inductive events in

the developing kidney. Transgenic mice with a beta-catenin reporter display intense canonical

WNT-signaling activity in the cap mesenchyme [12, 13].

It is uncertain when NPCs become competent to respond to the inductive WNT signal,

however, WT1 expression is a crucial element in this process. Biallelic mutations of WT1 in

humans result in the formation of nephrogenic rests, clonal developmentally arrested cells

which lack canonical WNT-signalling activity and are unresponsive to inductive signals from

the ureteric bud [14]. We discovered that this is accomplished by WT1 suppression of EZH2,

de-repressing epigenetically silenced genes of the differentiation cascade [15]. Prior to arrival

of the ureteric bud (E10.5-E11), maturing WT1(+) NPCs express a panel of genes, including

retinoic acid receptor-alpha (Rara), cadherin 11 (Cdh11) and CD24 [13, 16]. However, the

stage at which they are fully competent to respond to the WNT9b signal is unknown. Further-

more, the molecular basis for WNT9b responsiveness in NPCs is unknown.

The canonical WNT signaling pathway is full of redundancies. Here we take a systematic

approach to identifying the crucial components of the WNT9b signaling pathway in embry-

onic mouse kidney.

Materials and methods

Cell culture

M15 cells are WT1-expressing cells isolated from E10.5 mouse mesonephric mesenchyme

expressing the large T protein of polyoma virus under control of the early viral enhancer. The

M15 cell line was establish following the protocol described by Larsson et al (1995) and

donated by the Hastie lab (Edinburgh, Scotland) [17]. Cells growing in monolayer attached to

plastic culture vessels in the presence of DMEM culture medium with 10% Fetal Bovine Serum

and 1% Penicillin/ Streptomycin.

Luciferase reporter transfections and dual luciferase assay

Transient transfections were performed using a canonical WNT-signalling reporter plasmid,

Super 8X TOPFlash (TOPFlash). M50 Super 8x TOPFlash was a gift from Randall Moon

(Addgene plasmid # 12456; http://n2t.net/addgene:12456; RRID:Addgene_12456) [18]. The

Renilla luciferase expression vector pRL-SV40 (Promega, Madison, WI, USA) was used to nor-

malize for transfection efficiency. Transfections for each condition were performed in tripli-

cate and repeated three times on different days. The following frizzled plasmids were gifts

from Chris Garcia & Jeremy Nathans: pRK5-mFzd1-1D4, pRK5-mFzd2-1D4, pRK5-mFzd3-

1D4, pRK5-mFzd4-1D4, pRK5-mFzd5-1D4, pRK5-mFzd6-1D4, pRK5-mFzd7-1D4,

pRK5-mFzd8-1D4, pRK5-mFzd9-1D4, pRK5-mFzd10-1D4 and pRK5-Wnt9b [19] (Addgene,
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Cambridge, MA, USA). Lrp5 (Clone ID: 3154246) and Lrp6 (Clone ID: 6409058) plasmids

were purchased from Dharmachon (Lafayette, CO, USA).

One day prior to transfection, 20,000 M15 cells were seeded in 24-well plates and trans-

fected at 80% confluency using Lipofectamine 2000 Transfection Reagent according to the

manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA, USA). Plasmids were

transfected in the following amounts: Fzd (50 ng), TOPFlash (44 ng), Lrp (5 ng), Wnt (50 ng),

Renilla (1 ng). Recombinant WNT9b (3669-WN/CF, R&D Systems, Minneapolis, MN, USA)

was added at a concentration of 50 ng/mL to transfection media at the time of transfection in

corresponding conditions. In R-spondin conditions, either 200 ng/mL of recombinant mouse

RSPO1 (3474-RS–R&D Systems, Minneapolis, MN, USA) or 200 ng/mL of recombinant

mouse RSPO3 (4120-RS/CF–R&D Systems, Minneapolis, MN, USA) was added to each well

24 hours post transfection. Firefly and renilla luciferase reporter activities were measured after

48h using the Dual Luciferase Assay System reagents and quantified in a GLOMAX 96 micro-

plate luminometer (Promega, Madison, WI, USA). The reporter activity was expressed as a

Firefly luciferase/ Renilla luciferase ratio.

The same procedure as described above was followed to monitor luciferase activity. For

siRNA experiments, cells were transfected with Silencer pre-designed siRNA targeting mouse

Fzd1 (siRNA ID: 75730), Fzd2 (siRNA ID: 57265), Fzd5 (siRNA ID: 14367) and Lrp6 (siRNA

ID: 62715) (Ambion, Carlsbad, CA, USA) using Lipofectamine 2000 transfection reagent

(Thermo Fisher Scientific, Waltham, MA, USA) according to manufacturer instructions.

RNA isolation and real-time PCR analysis

RNA was isolated using the QIAGEN RNeasy kit according to the manufacturer’s instructions

(QIAGEN, Toronto, ON, Canada). RT-PCR was performed using the iScript cDNA synthesis

kit (Bio-Rad, Mississauga, ON, Canada). Quantitative real-time PCR was performed using the

SsoFast EvaGreen Supermix with Low ROX (Bio-Rad, Mississauga, ON, Canada) and specific

primer sets in a LightCycler 480 II (Roche Applied Science, Laval, QC, Canada).

Immunoblotting

Protein content was quantified in cellular extracts using the BCA assay (Pierce, Rockford, IL,

USA). Twenty-five micrograms of protein extract were loaded onto SDS-PAGE gel and sub-

jected to electrophoresis following standard immunoblotting techniques. The following pri-

mary antibodies and titres were used: anti-WT1 (antibody C19: sc-192, 1/200, Santa Cruz

Biotechnology, Santa Cruz, CA, USA), anti-Actin (A5441, 1/10000, Sigma-Aldrich, Oakville,

ON, Canada). Immunoreactive bands were detected using species-specific horseradish peroxi-

dase-conjugated secondary antibodies (1/2000, Cell Signaling, Danvers, MA, USA) and visual-

ized and analyzed using the GE Healthcare ECL Plus Western Blotting Detection Reagents

and the BioRad Imager Scanner and software (GE Healthcare, Mississauga, ON, Canada).

In situ hybridization

In situ hybridization of E11.5 embryos was performed according to the protocol listed on the

GUDMAP website: https://www.gudmap.org/chaise/recordset/#2/Protocol:Protocol@sort

(RID). cDNAs were purchased from ThermoFischer/Open Biosystems. For each gene, we

include the clone ID, the restriction enzyme used to linearize the plasmid and the polymerase

used to synthesize the antisense probe. Fzd1 (Clone ID: 5697795) SalI/T3, Fzd2 (Clone ID:

6411627) SalI/T3, Fzd3 (Clone ID: 30084926) EcoRI/T3, Fzd4 (Clone ID: 4238940) SalI/T7,

Fzd5 (Clone ID: UI-M-CGOP-BRL-B-03-0-UI) EcoRI/T3, Fzd6 (Clone ID: 3983985) SalI/T7,
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Fzd7 (Clone ID: 6844727) SalI/T3, Fzd8 (Clone ID: 3992722) SalI/T7, Fzd9 (Clone ID:

UI-M-CGOP-BGI-E-03-0-UI), Fzd10 (Clone ID: 556296) Pst1/T7.

Mice

All animal experiments followed the guidelines provided by the Canadian Council of Animal

Care and were approved by the McGill University Facility Animal Care Committee (FACC),

including an analysis of the 3Rs of animal use in research. Cited1-Cre mice were donated from

Dr. Mark de Caestecker [20]. B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J (Tomflox/

flox)mice were bought from Jackson Laboratories. All animals were housed at the Research

Institute of the McGill University Health Centre animal facility and monitored daily by animal

care staff. Support staff followed McGill University Standard Operating Procedure #508 for

rodent husbandry guidelines (https://mcgill.ca/research/files/research/508_-_rodent_

husbandry_-_march_2016_1.pdf). Cited1-Cre males were crossed with homozygous Tomflox/

flox females to generate double transgenic embryos. All genotypes generated from this cross

were viable and healthy. For immunofluorescence experiments, at 17 dpc, 0.1 mg/g body

weight of Tamoxifen (Sigma) was administered to pregnant females via intraperitoneal injec-

tion in their home cage [21]. No adverse events were observed in the pregnant female or

embryos at this dose of tamoxifen administration. Females were sacrificed 24 hours later, and

embryos were harvested. For ddPCR experiments on Cited1/Tom cells, pairs of embryonic

kidneys were plated in a single well of a 6-well plate after digestion in a collagenase B digestion

solution at 37˚C for 1 hour. These cells were subsequently treated with 2.5 μg/mL of 4-hydro-

xytamoxifen added to culture media. Digested embryonic kidneys from one pregnancy were

pooled and cells were grown at 37˚C in tissue culture flasks in NPC growth media [22].

Tissue preparation and confocal microscopy

Embryonic mouse kidneys (E18) from Cited1/Tom mice were fixed overnight in 4% PFA at

4˚C. Kidneys were then transferred into 15% Sucrose in PBS and rocked at room temperature

for 30 mins followed by rocking overnight at 4˚C in 30% sucrose. Next, kidneys were placed

into a 1:1 mixture of 30% sucrose/PBS and OCT and rocked at 4˚C for 2 hours and then were

embedded in OCT and stored at -80˚C until sectioned. Cryosections (7uM) were obtained

using a Leica Cryostat. Nuclei were counterstained with VECTASHIELD Antifade Mounting

Medium with DAPI (Vector Laboratories, Burlingame, CA, USA). Images were obtained with

a laser scanning confocal microscope (LSM780) and the ZEN2010 software (Carl Zeiss Canada

Ltd., Toronto, ON, Canada) at room temperature and processed by Adobe Photoshop and

Illustrator software.

Fluorescence activated cell sorting (FACS)

Whole embryonic kidneys were isolated and activated with tamoxifen as previously described.

Cells were then washed in PBS and re-suspended into 500 μL of 2% FBS in PBS solution and

kept at 4˚C until they were sorted. Cell sorting was performed by immunophenotyping core

facility staff using a BD FACSAria Fusion. Isolated Cited1/Tom cells isolated were immediately

pelleted and frozen at -80˚C.

Droplet digital PCR (ddPCR)

RNA was extracted from Cited1/Tom cells followed by cDNA synthesis as previously

described (n = 4). Droplets were formed in a QX200 Droplet Generator and PCR was per-

formed using the QX200 ddPCR EvaGreen Supermix (Bio-Rad, Mississauga, ON, Canada)
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and specific primer sets in a C1000 Touch Thermal Cycler (Bio-Rad, Mississauga, ON, Can-

ada). Droplets were read using the QX200 Droplet Reader machine and results were displayed

in QuantaSoft software.

Statistical analysis

Graphs are presented as mean ± SEM of three or more independent results. Statistical signifi-

cance was assessed by a one-way ANOVA followed by a Dunnett correction for multiple com-

parisons. ddPCR results were analyzed by unpaired t-tests.

Results

M15 cells

A committed lineage of NPCs emerge from the OSR1(+)/WT1(+) intermediate mesoderm as

early as embryonic day E7.5 [1]. To model early events that render NPCs responsive to the

inductive WNT9b signal from ureteric bud, we analyzed the M15 cell line. M15 cells are

derived from E10.5 mesonephric mesenchyme of mice bearing the large T protein polyoma

virus under the control of an early viral enhancer [17]. These cells are thought to represent the

NPC phenotype one day prior to arrival of the ureteric bud at E11.5. To validate the lineage

specification of M15 cells, we confirmed the expression WT1 (Fig 1A and 1B) and the pattern

of additional transcripts characteristic of the early NPC lineage (Table 1). We detected tran-

scripts of key early NPC markers including Osr1 and Cited1 but not markers of NPCs after

exposure to the ureteric bud, such as Wnt4 and Rara (Table 1). We then screened M15 cells

Fig 1. Effect of recombinant RSPO1 on responsiveness of M15 cells to WNT9b. (A) mRNA from E10.5 mouse

mesonephric mesenchyme (M15 cells) was analyzed by RT-PCR for Wt1 mRNA expression in M15 cells and MK3

(positive control) cells vs water blank. (B) Lysates of M15 cells vs E14.5 MK4 (negative control) or am318.2

mesenchymal stem cells from 20-week gestation human amniotic fluid were analyzed by Western immunoblotting for

WT1 protein (upper panel) and Beta actin (lower panel). (C) M15 cells were transiently transfected with β-catenin-

luciferase reporter (TOPFlash) and Renilla-luciferase reporter. The cells were exposed to recombinant WNT9b (50 ng/

ml). After 48 hours, TOPFlash to Renilla signal (RLU) was measured in a luminometer. An unpaired two-tailed

Welch’s t-test was performed. (ns) p = 0.98. (D) M15 cells were transfected with TOPFlash, Renilla and Wnt9b
plasmids and cultured for 24 hours; recombinant RSPO1 or RSPO3 (200 ng/ml) were added for an additional 24 hours

and TOPFlash to Renilla signal was measured. A one-way ANOVA followed by a Dunnett correction for multiple

comparisons was performed. (����) = p<0.0001.

https://doi.org/10.1371/journal.pone.0215139.g001
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for mRNA expression (RT-PCR) of candidate genes in the canonical WNT/β-catenin signaling

pathway (Table 1). We identified expression of β-Catenin, Lrp6, Lgr4/6 and Fzd1-6. Notably

absent were Rspo1 and 3, Fzd7-10, Lrp5 and Lgr5.

M15 cells are unresponsive to external WNT9b

To ascertain whether M15 cells are primed to respond to a WNT9b signal, we transiently

transfected the cells with TOPFlash, a β-Catenin/luciferase reporter, and exposed them to

recombinant WNT9B protein at concentrations ranging from 50–400 ng/ml but detected only

minimal response (1.05-fold) (Fig 1C).

RSPO1 enhances responsiveness of M15 cells to WNT9b

Considering M15 cells lack both R-spondins known to be expressed in NPCs of embryonic

mouse kidney cap mesenchyme (GUDMAP), we reasoned that M15 cell WNT-responsiveness

might be limited by the stability of the WNT-receptor complex at the cell surface [23–25]. To

test this hypothesis, we first transfected M15 cells with TOPFlash and assessed the response to

a co-transfected WNT9b expression plasmid. As seen in Fig 1D we detected a significant

(5-fold) increase in luciferase activity. We then added recombinant RSPO1 (200 ng/ml) or

RSPO3 (200 ng/ml) which further increased the signal to 22- and 27-fold above baseline,

respectively (p<0.0001) (Fig 1D). Preliminary dose-response studies showed that no further

signal increase was obtained with higher concentrations of either R-spondin protein. To dis-

sect the importance of other canonical WNT-pathway components, we added Wnt9b plasmid

and recombinant RSPO1 (200 ng/ml) in all subsequent experiments.

Frizzled receptor expression in cap mesenchyme

To identify candidate Frizzled receptors responsible for transducing the WNT9b response in

NPCs, we performed in situ hybridization for the Frizzled family members (Fzd1-10) in E11.5

mouse kidney, except for Fzd9 which was unsuccessful. As seen in Fig 2A, embryos cross-sec-

tioned across both nephric fields show several Frizzled family members (Fzd2, Fzd3, Fzd5 and
Fzd7) with diffuse expression patterns but with concentrated expression in the cap mesen-

chyme; in contrast to Fzds with weak expression in the cap mesenchyme (Fzd4 and Fzd10) or

strong expression restricted to ureteric bud branch tips (Fzd6 and Fzd8).

Table 1. mRNA expression of WNT/β-catenin pathway components in M15 cells.

Wnt-signalling genes NPC markers

Gene Expression Gene Expression Gene Expression

Fzd1 + Lrp5 - WT1 +

Fzd2 + Lrp6 + Osr1 +

Fzd3 + Rspo1 - Cited1 +

Fzd4 + Rspo3 - Six2 -

Fzd5 + β-catenin + Wnt4 -

Fzd6 + Wnt9b - Rara -

Fzd7 - Lgr4 +

Fzd8 - Lgr5 -

Fzd9 - Lgr6 +

Fzd10 -

https://doi.org/10.1371/journal.pone.0215139.t001
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Fig 2. Effect of Fzd expression on WNT9b responsiveness in M15 cells. (A) Cross sections of E11.5 embryos displaying both nephric fields were

assessed by in situ hybridization using riboprobes for Fzd1-10, except Fzd9 which was unsuccessful for technical reasons. Asterisk (�) marks

ureteric buds. Arrow (!) marks cells of the cap mesenchyme. (B) M15 cells were transiently transfected with β-catenin-luciferase reporter

(TOPFlash), Renilla-luciferase reporter, Wnt9b-expression vector and various Fzd1-10 expression plasmids in the presence of recombinant

RSPO1 (200 ng/ml). TOPFlash to Renilla signal was measured after 48 hours. A one-way ANOVA followed by a Dunnett correction for multiple

comparisons was performed. (��) p = 0.0002 (C) M15 cells were transiently transfected with β-catenin-luciferase reporter (TOPFlash), Renilla-

luciferase reporter, Wnt9b-expression vector and siRNAs targeting Fzd1, Fzd2 or Fzd5 vs a scrambled negative control siRNA in the presence of

recombinant RSPO1 (200 ng/ml). TOPFlash to Renilla signal was measured. A one-way ANOVA followed by a Dunnett correction for multiple

comparisons was performed. (�) p = 0.005.

https://doi.org/10.1371/journal.pone.0215139.g002
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Transfection of M15 cells with Fzd5 enhances WNT9b responsiveness

To confirm whether one of the Fzd receptors is rate limiting in M15 cells, we transfected each

member of the Fzd receptor family (Fzds 1–10) individually into M15 cells expressing TOP-

Flash. Cells were co-transfected with Wnt9b and exposed to recombinant RSPO1 (200 ng/ml)

in each experiment. As seen in Fig 2B, the only Fzd which significantly augmented WNT9b-

induced TOPFlash signal was Fzd5. When M15 cells were co-transfected with Fzd5, activity of

the canonical WNT/β-Catenin reporter was increased 3.5-fold (p = 0.0002). We then per-

formed similar experiments in M15 cells co-transfected with an siRNA targeting Fzd5, previ-

ously shown to knock down Fzd5 expression level by 70%. As seen in Fig 2C, presence of the

Fzd5 siRNA reduced WNT9b-dependent TOPFlash activity by 52% (p = 0.005), whereas

knockdown of Fzd1 and Fzd2 resulted in non-significant changes.

Lrp6 is required for optimal responsiveness of M15 cells to WNT9b

To examine the importance of Lrp expression to the canonical WNT9b-responsiveness, we

transiently transfected M15 cells with Wnt9b, TOPFlash and a Lrp6 siRNA. A scrambled

siRNA was transfected in another condition as a control. As seen in Fig 3, addition of the Lrp6
siRNA reduced WNT9b-dependent TOPFlash signal by 66% (p<0.0001) whereas the scram-

bled siRNA had no effect. Interestingly, additional co-transfection with Lrp5 was unable to res-

cue WNT9b pathway activity in the presence of Lrp6 siRNA. Co-transfection of M15 cells with

Lrp5 (in the absence of siRNA) had no effect on its own.

Responsiveness to extrinsic WNT9b is restored by addition of Fzd5 and

RSPO1

To ascertain whether M15 cell responsiveness to an external source of WNT9b could be

restored by addition of suboptimal WNT-pathway components, we transfected the cells with

Fig 3. Lrp6 is required for optimal responsiveness of M15 cells to WNT9b. M15 cells were transiently transfected

with β-catenin-luciferase reporter (TOPFlash), Renilla-luciferase reporter and a Wnt9b expression vector and treated

with RSPO1 (200 ng/ml). The cells were co-transfected with an siRNA targeting Lrp6 or a scrambled negative control

siRNA in the presence of recombinant RSPO1 (200 ng/ml). After 48 hours, TOPFlash to Renilla signal was measured.

In another experiment, the cells were co-transfected with a Lrp5 expression plasmid to assess its effect on WNT9b

pathway activity. A one-way ANOVA followed by a Dunnett correction for multiple comparisons was performed.

(����) p<0.0001.

https://doi.org/10.1371/journal.pone.0215139.g003
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TOPFlash and Fzd5. We then treated them with recombinant RSPO1 and measured luciferase

activity. As seen in Fig 4, no response was detected in cells exposed to WNT9b, RSPO1 or Fzd5
alone. However, the signal was increased 3.3-fold over baseline in M15 cells exposed to recom-

binant WNT9b and RSPO1. The signal was increased to 11.1-fold over baseline in M15 cells

transfected with Fzd5 and exposed to recombinant WNT9b and RSPO1 (p<0.0001) (Fig 4).

Cited1 cells isolated from embryonic mouse kidney express Wt1, Fzd5, Lrp6
and Rspo1
To confirm expression of the key components of the WNT9b signaling pathway identified

above in a primary NPC, we isolated Cited1-expressing cells from embryonic mouse kidneys.

Six2 is a commonly used cap mesenchyme marker, however, Cited1 has been shown to have

overlapping expression with Six2 and also is downregulated before NPCs begin differentiation

into mature tubules [26, 27]. To identify Cited1 cells in the cap mesenchyme, we crossed mice

with a floxed tdTomato (TomatoRed) transgene to mice bearing a tamoxifen-inducible

Cited1-driven Cre Recombinase [20]. The Cited1-Cre mouse also contains EGFP, however, we

were not able to specifically isolate the Cited1 population of cells due to high green autofluor-

escence observed in the kidney. As seen in Fig 5A, tamoxifen administered to the pregnant

mother at E17 activated TomatoRed in NPCs of the cap mesenchyme. Although activation of

the Cre-recombinase was successful in vivo, this method required more time between tamoxi-

fen injection and cell isolation which increased the likelihood of including differentiated cells

into our analysis. To circumvent this issue and isolate NPCs rapidly after activation of the

TomatoRed tag, we digested E15.5 embryonic kidneys from Cited1Cre/TomatoRed mice with

collagenase, dispersed the cells into monolayer culture and added 4-hydorxytamoxifen (2.5μg/

ml) to induce Cre-recombinase expression in vitro (Fig 5B). After 12 hours, TomatoRed(+)

cells were isolated by FACS for analysis. This method ensured that fewer red-labelled cells

Fig 4. Responsiveness to extrinsic WNT9b is restored by addition of Fzd and RSPO1. In all conditions, M15 cells

were transiently transfected with β-catenin-luciferase reporter (TOPFlash) and Renilla-luciferase reporter; in some

experiments the cells were co-transfected with Fzd5 expression plasmid. TOPFlash to Renilla signal was measured in

the presence or absence of recombinant WNT9b (50 ng/mL) and/or recombinant RSPO1 (200 ng/ml). A one-way

ANOVA followed by a Dunnett correction for multiple comparisons was performed. (����) = p<0.0001.

https://doi.org/10.1371/journal.pone.0215139.g004
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would differentiate before FACS isolation. We extracted RNA from Cited1/TomatoRed(+)

cells of 17 embryonic kidneys pooled from 4 litters (two litters per sample; sample 1: n = 9

embryonic kidneys; sample 2: n = 8 embryonic kidneys) and analyzed transcripts levels by

droplet digital PCR (ddPCR) due to the limited number of cells isolated per kidney. As seen in

Fig 5C, we confirmed mRNA expression of Wt1, Fzd5, Rspo1 and Lrp6 in the Cited1/Toma-

toRed(+) NPCs from E15.5 cap mesenchyme. Each condition was compared to the Cited1/

TomatoRed(-) fraction of cells obtained from the same kidneys and normalized to beta-

2-microglobulin (B2M) transcript levels. As the Cited1/TomatoRed(+) population of cells rep-

resents approximately 6% of the E15.5 kidneys after FACS, we expected the Cited1/Toma-

toRed(-) population of cells to also express some level of our markers of interest, therefore we

used this condition as a positive control.

Fig 5. Identification and isolation of Cited1 expressing cells from embryonic kidneys. (A) Cryosections of E18 embryonic kidneys isolated from Cited1Cre/TomatoRed

mice were assessed by immunofluorescent microscopy for the presence of TomatoRed in cap mesenchyme surrounding ureteric bud tips. (�) Ureteric Bud outlined in

green. (B) Whole E15.5 embryonic kidneys were dispersed into monolayer culture in the presence of tamoxifen (2.5 μg/ml) for 16 hours and TomatoRed(+) cells were

visualized by immunofluorescent microscopy. (C) Expression of WNT9b pathway component transcripts in Cited1Cre/TomatoRed cells isolated by FACS from E15.5

embryonic mouse kidney quantified by ddPCR. Bars represent mean number of events of gene of interest normalized to B2M events (n = 2, 17 total pooled embryonic

kidneys). Error bars represent standard error of the mean.

https://doi.org/10.1371/journal.pone.0215139.g005
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Discussion

Around embryonic day E9.0 of mouse development, a lineage of WT1-expressing progenitor

cells emerge within the OSR1(+) intermediate mesoderm. To model this early NPC prior to

the arrival of the ureteric bud, we studied the M15 cell line isolated from E10.5 mouse kidneys

[17]. These cells express Osr1, WT1 and Cited1, placing them in the early NPC lineage. Previ-

ous studies from our lab showed the essential role of WT1 for responsiveness to the inductive

WNT9b signal through suppression of EZH2, a histone H3K27 methyltransferase. EZH2 sup-

pression in turn opens up chromatin, permitting exit from the stem cell state [15, 28]. Thus,

WT1 is essential for maturation of the nephron progenitor cell lineage. Nevertheless, we found

that M15 cells were unresponsive to WNT9b in vitro. This suggests that WT1 expression alone

is not sufficient to prime the NPC for WNT-responsiveness and that the early NPC must

acquire additional molecular properties by the time the ureteric bud arrives at E10.5-E11.

Although M15 cells are unresponsive to WNT9b, they are derived from the Osr1/WT1(+)

lineage in embryonic kidney and afford an informative in vitro model in which to explore the

molecular basis for WNT9b responsiveness. M15 cells express many components of the

canonical WNT-signaling pathway, including 4 frizzled receptors (Fzd1, Fzd2, Fzd3 and Fzd5)

which can be detected in the cap mesenchyme surrounding each ureteric bud tip. M15 cells

also express the frizzled co-receptor Lrp6 and complex-stabilizing proteins Lgr4/6, shown by

the GUDMAP consortium to be present in cap mesenchyme [24, 25]. Strikingly, however,

they do not express members of the R-spondin family. Several investigators have shown that

canonical WNT-signal transduction is dramatically increased by stabilization of the FZD/

LRP6/WNT complex at the cell surface as a result of the presence of R-spondins [23].

The R-spondin family binds to the WNT-receptor complex through its association with an

LGR family member [29] and ZNRF3/RNF43. ZNRF3 is a negative regulator of canonical

WNT-signalling and has a role of ubiquitinating FZD receptors, targeting them for destruction

and also preventing phosphorylation of LRP receptors, keeping them in their inactive form

[30, 31]. RSPO1 binds to ZNRF3 which in turn associates with an LGR receptor to remove

ZNRF3 from the cell membrane and allows the WNT-receptor to remain active at the cell sur-

face [31]. RSPO1 transcripts are strongly expressed in the cap mesenchyme of E11.5 mouse

kidney [32] but were entirely absent in M15 cells. In our study, pre-treatment of M15 cells

with RSPO1 enhanced WNT9b-induced canonical signaling activity 4-fold. When the cells

were transfected with additional Fzd5, RSPO1 augmented WNT9b-responsiveness 11-fold.

Thus, RSPO1 appears to be critical for a robust response to WNT9b and its absence in M15

cells precludes measurable signal transduction. We postulate that RSPO1 is not expressed in

the early developing kidney (E10.5) and the effects of WT1 on NPC chromatin alone are insuf-

ficient to induce RSPO1 expression. RSPO1 expression may be a late priming event in the mat-

uration of the NPC.

The effects of RSPO1/LGR interactions are crucial for normal nephrogenesis. Three LGRs

(Lgr4, Lgr5, Lgr6) interact with R-spondin proteins [29, 33–36]. LGR5 has been well-studied in

intestinal epithelia where it was shown to have an important function to promote intestinal

stem cell renewal [37–39]. We detected both Lgr4 and Lgr6 transcripts in M15 cells which is in

concordance with the data found on GUDMAP, where expression was detected in the NPC

lineage. Current commercially available siRNAs are non-specific and result in knockdown of

both transcripts, therefore we cannot determine which protein is most important in NPCs.

Another group studying Lgr4-knockout mice observed increased apoptosis in NPCs and dis-

ruption of the process by which NPCs condense around ureteric bud tips [40], suggesting Lgr4

may be the primary determinant of WNT9b signal transduction in cap mesenchyme. In con-

trast, murine knockout of the Rspo1 gene has no renal phenotype [41], likely reflecting
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redundancy between RSPO1 and RSPO3, both of which are expressed in the cap mesenchyme

(GUDMAP). This is in keeping with our in vitro observations indicating that both recombi-

nant RSPO1 and RSPO3 enhance WNT-responsiveness in M15 cells.

Few studies have investigated frizzled expression in the developing kidney. Ureteric bud

specific expression of FZD4 and FZD8 in E11.5 kidneys was previously examined using Fzd4-

lacZ and Fzd8-lacZ mouse models [42]. Additionally, widespread renal expression of FZD2

and FZD7 was observed in 12, 13 and 18-week human fetal kidneys [43]. Our in situ hybridiza-

tion data revealed distinct Frizzled expression patterns in E11.5 mouse kidneys. We detected

Fzd1, Fzd2, Fzd3, Fzd5 and Fzd7 expression in the cap mesenchyme, whereas Fzd4, Fzd6 and

Fzd8 expression was highly restricted to the ureteric bud. Fzd10 expression was relatively non-

specific and Fzd9 in situ hybridization did not work for technical reasons. Interestingly, we

found that in the presence of RSPO1, only Fzd5 was limiting the WNT-response as the canoni-

cal signal was amplified by transfecting cells with Fzd5 but none of the other Fzd family mem-

bers. Furthermore, siRNA knockdown of Fzd5 (but not Fzd1 or Fzd2) reduced WNT9b

responsiveness. These observations suggest that FZD5 is the primary WNT co-receptor

involved in transducing the inductive WNT9b signal in mammalian kidney. Moreover, it

raises the possibility that the other FZDs expressed in cap mesenchyme might be involved in

transduction of other canonical and non-canonical WNT ligands, such as WNT6 and WNT11

from ureteric bud tips [44, 45] or WNT2b and WNT4 from the metanephric mesenchyme of

the developing kidney [46, 47].

Phylogenetic analysis of human frizzled proteins established five distinct frizzled subgroups

[48], one of which consisted of FZD5 and FZD8. Our in situ hybridization studies of E11.5

embryonic mouse kidney demonstrate expression of Fzd5 in the cap mesenchyme while Fzd8
is exclusively expressed in the ureteric bud. Interestingly, WNT9b was demonstrated to bind

and form a complex with FZD8 and LRP6 [49]. It is conceivable that Fzd8 mediates the robust

canonical WNT signaling activity in ureteric buds reported by Bridgewater and Iglesias [13,

50].

The renal stroma, marked by the Foxd1 promoter, is another major compartment of the

developing kidney which surrounds NPCs in the cap mesenchyme. Foxd1 knockout mice

develop smaller kidneys with disorganized tubular structures suggesting the Foxd1(+) stroma

is required for nephrogenesis to proceed normally [51–53]. Das et al (2013) propose a model

in which the renal stroma promotes NPC differentiation through secretion of Fat4. Ultimately,

this process results in phosphorylation of YAP/TAZ which promotes transcription of Class I

beta-catenin targets (differentiation) rather than Class II beta-catenin targets (self-renewal)

[51]. In Foxd1 knockout mice, NPCs do not receive the Fat4 signal from the renal stroma and

Fig 6. Proposed model of nephron progenitor cell development in embryonic mouse kidney. Early WT1(+) NPCs

express a number of important molecules in the canonical WNT-signalling pathway. By E11.5, increased expression of

Fzd5 and addition of Rspo1 render NPCs fully competent to respond to the inductive WNT9b signal.

https://doi.org/10.1371/journal.pone.0215139.g006

WNT9b responsiveness in NPCs

PLOS ONE | https://doi.org/10.1371/journal.pone.0215139 April 12, 2019 12 / 16

https://doi.org/10.1371/journal.pone.0215139.g006
https://doi.org/10.1371/journal.pone.0215139


remain in a state of self-renewal. However, initiation of differentiation or self-renewal both

require Wnt9b to bind to its cell surface receptor.

Based on our data and the observations above, we propose a model of renal development in

which WT1(+) NPCs in E10.5 embryonic mouse kidney express some, but not all, components

of the canonical WNT-signaling pathway. By E11.5, additional events (expression of RSPO1

and increased expression of FZD5) have primed NPCs forming the cap mesenchyme, allowing

responsiveness to the anticipated WNT9b signal from ureteric bud (Fig 6).
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