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Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed 
countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information 
related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple 
VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are 
often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially 
reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, 
dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon 
tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each 
kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading 
pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which 
multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. 
Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing 
VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides 
fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information 
on the role of key microorganisms that degrade VOCs.
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Volatile organic compounds (VOCs) are major pollutants 
that are found in soil and groundwater in developed countries. 
Contamination by tetrachloroethene (PCE), trichloroethene 
(TCE), benzene, and cis-dichloroethene (cis-DCE) accounts 
for approximately 11%, 10%, 9%, and 8%, respectively, in 
areas in which contamination exceeds environmental standards 
in Japan (121). In the United States, contamination by TCE, 
vinyl chloride (VC), benzene, and PCE accounts for 22%, 
9%, 8%, and 7%, respectively, in the operable units of superfund 
sites (182). The International Agency for Research on Cancer 
reported the carcinogenic properties of VOCs, and, among them, 
TCE, VC, and benzene are associated with high cancer risks 
to humans (http://monographs.iarc.fr/). Thus, soil and ground-
water that are contaminated with VOCs require remediation.

Regarding remediation technologies, bioremediation, which 
uses the degradation abilities of microorganisms, has received 
much attention because it is inexpensive, environmentally 
friendly, and applicable in situ (77, 210). According to a 
report by the United States Environmental Protection Agency 
(181), bioremediation accounted for 24% of the remediation 
technologies for contaminated groundwater. Various environ-
mental microorganisms that are capable of degrading individual 
VOCs have been reported, and genomic information related 
to their phylogenetic classification and VOC-degrading enzymes 
are also available.

However, actual soil and groundwater, e.g., those of chemical 
factories (139, 149), research facilities (176, 177, 179), military 
bases (178, 183), landfills (35, 184, 185), and illegal dumping 
sites (180), are frequently contaminated with multiple pollut-
ants rather than a single type of VOC. Difficulties are associ-
ated with the biodegradation of multiple VOCs, which has 
remained a challenging issue in practice for decades (193). 
Alexander (4) reported that the effects of one VOC on other 
co-existing VOCs are largely unknown, and these effects 
have rarely been examined. Yoshikawa et al. (208) recently 
described a successful case study on the complete biodegra-
dation of multiple VOCs including chlorinated ethenes, 
benzene, toluene, and dichloromethane through integrated 
anaerobic-aerobic biodegradation.

In order to systematically review the biodegradation of 
VOCs, and further investigate the potential of bioremediating 
multiple VOCs, we initially reviewed studies on the biodeg-
radation of individual VOCs (Table 1), with an emphasis on 
information about useful microorganisms and mechanisms 
for the degradation of different VOCs. We investigated the 
biodegradation of chlorinated ethenes, BTEX (benzene, toluene, 
ethylbenzene, and xylene), and chlorinated methanes under 
aerobic and anaerobic conditions in detail. The effects of 
microorganisms on the biodegradation of a certain VOC with 
the co-existence of other VOCs were then evaluated in order 
to discuss the potential of bioremediation for multiple VOCs.

* Corresponding author. E-mail: m.zhang@aist.go.jp;  
Tel: +81–29–861–3943; Fax: +81–29–861–8773.
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Biodegradation of chlorinated ethenes

Aerobic biodegradation of chlorinated ethenes. The 
aerobic biodegradation of chlorinated ethenes with natural 
gas containing methane, which acts as a co-substrate, was 
first discovered in the 1980s (201). Besides methane, aro-
matic compounds (133, 152), alkanes (63, 191, 196), alkenes 
(50, 64, 192), and ammonia (10) have been confirmed as 
co-substrates for the degradation of chlorinated ethenes. In 
addition, phytochemicals from poplar (Populus) leaves also 
function as co-substrates, resulting in the degradation of TCE 
(78). Oxygenases that degrade co-substrates lead to the deg-
radation of chlorinated ethenes to epoxide compounds (Fig. 
1). The growth-linked oxidation of chlorinated ethenes has 
only been reported for cis-DCE and VC. Limited information 
is currently available on the aerobic degradation of PCE 
(155), and, thus, further studies are required.

Aerobic microorganisms that degrade chlorinated ethenes 
with oxygenases have been isolated. Methanotrophs such as 

Methylomonas methanica 68-1 (89), Methylocystis sp. SB2 
(73), and Methylosinus trichosporium OB3b (142) use methane 
monooxygenases to degrade chlorinated ethenes. Aromatic 
compound degraders, such as Burkholderia vietnamiensis G4 
(132) and Pseudomonas putida F1 (134), use toluene monoo-
xygenases and dioxygenases to degrade TCE. Nocardioides 
sp. CF8 and Thauera butanivorans use butane monooxygen-
ases to degrade TCE, cis-DCE, and VC (63). Mycobacterium 
ethylenense NBB4, which was isolated on ethene, degrades 
VC (113). In contrast to the microorganisms described above, 
Mycobacterium aurum L1 oxidizes VC with growth, and uses 
an alkene monooxygenase to degrade cis-DCE, trans-DCE, 
and 1,1-DCE without growth (64, 65). Two microbes, 
Polaromonas sp. JS666 (38) and Rhodococcus jostii RHA1 
(8), are known to oxidize cis-DCE with growth.

Anaerobic biodegradation of chlorinated ethenes. The 
anaerobic biodegradation of chlorinated ethenes is caused by 
dechlorination, in which hydrogen sequentially displaces 
chlorine (186) (Fig. 2). PCE is mainly degraded to TCE, 

Table  1.  Mechanisms associated with the initial step in the biodegradation of each type of VOC.

Category Compounds Aerobic degradation Anaerobic degradation

Chlorinated ethenes

Tetrachloroethene (PCE) Oxidation*1

Reductive dechlorination116,164)

Trichloroethene (TCE)

Oxidation115,201)

Dichloroethene (DCE)
  cis-dichloroethene (cis-DCE)
  trans-dichloroethene (trans-DCE)
  1,1-dichloroethene (1,1-DCE)
Vinyl chloride (VC)

BTEX

Benzene

Oxidation57,58,186)

*2
Toluene Fumarate addition199)

Ethylbenzene Oxidation/fumarate addition16,199)

Xylene
Fumarate addition96,199)  o-xylene

  m-xylene
  p-xylene

Chlorinated methanes

Carbon tetrachloride (CT) *3
Reductive dechlorination61,146)

Chloroform (CF) Oxidation28)

Dichloromethane (DCM) Dechlorination  
(glutathione substitution)127) Fermentation105)

*1 The aerobic degradation of PCE is limited, except as described by Ryoo et al. (155).
*2 The mechanisms underlying the anaerobic degradation of benzene are unclear, although hydroxylation to phenol, methylation 
to toluene, and carboxylation to benzoate were proposed by Weelink et al. (199).
*3 The aerobic degradation of CT remains ambiguous.

Fig.  1.  Possible initial step in the aerobic biodegradation of trichloroethene. TCE denotes trichloroethene. Abbreviations of involved enzymes 
indicate the following: TomA, toluene 2-monooxygenase; sMMO, soluble methane monooxygenase; pMMO, particulate methane monooxygenase; 
TmoA, toluene-4-monooxygenase; TodC1, toluene 2,3-dioxygenase; TbuA1, toluene 3-monooxygenase.
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DCEs, VC, and harmless ethene, and among DCEs, cis-DCE 
predominates over trans-DCE and 1,1-DCE (164, 186). 
Dechlorination produces energy for degrading microbes; 
however, they cannot use chlorinated ethenes as a carbon 
source (86). Besides the main sequential dechlorination 
pathway described above, the anaerobic oxidization of cis-
DCE, VC, and ethene have also been observed under sulfate-
reducing and methanogenic conditions (22, 49, 115).

Anaerobic microbes that degrade chlorinated ethenes are 
diverse (Fig. 2). However, only the genus Dehalococcoides is 
known to degrade DCEs and VC. The isolation of anaerobic 
degraders of DCEs and VC has been a significant issue for a 
long time, and Dehalococcoides mccartyi 195 was first iso-
lated in 1997 (102, 116). Strain 195 degrades PCE, TCE, 
cis-DCE, and 1,1-DCE as growth-linked substrates, and 
degrades trans-DCE and VC as non-growth substrates. 
Unlike other Dehalococcoides species, D. mccartyi strains 
MB and CBDB1 dechlorinate TCE and generate trans-DCE, 
rather than cis-DCE (32, 111). Dehalococcoides has key 
reductive dehalogenases, such as TceA, which dechlorinate 
TCE and all DCE isomers to VC, as well as VC to ethene at 
low dechlorinating rates (107), VcrA, which dechlorinates all 
DCE isomers to ethene, as well as TCE to cis-DCE at low 
dechlorinating rates. (129), and BvcA, which dechlorinates 
all DCE isomers to VC, and dechlorinates TCE without 
growth (91, 171). A gene expression analysis suggested that 
the reductive dehalogenase gene mbrA is involved in the 
production of trans-DCE in the dechlorinating pathway (34). 
Desulfitobacterium strains as well as Dehalococcoides, have 
the dehalogenase, PceA, which dechlorinates PCE and TCE 
to cis-DCE (60, 168). Strains of Dehalococcoides, such as 
BTF08 highly enriched from groundwater and UCH007 iso-
lated from groundwater in Japan, contain the genes of three 
well-known reductive dehalogenases, pceA, tceA, and vcrA 
(148, 175). Accompanied by advances in genome sequencing 

techniques, putative reductive dehalogenases in Dehalococcoides 
have been reported (148, 158, 198). Multiple reductive deha-
logenase genes may be induced by a single chlorinated ethene 
in a microbial enrichment culture containing Dehalococcoides, 
as demonstrated by Futamata et al. (55). The X-ray crystal 
structure of PceA from Sulfurospirillum multivorans has been 
reported by Bommer et al. (20), and revealed that cobalamin 
supports reductive dechlorination.

In engineering practices associated with the bioremediation 
of chlorinated ethenes, electron donors (e.g. lactate, methanol, 
molasses, hydrogen release compounds, and vegetable oils) 
and vitamin B12 are commonly injected into contaminated 
sites in order to stimulate reductive dechlorination (144, 182). 
Yeast extract also stimulates reductive dechlorination (122). 
As for bioaugmentation, microbial consortia containing 
Dehalococcoides, such as KB-1 (45), have been introduced 
into contaminated sites. Successful case studies on bioaug-
mentation have been reported (48, 110). The density of useful 
microorganisms is used as a criterion for selecting biostimu-
lation or bioaugmentation, and genetic biomarkers such as the 
Dehalococcoides 16S rRNA gene and reductive dehaloge-
nase genes including tceA, vcrA, and bvcA are used as indicators 
(75, 182).

Biodegradation of BTEX

Aerobic biodegradation of BTEX. The aerobic biodegra-
dation of BTEX has a long history, and BTEX-degrading 
pathways may be traced back to the 1960s (57, 58). BTEX are 
oxidized by oxygenases (Fig. 3). The intermediates, catechol 
compounds, are produced by these pathways: catechol during 
benzene and toluene degradation, 3-methylcatechol during 
toluene, o-xylene, and m-xylene degradation, and 4-methylcatechol 
during p-xylene degradation.

The degradability of BTEX and the degrading pathway 

Fig.  2.  Possible pathways of anaerobic biodegradation for chlorinated ethenes. Abbreviations of involved enzymes indicate the following: PceA, 
dehalogenase dechlorinating PCE and TCE to cis-DCE; BvcA, dehalogenase dechlorinating VC; TceA, dehalogenase dechlorinating TCE to VC; 
VcrA, dehalogenase dechlorinating all DCE isomers to ethene. Abbreviations of VOCs indicate the following: PCE, tetrachloroethene; TCE, trichloroethene; 
DCE, dichloroethene; VC, vinyl chloride
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used by microorganisms depend on the types of degrading 
enzymes. Pseudomonas mendocina KR1, Ralstonia pickettii 
PKO1, and B. vietnamiensis G4 degrade benzene as well as 
toluene using toluene-4-monooxygenase (TmoA), toluene 
3-monooxygenase (TbuA1), and toluene 2-monooxygenase 
(TomA), respectively (26, 52, 59, 138, 160, 161, 173, 200). 
Pseudomonas sp. OX1 degrades benzene, toluene, and o-xylene 
using the toluene/o-xylene monooxygenase TouA (12, 18, 
19, 131, 190). P. putida mt-2 degrades toluene and xylenes 
using the xylene monooxygenases XylA and XylM (25, 159, 
169, 202). Pseudomonas aeruginosa JI104 degrades benzene 
with the benzene monooxygenase BmoA (84, 85, 205). 
BmoA has low substrate specificity, and attacks toluene, xylene, 
and ethylbenzene, as well as benzene. Pseudoxanthomonas 
spadix BD-a59 degrades all BTEX (83), and has genes 
encoding TmoA, a xylene monooxygenase, and naphthalene 
monooxygenase (33). Nitrosomonas europaea degrades benzene, 
toluene, ethylbenzene, and p-xylene with an ammonia mono-
oxygenase (82). In addition to monooxygenases, dioxygenases 
degrade BTEX. Toluene 2,3-dioxygenase (TodC1) from P. 
putida F1 degrades benzene, toluene, and ethylbenzene (57, 
80, 131, 211, 212). R. jostii RHA1 degrades benzene, toluene, 
ethylbenzene, and o-xylene with a biphenyl dioxygenase and/
or an ethylbenzene dioxygenase (145, 203). Thauera sp. 
DNT-1 degrades toluene with a dioxygenase under aerobic 
conditions (163). Strain DNT-1 also degrades toluene under 

anaerobic conditions via a pathway that produces benzyl 
succinate.

In the biostimulation of BTEX, an injection of oxygen 
release compounds (30) and an air sparging technique are 
commonly used in practical sites (79, 204). Various primer 
sets for PCR to detect genes coding BTEX-degrading enzymes 
have been developed (14, 68) and reverse-transcriptase (RT)-
quantitative PCR for these genes is used in order to judge the 
effectiveness of oxygen injections (15).

Anaerobic biodegradation of BTEX. The anaerobic bio-
degradation of BTEX was regarded as difficult for a long 
time, and the microbial transformation of xylenes under 
anoxic conditions was first confirmed in the mid-1980s (96). 
In addition to xylenes, the biodegradation of aromatic com-
pounds such as benzene, toluene, and ethylbenzene, in the 
absence of oxygen has been reported since the 1990s (e.g. 44, 
97, 151). During the anaerobic biodegradation of BTEX, 
aromatic compounds supply electrons to various electron 
acceptors such as NO3

–, Fe3+, SO4
2–, and HCO3

– (194, 199). 
The anaerobic degradation of toluene, as well as xylenes and 
ethylbenzene, starts with fumarate addition. In addition to 
fumarate addition, ethylbenzene is oxidized by a dehydroge-
nase that is produced by nitrate-reducing bacteria (16). 
Regarding the anaerobic degradation of benzene, the degra-
dation pathway remains unclear; however, possible pathways 
have been proposed in previous reviews (37, 53, 194, 199).

Fig.  3.  Possible initial steps in the aerobic biodegradation of benzene, toluene, ethylbenzene, and xylene. Each figure shows initial steps for a particular 
VOC: a), benzene; b), toluene; c), ethylbenzene; d), o-xylene; e), m-xylene; f), p-xylene. Abbreviations of involved enzymes indicate the following: 
TomA, toluene 2-monooxygenase; TmoA, toluene-4-monooxygenase; BmoA, benzene monooxygenase; TouA, toluene/o-xylene monooxygenase; 
TbuA1, toluene 3-monooxygenase; TodC1, toluene 2,3-dioxygenase; XylA, xylene monooxygenase; XylM, xylene monooxygenase.
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Various anaerobic BTEX degraders have been isolated 
(e.g. 199). Among them, those using nitrate as an electron 
acceptor, such as Aromatoleum aromaticum EbN1 (151), 
Azoarcus sp. T (44), and Thauera aromatica K172 (5), have 
been isolated most frequently. In addition, microorganisms 
that use ferric iron and sulfate as electron accepters, such as 
Geobacter grbiciae TACP-2T (36) and Desulfobacula 
toluolica Tol2 (150), have also been isolated. Under 
methanogenic conditions, members of Desulfobacterales and 
Coriobacteriaceae are involved in the anaerobic degradation 
of benzene, which has been confirmed by stable isotope 
probing (140). Microorganisms that degrade p-xylene were 
only recently isolated; Desulfosarcina sp. PP31 was isolated 
as a degrader under sulfate-reducing conditions by Higashioka 
et al. (69). In the anaerobic toluene degradation pathway, the 
initial step, fumarate addition to toluene, is catalyzed by a 
benzyl succinate synthase (BssA) (100). BssA may also cata-
lyze fumarate addition to m-xylene (1, 17).

Biodegradation of chlorinated methanes

Aerobic biodegradation of chlorinated methanes. 
Although the aerobic biodegradation of carbon tetrachloride 
(CT) remains uncertain, chloroform (CF) and dichloromethane 
(DCM) may be degraded under aerobic conditions. Methane, 
toluene, and butane monooxygenases oxidize CF to phosgene 
through trichloromethanol (28). Aerobic growth-linked DCM 
degradation mainly relies on glutathione, and DCM is dechlo-
rinated and transformed to formaldehyde (127). The aerobic 
oxidation of DCM also occurs when methane and ammonia 
co-exist, although the degrading microorganisms do not 
assimilate DCM (142, 189).

Aerobic CF degraders have been obtained, as reported by 
Cappelletti et al. (28). Microorganisms, such as M. trichosporium 
OB3b (142), Nocardioides sp. CF8 (63), and P. mendocina 
KR1 (200), which degrade CF, use methane, butane, and 
toluene, respectively, as carbon and energy sources. An aerobic 
DCM-dechlorinating bacterium, Methylopila helvetica DM1, 
was first reported by Brunner et al. (23). A wide variety of 
methylotrophic bacteria, such as Ancylobacter, Bacillus, 
Chryseobacterium, Hyphomicrobium, and Methylobacterium 
(127) species, have been shown to degrade DCM with 
growth. Rhodococcus sp. EH831 degrades DCM and BTEX 
(99), suggesting that it has potential as a degrader of multiple 
VOCs. Most of these degrading microorganisms have been 
assessed for the presence of the DCM dehalogenase DcmA, 
which catalyzes the dechlorination of DCM. Methylobacterium 
extorquens DM4 is considered to have acquired the dcmA 
gene through horizontal gene transfer (156). In M. extorquens 
DM4, the acquired dcmA gene has been shown to participate 
in enzymatic or metabolic pathways, such as stress responses, 
metabolic tuning, regulation, cell structure adjustments to the 
solvent properties of DCM, DNA repair following damage 
with mutagenic agents, and chloride export (81, 120, 128). In 
addition, microbes that degrade DCM as non-growth sub-
strates have also been isolated. M. trichosporium OB3b and 
N. europaea degrade DCM using a methane monooxygenase 
and ammonia monooxygenase, respectively (142, 189).

Anaerobic biodegradation of chlorinated methanes. CT 
is dechlorinated under anaerobic conditions, and this process 

is mediated by cofactors such as corrinoid (93), coenzyme 
F430 (92), iron compounds (147), cytochromes (29), and 
humic substances (114). Under sulfate-reducing conditions, 
CT is mainly degraded to CS2 with the cofactor vitamin B12, 
a type of corrinoid, while it is degraded to CF in the absence 
of vitamin B12 (87). The dechlorination of CF to DCM occurs 
with or without growth. The growth-linked dechlorination of 
CF was first reported by Grostern et al. (61), and, in their 
study, Dehalobacter appeared to dechlorinate CF to DCM. 
The pathway of anaerobic DCM biodegradation remains 
unknown. Rather than being dechlorinated, DCM is consid-
ered to be fermented into formate and acetate (105).

Although anaerobic CT degraders have been isolated (146), 
the microorganisms that use CT as a carbon source have not. 
Acetogens, iron reducers, and methanogens degrade CT with 
cofactors. An acetogenic microorganism, Acetobacterium 
woodii DSM1030, anaerobically degrades CT and CF with 
vitamin B12 (46). Iron-reducing microorganisms, such as 
Geobacter metallireducens and G. sulfurreducens, degrade 
CT with iron compounds (109). Chloroform-reductive deha-
logenases that are involved in CF degradation with growth 
have recently been revealed from Dehalobacter sp. CF50 
(170, 172) and Desulfitobacterium sp. PR (42). As anaerobic 
DCM degraders, Dehalobacterium formicoaceticum DMC 
(104) and Dehalobacter strains (76) have been successfully 
isolated; however, the enzymes involved in the fermentative 
degradation of DCM have yet to be identified. In addition to 
degrading DCM under aerobic conditions, Hyphomicrobium 
sp. DM2 also degrades DCM using DcmA under anaerobic 
conditions (90).

Interactions among co-existing VOCs

VOC biodegradation may be enhanced (207), constrained 
(141), and/or unaffected (24) by co-existing VOCs. In most 
cases, the enhancement of VOC degradation occurs because 
of the co-metabolism of VOC-degrading enzymes. Conversely, 
constraints of VOC degradation occur because of the toxicity 
of co-existing VOCs and their degradation products, catabolite 
repression, and competition with VOC-degrading enzymes 
(Fig. 4). We analyze the interactions among co-existing 
chlorinated ethenes, BTEX, and chlorinated methanes below.

Enhancement

Co-metabolism of multiple VOCs. Co-metabolism is defined 
as the transformation of an organic compound by a microor-
ganism that is unable to use the compound as a source of energy 
or one of its constituent elements (3, 4). The co-existence of 
multiple VOCs may lead to co-metabolism in which one 
VOC is degraded as a growth-linked substrate and the other is 
co-metabolically degraded as a non-growth substrate. In 
co-metabolism, VOCs may be degraded by the same enzymes 
or one VOC functions as an inducer for the degradation of the 
other VOCs. Other VOC-degrading enzymes may be gratuitously 
induced by growth-linked substrates or their metabolites.

As described earlier, chlorinated ethenes are known to be 
degraded under aerobic conditions while degrading microor-
ganisms utilize another chlorinated ethene, benzene, toluene, 
or xylene as the growth-linked substrate (Table 2). Degrading 
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enzymes for BTEX, such as TouA, work on multiple BTEX 
in some cases, while BTEX are utilized as a growth-linked or 
non-growth substrate (18, 131).

The chlorinated methane, CF, is degraded as a non-growth 
substrate under aerobic conditions with a growth-linked sub-
strate such as toluene and o-xylene (31, 119).

Constraints

Toxicity of co-existing VOCs. The toxicity of VOCs to 
microorganisms is caused by their inability to detoxify 
VOCs. The toxicity of VOCs influences microbial growth 
(88) and the degradability of VOCs (54). These effects are 
generally greater at high VOC concentrations (13, 45, 88). 

Fig.  4.  Possible interaction among the targeted VOC for degradation and co-existing VOCs. BTEX means benzene, toluene, ethylbenzene, and 
xylene. + and - indicate enhancement and constraint, respectively. AE and AN in brackets mean the effects occurring under aerobic and anaerobic 
conditions, respectively.

Table  2.  Enhancement of VOC degradation by co-metabolism.

Microorganism Targeted VOC for 
degradation

Growth-linked  
VOCs

Possible degrading 
enzyme Reference

Burkholderia vietnamiensis G4 TCE benzene, toluene TomA (152, 161, 173)
Pseudomonas mendocina KR1 CF toluene TmoA (119)
Pseudomonas putida F1 o-xylene ethylbenzene *1 (131)
Pseudomonas sp. ENVBF1 CF toluene *1 (119)
Pseudomonas sp. ENVCP5 CF toluene *1 (119)

Pseudomonas sp. OX1

TCE*2

toluene, o-xylene TouA

(31, 131)
1,1-DCE*2 (31, 131)

CF*2 (31, 131)
ethylbenzene*2 (18, 131)

m-xylene*2 (18, 131)
p-xylene*2 (18, 131)

Ralstonia pickettii PKO1 TCE toluene TbuA1 (98, 206)

Ralstonia sp. TRW-1
cis-DCE

VC
*1 (47)

trans-DCE *1 (47)

*1 Unidentified enzymes degrading growth-linked VOCs and/or enzymes induced by growth-linked VOCs or their metabolites 
may be related to degradation.
*2 The degradation of VOCs was confirmed with Escherichia coli JM109 (pBZ1260) expressing touA.
Abbreviations of VOCs indicate the following: TCE, trichloroethene; DCE, dichloroethene; VC, vinyl chloride; CF,  
chloroform. Abbreviations of degrading enzymes denote the following: TomA, toluene 2-monooxygenase; TmoA, toluene-4-
monooxygenase; TouA, toluene/o-xylene monooxygenase; TbuA1, toluene 3-monooxygenase.
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Tolerance to the toxicity of VOCs differs among microorgan-
isms. Koenig et al. (88) reported that fast-growing microor-
ganisms in VOC-free cultures, such as Klebsiella spp., have a 
higher tolerance to VOCs than Desulfovibrio vulgaris.

The constraints caused by the toxicity of co-existing VOCs 
occur in the anaerobic degradation of chlorinated ethenes 
(Table 3). In addition, the co-existence of chlorinated meth-
anes inhibits the anaerobic degradation of chlorinated ethenes. 
During the anaerobic degradation of DCM, CF-mediated 
inhibition occurs, and this is attributed to its toxicity (76).

Toxicity of by-products following the degradation of 
co-existing VOCs. When multiple VOCs co-exist, the toxicity 
of their by-products may affect the degradation of other 
VOCs. The by-products of VOC degradation, such as epoxide 
compounds and catechol compounds, are toxic. Epoxide 
compounds, which may be toxic to microorganisms and 
inhibit VOC degradation, are produced from the aerobic 
degradation of chlorinated ethenes (188). Of a mixture of four 
toluene-degrading bacteria, P. putida mt-2, P. putida F1, P. 
putida GJ31, and B. vietnamiensis G4, only P. putida mt-2 
survived exposure to TCE and subsequent TCE degradation 
(112). This was because the other three microorganisms 
degraded TCE and then died because of the toxicity of the 
TCE by-product. In order to avoid the toxicity of epoxide 
compounds, a system, such as the epoxyalkane:coenzyme M 
transferase (EaCoMT) of Mycobacterium sp. JS60 (39, 40), is 
required to metabolize and/or detoxify by-products. The etnE 
gene, which encodes EaCoMT, is distributed in various 
environments, and has been detected in Mycobacterium, 
Nocardioides-like microorganisms, and Haliea-like microor-
ganisms (101).

Catechol compounds are the main by-products of BTEX 
degradation, and concerns have been expressed regarding their 
toxicity (130). P. putida PPO1 produces toxic by-products, 
such as catechol compounds, during the degradation of p-xylene 
in the presence of benzene (141). The by-products from 
p-xylene inhibit benzene degradation, and the accumulation 

of these by-products increases the inhibition of VOC degra-
dation. 3-Methylcatechol is produced in the degradation pathway 
of toluene, o-xylene, and m-xylene. Microbial growth ceases 
with the accumulation of 3-methylcatechol and toluene deg-
radation is limited by P. putida strains (72, 154). In order to 
avoid constraints, microorganisms need enzymes, such as 
catechol 2,3-dioxygenase encoded by xylE of P. putida mt-2 
(74, 202) and 3-methylcatechol 2,3-dioxygenase encoded by 
todE of P. putida F1 (21, 211), which degrade 3-methylcatechol.

Catabolite repression. Catabolite repression occurs when 
microbes are exposed to multiple carbon sources. This leads 
the microorganisms to use a rapidly metabolizable carbon 
source first. Catabolite repression has been extensively studied 
in Escherichia coli, which uses glucose and other carbon 
sources (41), and, thus, catabolite repression may occur in the 
presence of multiple VOCs.

The degradation of toluene and xylene is inhibited by 
catabolite repression, which is induced by a rapidly metabo-
lizable carbon source, such as succinate (8), a by-product of 
benzene and toluene degradation. The phosphotransferase 
enzyme IIA component encoded by the pstN gene, as well as 
the catabolite repression control (Crc) protein, is involved in 
this repression (9, 123). The Crc protein produced by P. 
putida has been studied in detail, and regulates toluene and 
xylene degradation by binding the translation initiation sites 
of mRNAs that are in the toluene/xylene degradation path-
way (125). The mRNA levels of toluene/xylene degradation 
pathway genes, such as xylA and xylM, are more than 50% 
lower in a wild-type P. putida strain than in a crc mutant. 
Two small RNAs, corresponding to the crcY and crcZ genes, 
control Crc protein levels (126). Crc also inhibits the degra-
dation of the by-product of toluene, benzoate, to catechol 
(124). These findings suggest that the presence of multiple 
VOCs leads to an excess of easily metabolizable carbon 
sources, as well as VOC by-products, which may cause 
catabolite repression and inhibit VOC degradation.

Competition for degrading enzymes. Degrading enzymes 

Table  3.  Constraints of VOC degradation caused by the toxicity of co-existing VOCs to microorganisms.

Microorganism Targeted VOC for 
degradation

Co-existing 
toxic VOCs

Concentration of  
co-existing toxic VOCs Reference

Dehalobacter sp. DCM CF 42 μM (76)

Desulfitobacterium hafniense Y51
PCE

cis-DCE
5 mM*1 (54)

TCE 5 mM*1 (54)

Sulfurospirillum multivorans PCE

cis-DCE 14 mM*2 (136)
CT 100 μM*2 (136)
CF 25 μM*2 (136)

DCM 50 μM*2 (136)

Microcosm
PCE

CT
10–15 μM (2)

VC 10–15 μM (2)

Microcosm PCE
CT 19 μM (13)
CF 4 μM (13)

Microcosm VC CF 2.5 μM (45)
Microcosm TCE CF 1.6 μM (117)

*1 Desulfitobacterium hafniense Y51 lost the pceA gene.
*2 The concentration indicates the inhibition of PCE dehalogenase activity by 50%.
Abbreviations of VOCs indicate the following: PCE, tetrachloroethene; TCE, trichloroethene; DCE, dichloroethene; 
VC, vinyl chloride; CT, carbon tetrachloride; CF, chloroform; DCM, dichloromethane.
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work on different co-existing VOCs in some cases (Table 4). 
Methane monooxygenases degrade chlorinated ethenes and 
chlorinated methanes (43, 73, 142), and toluene monooxy-
genases also degrade chlorinated ethene and chlorinated 
methane compounds such as TCE and CF (119, 161). The 
oxygenases of BTEX react with multiple compounds of 
BTEX (57, 80). Thus, these enzymes compete for substrates.
Future perspectives

Previous studies on VOC biodegradation mostly examined 
the degradation of a single VOC, even though contaminated 
sites are often polluted with multiple VOCs. In this review, a 
systematic survey associated with the biodegradation of 
chlorinated ethenes, BTEX, and chlorinated methanes was 
performed. The enhancement and constraint of VOC degra-
dation were discussed with an emphasis on the effects of 
co-existing VOCs on useful microorganisms for a certain 
VOC. This review may provide fundamental, but useful 
knowledge for developing novel approaches to the biodegra-
dation of multiple VOCs. There are diverse interactions among 
co-existing VOCs, depending on the kinds of degrading 
microorganisms and types of VOCs. In order to achieve effective 
designs and operations associated with the bioremediation of 
multiple VOCs in practice, the use of combined multiple 
microorganisms that degrade VOC and/or the introduction of 
microorganisms that degrade multiple VOCs may be a feasible 
strategy. Further studies on the interactions among VOCs are 
required, particularly on stimulatory interactions for increasing 
the efficiency of bioremediation. The use of new tools, such 
as isotopic and enzymatic analyses, will increase our under-
standing of the detailed mechanisms associated with interac-
tions among co-existing VOCs.
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