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Abstract–— Acute lung injury (ALI) is a type of serious clinical syndrome leading to mor-
bidity and mortality. However, the precise pathogenesis of ALI remains elusive. Here, we 
implemented an integrative meta-analysis of six GEO microarray studies with 76 samples 
in the ALI mouse model. A total of 958 differentially expressed genes (DEGs) were iden-
tified in LPS relative to normal samples. Then, a network-based meta-analysis was used 
to mine core DEGs and to unfold the interactions among these genes. We found that Ebi3 
was the top upregulated genes in the LPS-induced ALI. GO, KEGG, and GSEA analyses 
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were performed for functional annotation. qRT-PCR revealed augmented expression of 
six candidate genes (Stat1, Syk, Jak3, Rac2, Ripk1, and Traf6) in the established ALI 
mouse model with LPS exposure. Taken together, our study investigated comprehensively 
hub DEGs and their networks for LPS-stimulated ALI, which might afford an additional 
approach to determine biomarkers and therapeutic targets and explore the molecular patho-
physiology toward ALI.

KEY WORDS:: Acute lung injury; LPS; Biomarkers; Gene expression omnibus

INTRODUCTION

Acute lung injury (ALI) is one of the severe clini-
cal complications distinguished by pulmonary vascular 
permeability [1]. Meanwhile, ALI exhibits predisposing 
and precipitating factors, such as acute pneumonia, acute 
pancreatitis, and severe trauma, and acute pancreatitis, 
and ultimately develops into acute respiratory distress 
syndrome (ARDS) [2]. To make matters worse, ALI and 
ARDS are linked to many destructive clinical disorders 
with high morbidity and mortality rates [3]. Lipopoly-
saccharide (LPS) is the main ingredients of the cell wall 
in gram-negative bacteria which acts as the pathogenic 
infection resulting in ALI [4]. Triggered by LPS stimu-
lation, inflammatory cytokines, such as tumor necrosis 
factor-α (TNF-α) and interleukin-1β (IL-1β), might facili-
tate ALI development [5, 6] Tremendous core genes have 
been characterized to date and deepen our understand-
ing of the pathogenesis of ALI [7–9]. Nevertheless, the 
immunological mechanism is still unclear.

Stunning advances in high-throughput technologies 
and bioinformatic mining have produced huge volumes 
of data. Conventional gene expression analysis generally 
focuses on a specific gene, discounting the effect of interac-
tions among individual genes. Thereby, efficient and robust 
tools are the key to integrate available data and provide 
insight into complex diseases. Recently, a comprehensive 
approach is constructed using protein–protein interaction 
(PPI) data to interpret the interactive patterns across multi-
ple datasets. This network meta-method has been developed 
as a feasible way to analyze large gene profiles and suc-
cessfully applied in the health bioinformatics field [10–12].

To characterize hub genes and explore the molecu-
lar mechanisms of LPS-treated ALI, we built a compen-
dium of genes related to ALI using gene expression pro-
files from six microarray studies. We then used the above 
PPI networked comprehensive analysis to detect the hub 
genes and functional modules. The ALI mice model was 
performed by intratracheally instilling with LPS. Seven 
candidate genes were confirmed using an established 

mouse model of ALI and qRT-PCR validation. The 
results pave the way for future research into the patho-
physiology of ALI, which might influence far-reaching 
individual anti-ALI treatment. Despite a lot of putative 
biomarkers were yielded by screening a large amount of 
data, determining the functional effect of each gene will 
require in-depth verification in animal models and clini-
cal samples.

MATERIAL AND METHODS

Microarray Data Processing
To mine the related genes of LPS-induced ALI in 

mice, gene expression microarray studies were derived 
from the GEO (Gene Expression Omnibus, http:// www. 
ncbi. nlm. nih. gov/ geo) repository by following strategies: 
(1) keyword search: “LPS-induced ALI” and “Mus mus-
culus,” “lung,” and “expression profiling by array”; (2) 
it contained at least three specimens per group. Conse-
quently, six available profiles (GSE102016, GSE2411, 
GSE16409, GSE104214, GSE17355, and GSE18341) 
met the inclusion criteria and were selected for the next 
analyses [13–18]. Detailed information (GEO ID, plat-
form information, and sample accession) of these datasets 
is summarized in Table 1.

Integrated Multi‑microarray Analysis

The integrated microarray analysis was conducted 
through a visual analytics platform NetworkAnalyst 3.0 
[19]. Firstly, all gene probes were converted to Entrez 
ID. Secondly, we preprocessed the expression profiles  
by  log2 transformation and auto-scaling before quan-
tile normalization. For the meta-analysis based on Net- 
workAnalyst 3.0, three analytics methods were employed  
including the Fisher method, fixed-effect model (FEM), 
and vote-counting (combined p-value < 0.05 or vote 
counts ≥ 2 were considered to be significant) after adjust- 
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ing study batch effect. Combined p-value < 0.05 or vote  
counts ≥ 2 were considered to be significant. In FEM, the 
estimated effect size (ES) in each group is assumed to 
come from an underlying true effect size plus measure-
ment error. Finally, the common DEGs defined by above 
three methods were regarded as the final candidate genes.

Functional Enrichment Analyses of DEGs

According to the hypergeometric distribution algo-
rithm, GO (Gene Ontology, http:// www. geneo ntolo gy. 
org/) enrichment analyses divided into biological pro-
cess (BP), molecular function (MF), and cell component 
(CC) were implemented using “enrichGO” function of 
“clusterProfiler” R package [20]. To simplify enriched 
GO results, we then applied “enricher” function to reduce 
redundant GO terms (The threshold parameter was set 
by default to “cutoff = 0.7, by = “p.adjust”, select_
fun = min”). Furthermore, the pathways of the identified 
proteins were classified via “enrichKEGG” function of 
“clusterProfiler” package for KEGG (Kyoto Encyclopedia 
of Genes and Genomes) annotation.

To test a set of related genes in coordinated way, 
GSEA (Gene Set Enrichment Analyses) of GO and 
KEGG were enforced by “gseGO” and “gseKEGG” 
functions of “clusterProfiler” R package, separately. 
The Hallmarks gene set was downloaded from MSigDB 
v7.1 (Molecular Signatures Database, https:// www. gsea- 
msigdb. org/ gsea/ msigdb/ index. jsp). P-value < 0.05 were 
considered as statistically significance.

Network‑Based Meta‑analysis and Extracting 
Co‑expressed PPI Modules

A network-based analysis was performed using 
STRING search function in NetworkAnalyst website 
(parameters were set to “confidence score cutoff = 900” 

and “require experimental evidence”). The extended net-
work construction was restricted to include only the origi-
nal seed proteins. Thus, those with a high level of con-
fidence were retained and regraded as valid interactions. 
Besides, PPI networks of core seven DEGs were predicted 
via the STRING v10.5 (Search Tool for the Retrieval of 
Interacting Genes/Proteins, http:// www. string- db. org/). 
Proteins that linked to each other were detected based 
on corresponding gene neighborhood, co-occurrence, co-
expression, protein homology, experimental determina-
tion, curated databases, and text mining.

The Murine Model Establishment of ALI 
and qRT‑PCR Validation

The regents used and the detailed procedures of 
the murine model establishment and qRT-PCR were per-
formed as before [8]. The H&E immunohistological stain-
ing images of the control group and the ALI group are 
shown in Figure S1. All experiment protocols conformed 
to the guidelines of the China Council on Animal Care 
and Use. These animal studies were approved by the Insti-
tutional Animal Research Committee of Union Hospital. 
Mice were randomly allocated into ten control samples 
and ten LPS samples and then feeding a week of mice 
to adapt the environment. Control mice were exposed to 
an aerosol of phosphate buffer saline (PBS) alone. For 
acute LPS exposure, mice were exposed to PBS contain-
ing 0.5 mg/mL LPS for 2 h, in a custom-built cuboidal 
chamber. The LPS solution was aerosolized with a con-
stant output ultrasonic nebulizer (model: 402B, Yuwell, 
China) at a flow rate of 30 ml/h. LPS was purchased  
from Sigma-Aldrich (extracted from Escherichia coli 
O55: B5, L2880). The chamber was 18 cm long, 12 cm 
wide, and 12 cm high. The  2−ΔΔCt method was used, and 
the PCR reactions were normalized to the GAPDH gene. 
All primers were sourced from PrimerBank (https:// pga. 
mgh. harva rd. edu/ prime rbank/). The reverse transcription 

Table 1  Characteristics of Six Eligible GEO Studies Composing the Compendium

Dataset Platform Sample (LPS) Sample 
(control)

GSE102016 Affymetrix Mouse Gene 1.1 ST Array 4 3
GSE104214 Agilent-028005 SurePrint G3 Mouse GE 8 × 60 K Microarray 11 6
GSE2411 Affymetrix Mouse Expression 430A Array 6 6
GSE16409 Duke-GE/Amersham CodeLink UniSet Mouse 20 K I Bioarray 9 3
GSE18341 Affymetrix Mouse Genome 430 2.0 Array 8 8
GSE17355 Sentrix MouseRef-8 Expression BeadChip 9 3
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step of qRT-PCR was performed by the UEIris RT mix 
with DNase (All-in-One) (US Everbright® Inc., Suzhou, 
China). The qRT-PCR reaction (10 µL) was formulated by 
the 2 × SYBR Green qPCR Master Mix (US Everbright® 
Inc., Suzhou, China). All qRT-PCRs were carried out on a 
CFX96 Touch™ Real-Time PCR Detection System (Bio-
Rad, Hercules, CA, USA). The primer sequences are pro-
vided in the Supplementary Materials (Table S1).

Statistical Analysis

The Benjamini–Hochberg application of the FDR 
(false discovery rate) was applied to correct the p-value. 
Significantly enriched GO terms and KEGG pathways 
were distinguished using hypergeometric tests. Statisti-
cal analysis of significant differences between groups in 
qRT-PCR was complied with one-way ANOVA by Prism 
7 software.

RESULTS

A Compendium of the Eligible Microarrays 
in This Study

Under our inclusion criteria, a gene expression 
compendium was finally built using six independent stud-
ies (GSE18341, GSE104214, GSE17355, GSE102016, 
GSE16409, and GSE2411) from the GEO database. 
In GSE18341, juvenile (21 day) and adult (16 week) 
C57BL/6 mice were treated with inhaled LPS (20 mL 
of 0.1 mg/mL) for 30 min in a sealed aerosol chamber 
and then spontaneous breathing. Untreated age-matched 
controls acted as comparison groups. In GSE104214, the 
experimental group was treated with 5 μg of intranasal 
LPS at 8 and 24 h. Controls received intranasal PBS. As 
for GSE17355, injury peaked at day 4 and is almost com-
pletely resolved by day 10 in wild type C57BL/6 mice in 
LPS model of ALI. Total RNA was isolated from mouse 
lung at times 0, 1, 4, and 10 days following LPS treat-
ment of wild type. In GSE102016, mice were intranasally 
treated with LPS (20 μg/mouse) to induce pulmonary 
inflammation and all lung samples were collected after 
72 h. In GSE16409, samples were from control or LPS 
exposed (1.5, 6, and 12 h post exposure). Twenty-four 
C57/B6 male mice were randomized to control and LPS 
groups in GSE2411. A total of 47 LPS-challenged and 29 
normal mice were included in this study (Table 1). Then, 
we extracted and annotated these six GEO data, yielding 
a compilation of 2030 genes from 76 samples totally. The 
entire work flow in this study is depicted in Figure S2.

Overlap of Differentially Expressed Genes 
Among Datasets

A comprehensive analysis across studies was per-
formed by computing the DEGs per dataset and assessing 
the overlap of the significant results. As shown in Fig. 1A, 
3400, 1392, 653, 194, 94, and 13 DEGs were generated 
in GSE18341, GSE104214, GSE17355, GSE102016, 
GSE16409, and GSE2411, respectively. Besides, seven 
overlapped genes (Ifi44, Tnip1, Oasl1, Casp4, Ccl12, 
Zbp1, and Cxcl13) were tightly associated with LPS 
among at least five datasets (Fig. 1A). Among them, 
caspase-4 (Casp4) acts as an innate immune receptor for 
cytoplasmic LPS [21]. And the inflammatory cytokines 
and chemokines Ccl12 and Cxcl13 have been reported to 
participate in the pathogenic mechanism of acute lung 
injury (ALI) [22]. These findings implied that these three 
genes in the five datasets were closely related with the 
LPS host response in mice.

Comprehensive Analysis of GEO Microarrays

Next, we performed meta-analyses through Net-
workAnalyst 3.0 platform. The merged data of this 
analysis is tabulated in Table S2. After employing three 
meta-analysis methods, we validated 1703, 1316, and 
996 DEGs by the Fisher method, FEM, and vote count-
ing, respectively. Of those, 958 DEGs were identified via 
all three methods (Fig. 1B; Table S3). Thereinto, mRNA 
levels of 470 (49.1%) DEGs elevated and 488 (50.9%) 
DEGs were lower in LPS group in comparison with the 
control. Two heat map visualization of the top 30 up- 
and downregulated DEGs across the different studies is 
displayed in Fig. 1C and Figure S3, respectively. In the 
overlapping DEGS across the six microarray cohorts, 
Ebi3 was the top upregulated gene followed by F10, and 
Fmo3 was the most prominently downregulated gene.

Functional Enrichment and GSEA Analyses 
of DEGs

To exploit potential features of DEGs, we analyzed 
GO function and KEGG pathway enrichment. The top 5 
most enriched KEGG pathways of DEGs were involved in 
osteoclast differentiation, fc gamma R-mediated phagocy-
tosis, MAPK signaling pathway, fluid shear stress and ath-
erosclerosis, and leishmaniasis (Fig. 2). Moreover, we were 
able to obtain a global perspective of the changes in gene 
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Fig. 1  Comprehensive analysis of six GEO compendium. (A) Significant ALI-associated genes in six independent studies of the ALI compendium. 
The upset plot showed the DEG count in each group. The black dots and lines between the dots represented DEGs in which GEO dataset. The bars 
represented number of DEGs in the group. (B) Venn diagram of DEGs identified from the meta-analysis using Fisher’s method, the vote counting 
method, and a fixed-effect model. (C) Heat map representation of the top 30 upregulated DEGs across different microarrays identified from the meta-
analysis (row-wise comparison). The color of boxes varying from blue to red represented the combined effect size value of DEG in each sample.
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expression patterns In GO enrichment analysis (Table S4). 
In MF term, DEGs were centered on “ubiquitin-like pro-
tein ligase binding,” “coenzyme binding,” and “GTPase 
activity.” As for the BP category, the core DEGs were 
significantly enriched related to “leukocyte proliferation,” 
“cytokine-mediated signaling pathway,” and “response 
to oxidative stress.” In addition, DEGs were enriched in 
the CC category focused on “membrane region,” “actin 
cytoskeleton,” and “NADPH oxidase complex” (Fig. 3).

In GSEA analysis, the gseGO outcomes showed 
that DEG expressions were mainly involved in 
response to a chemical, the immune system process, 
and response to an external stimulus (Fig.  4A). As 

for gseKEGG results, DEGs were associated with 
the TNF, IL-17, and C-type lectin receptor signaling 
pathway (Fig. 4B). Of these, the signaling pathways 
of cytokine-mediated, TNF, and IL − 17 were reported 
to accumulate in the lung epithelial cells within acute 
inflammation and serious viral infection [23]. Since 
ALI is characteristic of severe inflammation of lungs 
resulting from uncontrolled inflammatory immune 
response, the outcomes implied that these DEGs might 
play essential roles in the pathogenesis and progres-
sion of ALI/ARDS. Given the functional enrichment 
of these DEGs, we delved further into the results in an 
integrative meta-analysis.

Fig. 2  Top 5 KEGG pathway analysis results of DEGs. The color of links represented different KEGG categories. Red and green dots showed up- 
and downregulated DEGs.
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Fig. 3  GO enrichment analysis of DEGs. Significantly GO enriched terms in biological process (A), molecular function (B), and cellular compo-
nent (C). Each dot represented one DEG. Blue and red bars displayed decreasing and increasing z-score. The description of GO terms was listed on 
the bottom right.
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Analysis of PPI Networks of DEGs

We searched for hub genes via NetworkAnalyst 
which might be useful as biomarkers and therapeutic 
targets for ALI. The “first-order” PPI network for ALI 
was difficult to interpret and navigate due to it yielded 
3055 nodes and 7107 connection edges. To better pre-
sent the PPI network, “zero order” network analysis 
was conducted possessing four subnetworks (at least 
5 nodes), including one big subnetwork (subnetwork1 
contained 223 nodes and 423 connection edges) and 
three smaller ones (subnetwork2–4; Table S5). We used 
Cytoscape software to better visualize the subnetwork1 
(Fig. 5). DEGs within the subnetwork1 were ranked by 
the betweenness, and the top 7 DEGs (Stat1, Syk, Jak3, 
Rac2, Ripk1, Traf6, and Mapk3) were regarded as hub 
genes whose node degrees ≥ 10. Among them, Mapk3 
was the most highly ranked key gene (degree = 12; 
betweenness = 3910.56) among the downregulated DEGs. 
Meanwhile, Stat1 was the centermost upregulated gene 
(degree = 23; betweenness = 10,125.24) followed by Syk 
(degree = 21; betweenness = 2883.29).

Verification of Functional Roles Using 
an Established Mouse Model

To next confirm the candidate 7 core DEGs (Stat1, 
Syk, Jak3, Rac2, Ripk1, Traf6, and Mapk3) screened with 
this network-based approach, we employed an established 
ALI mice model through intratracheal instillation of LPS 
and utilized qRT-PCR validation. The results revealed 
that the relative mRNA levels for Stat1, Syk, Jak3, Rac2, 
Ripk1, and Traf6 were increased, while Mapk3 was lower 
expressed in the LPS group than the control (Fig. 6A–G; 
Table S6). Except those in Traf6 (p-value = 0.1544) and 
Mapk3 (p-value = 0.2156), LPS vs control compari-
sons in other genes showed the significant differences 
(p-value < 0.05). Overall, the qRT-qPCR results were in 
accord with our integrative meta-analysis, suggesting the 
critical role of the 7 key DGEs that might play in the 
pathogenic mechanism of ALI/ARDS. We subsequently 
tested whether these DEGs had an intrinsic relationship 
in ALI via analyzing the STRING database. We noticed 
that Traf6 had the most significant connections with other 
genes followed by Stat1 (Fig. 6H).

Fig. 4  GSEA analysis of DEGs in gseGO (A) and gseKEGG (B). The size of dot showed count number of enriched genes in each term. The color 
of dot displayed adjusted p-value.
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DISCUSSION

ALI and ARDS are correlated with short-term and 
long-term syndromes, including physical and cognitive 
impairments [24, 25], as well as poor clinical conditions 
outcomes with mortality rates as high as 35–55% [26], 
whereas the underlying molecular mechanism of ALI/
ARDS is far from being understood. In the present study, 
to reconnoiter the promising gene changes and key medi-
ators that occur in ALI, we built a transcriptional com-
pendium of the genes concerning LPS-induced ALI from 
six microarray studies that covered 76 tissues in total. 
Ultimately, 958 overlapping DEGs were confirmed and 
found to be enriched in several known terms of GO and 
KEGG pathways related to inflammatory responses and 
necroptosis. A PPI network-based analysis was used to 
evaluate the relationship between these genes. This analy-
sis suggested these genes interrelated with four significant 

subnetworks. We detected 7 hub genes (Stat1, Syk, Jak3, 
Rac2, Ripk1, Mapk3, and Traf6) with at least 10 node 
degrees. Among them, Stat1 was the centermost over-
expressed gene, followed by Syk. Mapk3 was the most 
clearly downregulated gene. We verified mRNA levels of 
these seven genes between LPS-challenged mice and nor-
mal mice. These outcomes demonstrated that Stat1, Syk, 
Jak3, Rac2, Ripk1, and Traf6 were markedly increased 
in an established aging model, as well as Mapk3 was 
decreased.

The innate immune response exerts a profound 
impact on the pathogenesis of ALI [27]. Miscellaneous 
signal transduction pathways partake in mediating lung 
inflammatory responses, such as the JAK/STAT, NF-κB, 
and MAPK signaling pathways [28]. Among them, the 
JAK/STAT pathway are critical determinants of initiating 
adaptive immune responses and constraining inflamma-
tory responses eventually [29]. Janus tyrosine kinase 3 

Fig. 5  Module visualization and identification of hub genes. Visualization of the gene co-expression network of the DEGs was generated using 
Cytoscape software. The color of dot represented combined ES of DEGs, which varied from blue to red. Seven hub DEGs were highlighted by dia-
mond dots while others were represented by circles.
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(JAK3), one of the JAK family members, is an attractive 
selective target for the treatment of immune-mediated dis-
orders [30]. Inhibiting JAK3 reduces the hyperproduction 
of cytokine/chemokine [31]. STAT1 is an important com-
ponent of inflammation and tumorigenesis. Recent stud-
ies have demonstrated that the downregulation of STAT1 
might inhibit lung cell apoptosis in ALI [32]. As for 
spleen tyrosine kinase (SYK), it modulates inflammatory 
signaling in various immune cells via classical immuno-
receptors [33]. LPS results in increasing Syk expression 
in neutrophils and gamma delta (γδ) T cells directed to 
inflammatory process of ALI [34].

Neutrophils, dendritic cell (DC)s, and macrophages 
are associated with multiple immunological processes 
and tissue injury by initiating inflammation during ALI 
[35]. As a member of the Rho GTPase subfamily, RAC2 
acts as a necessary regulator of neutrophil degranulation. 
In alveolar macrophages and neutrophils, lung injury in 
response to immune complex deposition is reliant on 
Rac2 [36]. MAPK3 is a negative moderator of DC and 
is necessary for the induction of T cell anergy towards 
an inflammatory phenotype [37]. Tumor necrosis fac-
tor receptor–associated factor 6 (TRAF6) is a decisive 
adaptor regulating Toll-like receptors (TLRs), whose 
polyubiquitination leads to mediate pro-inflammatory 
cytokines production in ALI [38]. Moreover, necroptosis, 
a cell death form modulated by the RIPK1-RIPK3-MLKL 
signaling, has been implicated in the close relationship 
between necroptosis and ALI/ARDS [39, 40]. As cel-
lular signaling molecules, receptor-interacting protein 
kinases (RIPKs) are critical for homeostatic signaling in 
many disease processes [41]. The activation of RIPK1/3-
dependent necroptosis would result in ALI/ARDS and 
even death [42].

In summary, as mentioned above, Stat1, Syk, Jak3, 
Rac2, Ripk1, and Traf6 were the central upregulated 
genes in our network analysis. The expression of those 
DEGs was higher in LPS-induced pathological injury in 
the lung than control counterparts. The enhanced DEGs 
may be critical factors in attenuating LPS-stimulated ALI/
ARDS. These observations coincided with the earlier 
reports proving our analyses are reliable and practical. On 

the other hand, some DEGs like Ebi3 and F10 have been 
described previously in many other illnesses [43–45], but 
their regulatory functions in ALI/ARDS have not been 
fully known. Additionally, this configuration of network 
analysis may serve as a novel tool to screen for corre-
sponding potential signatures in an attempt to fill the gaps 
of knowledge about properties and pathogenesis of ALI. 
To address the limitations in this study, further research 
using knockout gene mice for each DEGs is indispensa-
ble and in urgent need. It will facilitate us to get better 
acquainted with its role of LPS in aggravating ALI/ARDS.
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