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SUMMARY

Female germ cells develop into oocytes, with the capacity for totipotency. In most animals, 

these remarkable cells are specified during development and cannot be regenerated. By contrast, 

planarians, known for their regenerative prowess, can regenerate germ cells. To uncover 

mechanisms required for female germ cell development and regeneration, we generated gonad-

specific transcriptomes and identified genes whose expression defines progressive stages of female 

germ cell development. Strikingly, early female germ cells share molecular signatures with the 

pluripotent stem cells driving planarian regeneration. We observe spatial heterogeneity within 

somatic ovarian cells and find that a regionally enriched foxL homolog is required for oocyte 

differentiation, but not specification, suggestive of functionally distinct somatic compartments. 

Unexpectedly, a neurotransmitter-biosynthetic enzyme, aromatic L-amino acid decarboxylase 

(AADC), is also expressed in somatic gonadal cells, and plays opposing roles in female and 

male germ cell development. Thus, somatic gonadal cells deploy conserved factors to regulate 

germ cell development and regeneration in planarians.
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In brief

Unlike most animals, planarians can regenerate germ cells. Here, Khan and Newmark characterize 

gene expression in the planarian ovary, identifying genes expressed at progressive stages of 

female germ cell development and in somatic ovarian cells. Functional characterization revealed 

somatically expressed genes required for specification or differentiation of female germ cells.

INTRODUCTION

Germ cells serve as a link between generations, producing gametes that propagate the 

genetic material from parent to offspring. During their development, germ cells undergo 

dramatic, sex-specific differentiation to generate highly specialized cell types, the sperm 

and egg, which ultimately yield a totipotent zygote. As the female germline differentiates 

into oocytes, it acquires the capacity for totipotency (Reik and Surani, 2015; Seydoux and 

Braun, 2006). This capacity is exemplified by somatic cell nuclear transfer, in which oocyte 

cytoplasm reprograms differentiated cell nuclei to produce viable clones (Campbell et al., 

1996; Gurdon, 1962; Wakayama et al., 1998). Parthenogenesis, in which an unfertilized egg 

generates an entire new organism (Simon et al., 2003), provides another striking example 

of the oocyte’s capacity for totipotency. Given the oocyte’s critical roles in embryonic 

development, understanding the mechanisms underlying female germ cell development has 

enormous significance.

Khan and Newmark Page 2

Cell Rep. Author manuscript; available in PMC 2022 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Somatic support cells within the gonads play critical roles in regulating germ cell 

development across the animal kingdom. Soma-germline communication is necessary 

throughout a germ cell’s life, from regulating fate choices and survival, to proliferation 

and differentiation (Kiger et al., 2000; Kimble and White, 1981; Korta and Hubbard, 2010; 

Li and Albertini, 2013; Murray et al., 2010). The in vitro derivation of functional oocytes 

and spermatid-like cells from pluripotent stem cells requires co-culture with somatic gonadal 

cells (Hikabe et al., 2016; Zhou et al., 2016), further emphasizing the importance of soma-

germ cell interactions in facilitating proper germ cell development.

Most animals, including model organisms typically used to study development, set aside 

germ cells early during embryonic development and cannot replace them if lost (Nieuwkoop 

and Sutasurya, 1979, 1981). By contrast, freshwater planarians demonstrate the striking 

ability to regenerate both male and female germ cells from tissues lacking any reproductive 

structures (Morgan, 1901; Sato et al., 2006; Wang et al., 2007). Planarians are best known 

for their remarkable whole-body regeneration, driven by stem cells called neoblasts (Baguñà 

et al., 1989), a subset of which are pluripotent (Wagner et al., 2011; Zeng et al., 2018). 

Planarian germ cells are specified inductively and are derived from neoblasts (Baguñà et 

al., 1989; Newmark et al., 2008; Sato et al., 2006; Wang et al., 2007). The vast majority 

of research on planarian regeneration focuses on asexual strains that reproduce by fission; 

however, planarians can also reproduce sexually as simultaneous hermaphrodites. Some 

planarians can even reproduce parthenogenetically: sperm serve to activate development, 

without contributing genetic information (a process known as gynogenesis), demonstrating 

the potency of the female germline (Benazzi and Benazzi, 1976). Germ cell development 

in sexual planarians is responsive to physiological cues: following prolonged starvation, 

gonads regress and accessory reproductive organs are resorbed (Berninger, 1911; Morgan, 

1901; Schultz, 1904); when feeding is resumed, gonads again produce gametes and 

accessory reproductive organs are re-formed. Planarians’ remarkable developmental 

plasticity provides a unique opportunity to investigate mechanisms regulating sex-specific 

germ cell specification and differentiation in the context of an adult organism.

In sexual planarians, ovarian tissue is scarce relative to testes; as such, previous 

transcriptomic analyses predominantly identified genes with enriched expression in the 

testes rather than ovaries (Rouhana et al., 2017; Wang et al., 2010; Zayas et al., 2005). 

Whole-animal single-cell sequencing approaches produced similar results (Fincher et al., 

2018). Thus, little is known about the gene expression changes driving female germ 

cell development in planarians. An orphan G-protein-coupled receptor (GPCR), Ophis, is 

expressed in somatic gonadal cells of ovaries and testes and is required for differentiation 

of both oocytes and sperm (Saberi et al., 2016); however, gene expression differences 

distinguishing female from male somatic gonadal cells have yet to be identified, and the 

roles of somatic ovarian cells in various stages of female germ cell development remain to 

be determined. Here, to circumvent the limited quantity of ovarian tissue and identify genes 

with enriched expression in planarian ovaries, we generated gonad-specific transcriptomes 

using laser-capture microdissection followed by RNA sequencing (RNA-seq). Analysis 

and validation of these transcriptomic data enabled us to characterize the developmental 

progression of female germ cells, define somatic ovarian cell types, and identify somatically 

expressed genes required for proper regeneration and development of female germ cells.
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RESULTS

LCM sequencing identifies transcripts that mark and distinguish ovaries from testes

The reproductive system of the sexual strain of the planarian Schmidtea mediterranea 
consists of two ovaries located ventrally under the posterior lobes of the brain, numerous 

dorsolaterally distributed testes, and accessory reproductive organs (yolk glands [vitellaria], 

oviducts, sperm ducts, copulatory apparatus, and gonopore) (Figure 1A) (Hyman, 1951; 

Issigonis and Newmark, 2019). To precisely excise ovarian, testis, and surrounding non-

gonadal tissues for transcriptomic comparisons, we used laser-capture microdissection 

(LCM; Figure 1B) (Emmert-Buck et al., 1996; Espina et al., 2006; Forsthoefel et al., 

2020). RNA-seq analysis (Mortazavi et al., 2008; Nagalakshmi et al., 2008) of the laser-

captured tissues identified 36,036 non-redundant transcripts, of which 7,577 (21%) were 

upregulated (≥2-fold, false discovery rate p value ≤0.01) in either or both gonads: 1,491 

(4%) in ovaries; 4,880 (14%) in testes; and 1,206 (3%) in both (Figures 1B, 1C, and 

S1A–S1D; Table S1). To validate the LCM-generated gonadal transcriptomes, we examined 

genes with previously reported gonadal expression (Wang et al., 2010). As expected, 

we found significant upregulation of the majority of these genes (82 out of 89) in the 

testis transcriptome (Figure S2A), including nanos, a conserved regulator of germ cell 

development (Handberg-Thorsager and Saló, 2007; Sato et al., 2006; Wang et al., 2007), 

which was also upregulated in the ovary transcriptome (Figure S2A).

To validate candidates and identify new genes expressed in the ovary, we performed whole-

mount colorimetric RNA in situ hybridization (WISH) for ovary-enriched transcripts and 

detected diverse expression patterns in and around the ovaries (Figures 1D and S2B). 

Approximately 90% (204 out of 227) of genes tested showed enriched expression in 

the ovary or associated reproductive structures. These results demonstrate the successful 

application of LCM-RNA-seq for generating gonad-specific transcriptomes, providing a 

resource for identifying regulators of germ cell development and regeneration.

Female germ cell progenitors are specified outside the ovaries and express markers of 
pluripotency

Histological and ultrastructural studies have shown that planarian oocytes grow and mature 

in a progression from the margins of the ovary toward the tuba (fertilization duct) (Gremigni 

and Nigro, 1983; Harrath et al., 2011). Markers of the earliest stages of germ cell 

development (nanos and krüppel-like factor 4 [klf4]) label oogonia at the ovary periphery 

(Issigonis et al., 2021; Wang et al., 2007); nanos and klf4 are also expressed in two fields 

of cells, anterior to the ovary at the ventro-medial portion of each brain lobe (Issigonis et 

al., 2021). To help elucidate the origins and differentiation of the female germ cell lineage, 

we sought to identify ovary-enriched transcripts expressed at various stages of oogenesis. 

Fluorescent RNA in situ hybridization (FISH) analysis detected galactose-binding lectin 
(lecg) expression in differentiating cells throughout the ovary, but not in the anterior field 

of klf4-expressing cells (Figure 1E). Expression of ubiquitin carboxyl-terminal hydrolase 8 
(ubp8) was detected in larger oocytes residing within the ovary, proximal to the tuba, but 

not within smaller lecg+ cells at the ovary periphery (Figure 1F). Thus, ubp8 is upregulated 

later in oocyte differentiation than lecg (Figure 1F). The expression patterns of these oocyte 
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markers and the corresponding growth of oocytes reveal progressive stages of female germ 

cell differentiation, from the periphery of the ovary toward its interior.

Like the previously described patterns of nanos and klf4 (Issigonis et al., 2021), we detected 

expression of a gene originally annotated as polyketide synthase-1 (pks1) (Zeng et al., 

2018) in fields of cells anterior to the ovary; its expression was also detected throughout 

the ovary (Figures 1D and 1G). This gene was identified via single-cell sequencing as a 

marker of a pluripotent subpopulation of neoblasts in asexual S. mediterranea (Zeng et 

al., 2018); because its predicted product shares no conserved domains with any reported 

proteins, including polyketide synthases, and based upon its expression dynamics (described 

below), we propose renaming it germline-expressed, wound-induced in neoblasts (gwîn; 

Sindarin for “youth,” corresponding to its expression beginning in early stages of female 

germ cell development). gwîn is expressed in the klf4+ fields anterior to (Figures 1G and 

1Gi) and around the margins of the ovaries (Figures 1G and 1Gii). The gwîin+ cells in the 

anterior fields and around the margins of the ovary were labeled by anti-phospho-Histone 

H3 (pHH3) antibodies (Figure S3Ai and ii), indicating that they are proliferative. gwîn is 

also expressed in lecg+ oocytes within the ovary (Figures 1G and 1Giii), and, thus, serves 

as a marker spanning all stages of female germ cell development. These results suggest 

that the nanos+ klf4+ gwîn+ cells located at the margin of the ovary are oogonia that 

give rise to gwîn+lecg+ oocytes within the ovary (Figure 1G). Finding proliferating cells 

expressing the earliest markers of germ cell development (nanos+ klf4+gwîn+) anterior to 

the ovaries suggests that female germ cell progenitors (FGPs) can also be specified outside 

of the ovaries (Issigonis et al., 2021). Identifying markers for progressive stages of female 

germ cell development allows us to study early steps in female germ cell specification and 

differentiation.

A marker of pluripotent neoblasts is expressed in germ cells and only upregulated in 
neoblasts after wounding

In addition to gwîn, single-cell analysis of a pluripotent neoblast subpopulation identified 

other cluster-defining transcripts, including tspan group-specific gene-1 (tgs-1) and 

tetraspanin-1 (tspan-1) (Zeng et al., 2018). The expression of gwîn in FGPs of sexual 

planarians suggested affinities between pluripotent neoblasts and early germ cells; thus, we 

sought to further explore this relationship. First, we examined the expression of the neoblast 

marker piwi-1 (Reddien et al., 2005), a planarian PIWI homolog that is also expressed 

in germ cells (Davies et al., 2017). We detected relatively high levels of piwi-1 mRNA 

in gwîn+ FGPs (Figures 2A and 2Ai and ii). Consistent with previous studies (Davies et 

al., 2017), we detected piwi-1 expression in oocytes, suggesting that piwi-1 expression is 

maintained through oocyte differentiation (Figures 2A and 2Aiii). Similar to gwîn, tgs-1 
is enriched in the ovarian transcriptome and expressed abundantly in FGPs (Figures 2B 

and S3C); however, tgs-1 was also detected in a subset of neoblasts (Figure S3D). In the 

sexual strain, gwîn expression was most pronounced in germ cells in both ovaries and 

testes (Figures 1G, 2A, 2B, and S3B) and, aside from co-expression in the germ cells, its 

expression did not overlap with that of piwi-1.
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To validate the expression of neoblast markers in germ cells, we first assessed gwîn 
expression in asexual S. mediterranea. Although these animals reproduce by fission, 

they develop gonad primordia containing germ cells that fail to differentiate (Handberg-

Thorsager and Saló, 2007; Wang et al., 2007). In small asexuals (worm length: 2.3 ± 0.2mm) 

we did not detect gwîn expression anywhere in the animal; larger asexuals (4.2 ± 0.5mm), 

however, displayed a small group of gwîn+ cells ventral to the posterior brain lobes (Figures 

2D and 2E), reminiscent of FGPs in the sexual strain and consistent with the increase of 

nanos+ klf4+ female germ cells in this region of larger asexual planarians (Issigonis et al., 

2021). We did not detect gwîn expression in testis primordia of asexuals, suggesting that 

gwîn is upregulated during a later stage of male germ cell development (Figure 2D).

Considering the scarcity of FGPs in asexuals, it seems unlikely that these cells were 

captured during single-cell sequencing by Zeng et al.; rather, gwîn expression in pluripotent 

neoblasts could result from cell dissociation and the subsequent induction of wound-

response transcriptional programs (Lacar et al., 2016; Wu et al., 2017). Indeed, wound 

responsiveness was one of the criteria used to define this neoblast subcluster (Zeng et al., 

2018). To test this idea, we examined gwîn expression by WISH after amputating or injuring 

the worms and found that gwîn mRNA was upregulated at wound sites in both sexual and 

asexual strains (Figures 2C–2F). This dramatic upregulation at wound sites may account for 

the expression of gwîn in additional clusters beyond that expressing tgs-1, as well as its 

broad expression in neoblast colonies observed after partial irradiation (Zeng et al., 2018). 

We corroborated our ISH analysis by examining previous regeneration transcriptomes (Kao 

et al., 2013; Rozanski et al., 2019), which revealed that gwîn is upregulated as early as 4 

to 6 h after injury, a time frame consistent with the possibility of cell-dissociation-induced 

upregulation in neoblasts (Figure S4A). In contrast, other early germ cell markers, such 

as klf4 and nanos, are not upregulated at wound sites (Figures S4B and S4C). Next, we 

confirmed that gwîn was upregulated in neoblasts after amputation by performing double 

FISH with the neoblast marker piwi-1. In uninjured asexual planarians, gwîin+piwi-1+ cells 

were only detected in the FGP region (Figure 2E). However, after amputation, gwîn+piwi-1+ 

cells were detected at both anterior and posterior wound sites (Figure 2F). These data 

indicate that, in intact planarians, gwîn marks germ cells rather than neoblasts. Wound-

inducible expression of this gene in neoblasts provides another link between germ cells and 

the planarian’s pluripotent stem cells.

Gene-expression profiling reveals spatial heterogeneity in ovarian somatic cells

How are FGPs maintained and what regulates their differentiation within the ovary? Somatic 

gonadal cells play critical roles in regulating germ cell development throughout the animal 

kingdom. To date, studies of soma-germline interactions in the planarian ovary have been 

limited by the availability of appropriate markers. The first such marker, ophis, encodes 

an orphan GPCR expressed in somatic support cells of ovaries and testes and is required 

for both female and male germ cell differentiation (Saberi et al., 2016). Our ISH screen 

of ovary-enriched transcripts identified three genes with expression patterns distinct from 

those observed for germ-cell-enriched transcripts, and resembling a scaffold surrounding the 

germ cells: delta3; the forkhead-family transcription factor, foxL; and endothelin converting 
enzyme 1 (ece1) (Figures 1C, 1D, and S5A). We confirmed that delta3, foxL, and ece1 
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transcripts were not detected in female germ cells using double FISH with pooled probes for 

the germ cell markers klf4 and lecg (Figures 3A, 3B, and 3C). Additionally, unlike ophis 
(Saberi et al., 2016), delta3, foxL, and ece1 transcripts were not detectable in the testes, 

indicating sexually dimorphic expression (Figure S5A). delta3+ cells are closely associated 

with oocytes, and co-express ophis within the ovary, confirming delta3 as a marker of 

ovarian somatic cells (Figure 3D). Double FISH to detect foxL and delta3 revealed higher 

expression of foxL in delta3+ somatic cells situated proximal to the tuba, compared with 

delta3+ cells at the periphery (Figure 3E). In contrast, ece1 is expressed in the peripheral 

delta3+ cells (Figure 3F). Double FISH to detect both ece1 and foxL confirmed the presence 

of ece1highfoxLlow cells at the periphery of the ovary (Figures 3G, 3Gi, and 3H) and ece1low 

foxLhigh cells proximal to the tuba (Figures 3G, 3Gii, and 3H), indicating heterogeneity 

among ovarian somatic support cells. This heterogeneity could reflect distinct functional 

roles at different stages of oogenesis.

Ovarian somatic cells regulate female germ cell development via conserved factors

foxL encodes a planarian homolog of the forkhead-family transcription factor FoxL2 (Figure 

S5B), which is a critical regulator of granulosa cell differentiation in the mammalian 

ovary. Ovaries fail to develop properly in FoxL2 knockout mice: the absence of functional 

granulosa cells in these mutants leads to oocyte atresia and infertility due to progressive 

follicular depletion (Schmidt et al., 2004; Uda et al., 2004). Human mutations in FoxL2 
can lead to premature ovarian failure or ovarian tumors (Crisponi et al., 2001; Georges 

et al., 2014; Schmidt et al., 2004; Shah et al., 2009; Uda et al., 2004; Uhlenhaut and 

Treier, 2011). FoxL2 is also required to actively maintain female fate in the adult mouse 

ovary (Uhlenhaut et al., 2009). Although FoxL2 genes have been identified in a range of 

invertebrates, its expression in ovarian somatic cells, but not germ cells, has been proposed 

to be a vertebrate innovation (Bertho et al., 2016). Furthermore, functional roles for FoxL2 
homologs in ovarian development have yet to be demonstrated in any invertebrate.

Thus, it was noteworthy to find planarian foxL similarly expressed in ovarian somatic cells, 

enriched in the tuba-proximal population surrounding late-stage oocytes (Figures 3B, 3E, 

3G, and S5A). To examine whether foxL also plays a functional role in oogenesis, we 

used RNAi to knock down its expression in the context of decapitated worms that will 

regenerate new ovaries (Figure 4A). foxL(RNAi) worms regenerated their heads normally 

and displayed normal feeding behavior (Figure S5C). The distribution and numbers of 

klf4+ FGPs in the anterior fields were not affected significantly in these animals (Figures 

4B and 4C). However, foxL RNAi resulted in a dramatic and significant reduction in the 

number of lecg+ oocytes (Figures 4B and 4C). These data suggest that foxL is required cell 

non-autonomously for oocyte differentiation and maintenance in planarians.

As reported above, ovarian somatic cells also express a delta3 homolog (Figures 3A and 

3B), which encodes a transmembrane Notch-signaling ligand (Figure S5D) (Bray, 2006). 

Notch signaling plays critical roles in various aspects of soma-germ cell interactions across 

species. For example, the Caenorhabditis elegans niche uses Notch signaling to regulate 

germline stem cell maintenance and proliferation (Byrd and Kimble, 2009), whereas, in the 

Drosophila ovary, Notch signaling controls the formation and maintenance of the niche (Xie 
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et al., 2008). To explore the role of Notch signaling in planarian oogenesis, we performed 

delta3 RNAi experiments in the context of the ovarian regeneration paradigm (Figure 4A). 

delta3(RNAi) planarians displayed a significant increase of klf4+ FGPs, the distribution of 

which was skewed toward the midline (Figures 4D, 4E, and 4F). Additionally, the ovaries 

of delta3(RNAi) planarians appeared disorganized, with klf4+ FGPs intermingled with lecg+ 

oocytes; oocyte numbers were significantly reduced (Figures 4D and 4E).

Because direct cell-cell interaction is necessary for Notch signaling (Bray, 2006), we asked 

whether Notch receptors were also expressed in the ovary. We found enriched expression of 

transcripts encoding both planarian Notch receptors in the ovarian transcriptome (Figures 

S5D and S5E). FISH revealed mRNAs of both notch2 and notch4 in the tuba and 

oviduct; notch4 mRNA was also detected in the delta3+ ovarian somatic cells (Figure 4G). 

Knockdown of notch2 resulted in a significant expansion, midline-skewed distribution of 

klf4+ FGPs, and disorganized ovaries with depleted oocytes, similar to delta3(RNAi) worms. 

By contrast, klf4+ FGPs appeared unaffected after notch4 RNAi, but oocyte numbers were 

reduced (Figures 4D, 4E, and 4F). Although notch2(RNAi) worms regenerated normally, 

they were smaller at the end of our assay, suggesting roles in growth or feeding, which 

could also influence oocyte development (Figure S5F). Altogether, Notch signaling plays 

several roles in female germ cell development in planarians, regulating the number and 

distribution of FGPs, as well as the spatial organization of the ovary, with effects upon 

oocyte production. The expression patterns of the Notch-signaling components reported here 

suggest that interactions between accessory reproductive organs (oviduct, tuba) and ovarian 

somatic cells may also help establish proper structure of the ovary.

A female-specific regulator of germ cell regeneration: bidirectional soma-germline 
communication

In addition to markers of ovarian somatic cells, the ovary transcriptome enabled us to 

identify zfs1, a female-specific early germ cell marker. This gene encodes a predicted RNA-

binding protein (Figure S6A) and is expressed in ovaries as well as in cells anterior to the 

ovaries (Figures 5A and 5B). Double FISH with gwîn indicated that zfs1 is co-expressed in 

FGPs and oocytes (Figure 5C); however, unlike other FGP markers (klf4 and nanos) that are 

also expressed in early stages of male germ cell development, zfs1 expression was restricted 

to female germ cells (Figures 5A and 5B). RNAi knockdown of zfs1 using the previously 

described ovary-regeneration paradigm (Figure 4A) resulted in a dramatic reduction in the 

number of klf4+ FGPs and ablation of lecg+ oocytes (Figures 5D and 5E). By contrast, 

male germ cell development was unaffected by zfs1 RNAi: klf4+ early male germ cells at 

the testis periphery, and DAPI-stained sperm in the lumen (Issigonis et al., 2021) appeared 

normal (Figure 5F). Accessory reproductive structures and egg laying were also unaffected. 

However, zfs1(RNAi) animals were sterile: they failed to produce hatchlings (Figures S6B–

S6D). These results indicate a germ-cell-intrinsic, female-specific role for zfs1, which 

belongs to a small, yet ancient, family of RNA-binding proteins that regulate mRNA 

turnover (Cuthbertson et al., 2008; Wells et al., 2017). The yeast ortholog is a regulator 

of sexual differentiation (Kanoh et al., 1995; Navarro et al., 2017), and the mammalian 

homolog, ZFP36L2, is critical for oocyte maturation, targeting transcriptional regulators 

and chromatin modifiers for degradation (Dumdie et al.,2018). Understanding how zfs1 
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expression is restricted to female germ cells will provide insight into the modulation of germ 

cell sex in a simultaneous hermaphrodite.

Although zfs1(RNAi) animals lack female germ cells, DAPI staining suggested that ovaries 

were still present (Figure 5D). To examine whether the somatic ovary was affected, we 

used delta3 as a marker, revealing increased somatic cells in zfs1(RNAi) worms (Figures 

5G and 5H). We recently reported that klf4 RNAi resulted in loss of female germ cells 

and concomitant expansion of the somatic ovary; however, klf4 RNAi also leads to loss 

of testes and vitellaria (Issigonis et al., 2021). The ovary-specific effects of zfs1 RNAi 

suggest that the absence of female germ cells, rather than altered systemic cues resulting 

from lack of testes and vitellaria, triggers expansion of ovarian somatic cells in klf4(RNAi) 
worms (Figures 5G and 5H). Thus, germ cells and somatic support cells communicate 

bidirectionally during ovary regeneration.

Unexpected roles of AADC in germ cell development and regeneration

The laser-capture transcriptomes also revealed unanticipated gonadal expression of 

conserved genes not previously implicated in gonadal function. Aromatic L-amino acid 

decarboxylase (AADC) is a broadly conserved enzyme (Figure S7A) that catalyzes a key 

reaction in the production of monoamine neurotransmitters, such as serotonin and dopamine. 

Previous studies of asexual planarians showed that aadc is expressed in serotonergic neurons 

within the central nervous system, as well as in pigment cups of the photoreceptors and 

secretory cells around the pharynx (Currie and Pearson, 2013; März et al., 2013). Thus, it 

was surprising to find enriched expression of aadc mRNA in the planarian ovary (Figure 

S7B). We confirmed ovary-enriched aadc expression using in situ hybridization (Figure 

6Ai), and also detected aadc expression in the testes and vitellaria (Figure 6Aii, iii). Double 

FISH to detect aadc and somatic support cell markers in ovaries (delta3, foxL, and ece1) 

and testes (ophis) revealed that aadc is expressed in both female and male somatic gonadal 

cells (Figures 6B and 6C). In ovaries, aadc expression was enriched in the ece1+foxLlow 

cells at the periphery (Figure 6B). To confirm this expression in somatic gonadal cells, we 

generated and validated polyclonal antibodies against AADC (Figures S7C, S7D; STAR 

Methods). Immunofluorescence labeling with anti-AADC antibodies detected AADC within 

the somatic support cells, which form scaffolds surrounding the germ cells in ovaries and 

testes (Figures 6D and 6E, and S7D). These data suggest that AADC could act locally within 

somatic gonadal cells to produce monoamines. In support of this idea, we find differential 

expression of various serotonin synthetic enzymes and other pathway components in the 

ovary and testis transcriptomes (Figure S7E).

To determine whether monoamines play a role in female germ cell development, we 

disrupted AADC function using the RNAi paradigm described above (Figure 4A). 

Knockdown of aadc resulted in the failure to regenerate ovaries after amputation: we 

observed a dramatic reduction of klf4+ FGPs and loss of oocytes (Figures 6F and 6K). 

Furthermore, aadc(RNAi) worms failed to regenerate the somatic compartment of the 

ovary (Figures 6G and 6L). These results suggest that AADC activity is necessary for the 

specification of FGPs and implicates ovarian somatic cells in this process. More broadly, 

accessory reproductive organs (vitellaria, oviducts, sperm ducts, and the gonopore) failed to 
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regenerate or be maintained, and egg laying was abolished in aadc(RNAi) worms (Figures 

S7F–S7H). No obvious aadc expression was detected in oviducts or sperm ducts (Figure 

6A), suggesting that AADC function within neurons, somatic gonadal cells, and/or vitellaria 

could act extrinsically in regeneration of these organs.

In contrast to the lack of ovaries after aadc knockdown, aadc(RNAi)animals displayed 

hyperplastic testes, full of early male germ cells (Figure 6H). Testes of control worms 

consist of peripherally located, immature (klf4+nanos+ and klf4−nanos+) germ cells, with 

luminal differentiating germ cells (spermatids and sperm) (Issigonis et al., 2021; Wang et al., 

2007). Testes of aadc(RNAi) worms, however, consisted mainly of klf4+nanos+ early male 

germ cells and lacked differentiated cells (Figures 6H, 6I, and 6M). Unlike the ovaries, 

somatic cells in the testes appeared unaffected after aadc knockdown (Figures 6J and 

6N). Taken together, these results implicate somatic gonadal cells as a potential source 

of monoamines, which may be acting differentially upon male and female germ cells in 

planarians.

DISCUSSION

Planarians exhibit extraordinary plasticity in reproductive development, including the ability 

to regenerate germ cells de novo; the mechanisms underlying this plasticity remain 

poorly understood. To uncover mechanisms underlying female germ cell development and 

regeneration, we generated gonad-specific transcriptomes. These studies identified genes 

defining progressive stages of female germ cell development and revealed heterogeneity 

of somatic ovarian cells. We uncovered intriguing similarities between female germ 

cells and neoblasts, the pluripotent stem cells that drive regeneration. We identified 

conserved, somatically expressed regulators, which have sex-specific functions in germ 

cell development and regeneration. Our findings underscore the key role played by somatic 

support cells in both development and regeneration of germ cells.

Germ cell sex in a simultaneous hermaphrodite and the relationship of FGPs to pluripotent 
stem cells

Planarians are simultaneous hermaphrodites, developing ovaries and testes in different 

regions of the body. Because the genes implicated thus far in the earliest stages of germ cell 

development (nanos and klf4) are expressed in both male and female germ cells (Handberg-

Thorsager and Saló, 2007; Issigonis et al., 2021; Sato et al., 2006; Wang et al., 2007), it was 

unclear whether the sex of these early germ cells was already determined. The identification 

of zfs1 as a female-specific, germcell-intrinsic factor indicates that planarian germ cells 

“know” their sex early in their development. Presumably, inputs from global-patterning 

signals that define the animal’s major body axes (Reddien, 2018) are integrated such that 

germ cells born antero-ventrally toward the base of the brain adopt female fates, whereas 

those born dorso-laterally adopt male fates. Exploring the impact of global-patterning 

signals on sex-specific germ cell specification will be an important future direction.

The distribution of FGPs in fields anterior to the ovaries suggests two plausible scenarios. 

These fields could represent streams of migratory female germ cells that will later be 

incorporated into the ovary, similar to the example of planarian eye progenitors that are 
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found in streams outside of the photoreceptors (Atabay et al., 2018; Lapan and Reddien, 

2012). Alternatively, early female germ cells may be specified in a relatively broad 

antero-ventral region, but only those cells interacting with somatic gonadal cells (or other 

anatomical landmarks) will be incorporated into the ovary and produce oocytes. Whichever 

of these models best reflects reality, the gene expression changes we identified throughout 

female germ cell development suggest that FGPs/oogonia found around the margin of the 

ovary differentiate peripherally into oocytes that mature and move internally toward the 

tuba, where they exit from the ovary for fertilization (Figure 7).

Previous studies have noted the similarities between neoblasts and germ cells, from the 

presence of ribonucleoprotein granules called chromatoid bodies, to the expression of 

several genes associated with germline development in other animals, including vasa, 
piwi, tudor, pumilio, and bruno (Guo et al., 2006; Reddien et al., 2005; Salvetti et al., 

2005; Shibata et al., 1999; Solana et al., 2009). Single-cell transplantation into lethally 

irradiated hosts revealed a subpopulation of neoblasts capable of giving rise to all cell 

types in the animal; these pluripotent neoblasts are functionally defined as clonogenic 

neoblasts (cNeoblasts) (Wagner et al., 2011). Single-cell sequencing efforts to characterize 

a pluripotent neoblast subpopulation identified TSPAN-1 as a cell-surface marker that can 

be used to enrich for cNeoblasts (Zeng et al., 2018). These authors identified tgs-1 and 

pks1 (here renamed gwîn) as signature transcripts associated with this tspan-1+ cluster 

in the asexual strain of S. mediterranea. We have shown that, in the sexual strain, these 

two genes are expressed abundantly in FGPs. Although gwîn is expressed at high levels 

constitutively in germ cells during homeostasis, it is only upregulated in neoblasts in 

response to wounding. This wound-responsive, neoblast-specific upregulation of genes 

associated with early stages of female germ cell development is particularly intriguing 

given the recent demonstration that neoblast fates are far more plastic than generally 

appreciated: specialized neoblast subclasses that express transcription factors associated 

with specific cell types are capable of generating daughters that adopt other fates (Raz 

et al., 2021). These authors also found that tgs-1 was not expressed in all early neoblast 

colonies; rather, their single-cell sequencing analysis detected tgs-1 expression in clusters 

displaying features of neural specification (Raz et al., 2021). Whether tgs-1 expression 

in female germ cells reflects additional similarities between FGPs and neural fates (e.g., 

reliance on post-transcriptional control of gene expression; Kulkarni et al., 2020) will be a 

fascinating avenue for future study. Nonetheless, our results suggest that neoblast plasticity 

may involve transient activation of some germ-cell-associated genes. Similarities in gene 

expression between germ cells and pluripotent neoblasts during regeneration are consistent 

with previous observations that planarian germ cells are capable of contributing to the 

regeneration of somatic tissues (Gremigni et al., 1980a; 1980b).

Ovarian somatic support cells: Key players in germ cell regeneration

Somatic support cells of planarian ovaries were observed ultrastructurally decades ago 

(Fischlschweiger, 1991, 1994; Gremigni and Falleni, 1998; Gremigni and Nigro, 1983; 

Harrath et al., 2011), but their functional characterization began with the discovery of ophis, 

a GPCR-encoding gene that is expressed in somatic gonadal cells and required for germ 

cell differentiation (Saberi et al., 2016). The paucity of these cells had thus far hindered 
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their discovery by bulk and single-cell sequencing approaches (Fincher et al., 2018; Zayas 

et al., 2005). We used LCM to overcome this limitation, and the resulting gonad-specific 

transcriptomes enabled us to identify a set of sexually dimorphic ovarian support cell 

markers (delta3, foxL, and ece1). Their expression patterns revealed heterogeneity within 

ovarian somatic cells: enriched expression of ece1 and aadc was observed in cells distal to 

the tuba, whereas enriched expression of foxL was detected in cells proximal to the tuba, 

associated with later-stage oocytes. We found that aadc was required for FGP specification 

and maintenance, whereas foxL was required for oocyte differentiation and maintenance, 

without affecting FGPs (Figure 7). These disparate effects suggest that the tuba-distal and 

tuba-proximal somatic cell populations may control distinct stages of female germ cell 

development (Figure 7). Such distinct functional domains would be consistent with the 

recently described functional compartmentalization of the somatic niche in the germarium 

of the Drosophila ovary (Shi et al., 2021; Tu et al., 2021) and the distinct populations of 

granulosa cells regulating reproductive onset versus duration in the mouse ovary (Niu and 

Spradling, 2020).

The expression patterns and knockdown phenotypes of the Notch-signaling components 

reported here suggest that interactions between ovarian somatic cells (which express delta3 
and notch4) and accessory reproductive organs, the oviduct and tuba (which express notch2 
and notch4), help establish (and/or maintain) proper ovarian structure. Notch signaling also 

affects the germ cells: RNAi knockdown of delta3 or notch2 resulted in both the skewed 

distribution of FGPs toward the midline and an increase in the number of FGPs. The midline 

skewing could reflect the role of delta3 in midline patterning: it is expressed at the midline 

and knockdown in the asexual strain leads to cyclopia (Sasidharan et al., 2017). We did not 

observe cyclopic worms in our RNAi regeneration assays, so it remains to be determined 

if FGPs are more sensitive to the disruption of midline cues than the photoreceptors, or 

if the altered distribution reflects altered signaling from the somatic ovary. Nonetheless, 

potential alterations in midline patterning seem unlikely to affect the number of FGPs; 

thus, the somatic ovary may be capable of communicating with FGPs and regulating their 

specification and/or proliferation at a distance.

FoxL2 is a critical regulator of granulosa cell fate in mammals; homologs of this gene had 

yet to be characterized functionally in any invertebrate. Our observations that a planarian 

homolog (foxL) is expressed robustly in a subpopulation of somatic ovarian cells and is 

required for oocyte differentiation and maintenance suggest that the female-specific role of 

FoxL family members in the somatic gonad may well predate the emergence of vertebrates. 

The sexually dimorphic expression of planarian foxL is particularly intriguing in the context 

of this simultaneous hermaphrodite. In mice, female-specific FoxL2 and male-specific 

Dmrt1 transcription factors act in a mutually antagonistic manner to maintain gonadal 

sex: post-natal conditional knockout of foxL2 results in granulosa cell transdifferentiation 

into Sertoli cells (Uhlenhaut et al., 2009); by contrast, post-natal conditional knockout of 

dmrt1 results in Sertoli cell transdifferentiation into granulosa cells (Matson et al., 2011). 

In addition to foxL, planarians also have a dmrt1 homolog (dmd-1), which is expressed 

specifically in male reproductive organs (including somatic cells of the testes) and is 

required for the specification, differentiation, and maintenance of male germ cells as well as 

accessory reproductive organs (Chong et al., 2013). Whether functional antagonism, like that 
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observed in mice, between female-specific foxL and male-specific dmd-1 also plays a role in 

maintaining gonadal sex in this simultaneous hermaphrodite will be an important avenue for 

future studies.

Potential non-neuronal roles of monoamines in germ cell development

Biogenic monoamines, like serotonin and dopamine, act as neurotransmitters across the 

animal kingdom (Weiger, 1997; Yamamoto and Vernier, 2011). It is perhaps less widely 

appreciated that many of these molecules predate the evolution of nervous systems 

(Roshchina, 2016) and play other, non-neuronal roles (Bellono et al., 2017; Lv and 

Liu, 2017; Matsuda et al., 2004). Our finding that AADC, an enzyme required for 

monoamine synthesis, plays sex-specific roles in planarian germ cell regeneration implicates 

monoamines in the regulation of crucial stages of germ cell development, from specification 

to differentiation. AADC is involved in the synthesis of many different monoamines 

(including serotonin, tyramine, tryptamine, histamine, dopamine, and other catecholamines); 

thus, it is unclear whether the observed sex-specific effects reflect sex-specific activities of 

different monoamines or whether male and female tissues respond differentially to the same 

monoamine.

Although we do not yet know the identity of the monoamine(s) mediating the aadc(RNAi) 
phenotype, planarian gonads possess the machinery to respond differentially to the same 

monoamine. For example, we queried the gonad transcriptomes and found evidence for 

serotonergic pathways in both testes and ovaries (Figure S7E). Tryptophan hydroxylase 

(TPH) catalyzes the conversion of L-tryptophan to 5-hydroxy-L-tryptophan, which is 

decarboxylated by AADC to produce serotonin. Vesicular monoamine transporters (VMAT) 

then package serotonin into vesicles for release, where it can bind serotonin receptors 

(5HTR). Serotonin transporters (SERTs) terminate signaling by taking up extracellular 

serotonin. A homolog of the Drosophila peripheral tryptophan hydroxylase (TPH), henna, 

is highly expressed in both testes and ovaries, relative to the neuronally expressed tph1 
(Currie and Pearson, 2013; März et al., 2013; Sarkar et al., 2019). Planarian gonads also 

express vmat and sert homologs, suggesting the ability to release and recycle serotonin. 

Notably, ovaries and testes appear to differentially express different vmats, serts, and 

serotonin receptors. Thus, gonadal cells are capable of producing and responding locally 

to monoamines such as serotonin; the expression of distinct receptors in ovaries and testes 

suggests the possibility of differential responses. The expression of AADC by somatic 

support cells and the presence of specific monoamine receptors in both ovaries and testes 

supports the idea that these molecules can be produced and sensed locally within the gonads. 

Moreover, a recent report showed that serotonin could induce ovary development in another 

planarian species (Dugesia ryukyuensis), further supporting the role of monoamines in 

planarian reproductive system development (Sekii et al., 2019).

Might monoamines act in germ cell development in other animals? Genes encoding an 

entire serotonergic network, consisting of synthetic enzymes, receptors, and transporters, 

are expressed in mammalian ovaries (Dubé and Amireault, 2007). In mice and humans, 

two paralogous genes encode tryptophan hydroxylase, the rate-limiting enzyme in serotonin 

synthesis. Expression of one paralog (Tph1) is found in a wide range of non-neuronal tissues 
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and is responsible for synthesizing ~95% of the body’s serotonin, whereas expression of the 

other (Tph2) is detected largely in neural cells (reviewed in Amireault et al., 2013). The 

embryonic defects observed in offspring of Tph1−/− knockout females (Côté et al., 2007) are 

confounded by potential indirect effects from the compromised physiological states of these 

mice, which have diabetes and anemia (Amireault et al., 2011; Paulmann et al., 2009). These 

complications of interpreting Tph1−/− phenotypes and the finding that the placenta serves as 

the source of serotonin that acts in the fetal forebrain (Bonnin et al., 2011) seem to have 

quelled investigations into potential roles of serotonin in oogenesis and early embryonic 

development. Furthermore, because Tph2 is among the genes showing the greatest degree 

of upregulation in the female somatic gonad at the time of sex determination (Beverdam 

and Koopman, 2006), it seems quite likely that it may act redundantly with Tph1 in the 

ovaries. Similar expression of multiple serotonin receptors in the gonads would also likely 

compensate for loss of any single gonadally enriched gene. Thus, exploring potential roles 

of these deeply conserved molecules in the reproductive organs of a simpler animal, like the 

planarian, may overcome such concerns about redundancy and guide future tissue-specific 

knockout studies.

Regardless of whether or not the role of monoamines uncovered here reflects deeply 

conserved mechanisms for regulating germ cell development across animal phylogeny, the 

observed effects upon the planarian’s reproductive system have other important implications. 

Planarians are free-living representatives of the phylum Platyhelminthes (the flatworms) and 

their reproductive system shares several important features with those of parasitic flatworms 

(flukes and tapeworms), which have major impacts on global public health (Collins and 

Newmark, 2013). All of these flatworms have ectolecithal eggs (i.e., yolk on the outside); 

yolk cells are produced by specialized accessory reproductive organs known as vitellaria 

and they are essential for embryonic development. Furthermore, transmission of parasitic 

flatworms requires prolific egg and yolk cell production. Because inhibition of aadc results 

in the loss of ovaries and other female accessory reproductive organs (including vitellaria), 

unraveling the role of monoamines in the female flatworm reproductive system may lead to 

new approaches for preventing parasite transmission.

Limitations of the study

This work represents a first step in characterizing global gene expression in the planarian 

ovary and identifying genes that play critical roles in various stages of female germ cell 

development in this animal. The use of LCM to identify genes with enriched expression 

in ovarian tissues was quite successful, as indicated by the ~90% validation using in situ 
hybridization as well as by our ability to define successive stages of female germ cell 

development and distinct somatic ovarian cell types. However, this initial expression-based 

screen likely missed genes that are also expressed abundantly in non-gonadal tissues. 

Future single-cell sequencing efforts will provide a more comprehensive picture of gene 

expression in all ovarian cell types. Moreover, the functional analysis presented here, using 

RNAi in the context of an ovary-regeneration assay, only allowed us to examine germ cell 

phenotypes in knockdown animals that could properly regenerate their heads (including 

cephalic ganglia) and their feeding circuitry. Thus, any genes required for proper female 

germ cell development that are also required more broadly for proper neoblast function, 
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neural activity, or viability would be missed by our assay, because knockdown planarians 

would fail to regenerate, feed, or survive. Despite such limitations, the genes identified 

here will facilitate future studies in which subtler experimental perturbations (e.g., localized 

ovarian ablation) are used to dissect more precisely the processes by which planarian 

neoblasts give rise to functional female germ cells.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact

• Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Phillip A. Newmark 

(pnewmark@morgridge.org).

Materials availability

• Newly generated materials generated in this study will be made available upon 

request.

Data and code availability

• All next-generation sequencing data have been deposited at the GEO repository 

under the accession number GSE191229 and are publicly available as of the date 

of publication.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Planarian maintenance and care

Hermaphroditic, sexual S. mediterranea were maintained at 18°C in 0.75X Montjuïc 

salts (Cebrià and Newmark, 2005) supplemented with 50 μg/mL Gentamicin (Gemini 

Bio-Products) and fed beef liver paste. Asexual S. mediterranea (clone CIW4; Sánchez 

Alvarado et al., 2002) were maintained at 22°C in 1X Montjuïc salts and fed beef liver 

paste. Planarians were maintained in Ziploc containers and kept in Petri dishes for RNAi 

experiments. Planarians were starved at least one week before initiating RNAi experiments, 

in situ hybridizations, or immunostainings.

METHOD DETAILS

Laser-capture microdissection and RNA extraction—Planarians were killed in 

chilled 2% HCl in PBS (RNAse-Free) and then fixed in 100% Acetone for 1 hour at −20°C. 

Planarians were then incubated in 10, 20, 30% sucrose in PBS (RNAse-Free) for 20 minutes 

each before embedding in Tissue Freezing Medium (TFM) blocks (Ted Pella). The samples 

were then cryosectioned at 16 mm thickness onto PEN membrane slides (Thermo Fisher). 

The slides were stained with 1% cresyl violet and 1% eosin Y (Sigma) in 75% ethanol 
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(Clément-Ziza et al., 2008). The tissue samples were dissected using Veritas Laser Capture 

Microdissection System (Arcturus) and captured on to Capsure HS LCM Caps (Thermo 

Fisher). After capture, RNA was isolated using the Arcturus PicoPure RNA isolation kit 

(Thermo Fisher). Ovarian tissue samples were collected from 14 worms (10 worms used for 

cross-sections and 4 worms used for sagittal sections) for each replicate (3 replicates total). 

Testis- and non-gonadal-tissue samples were collected from 6 worms for each replicate (4 

worms used for cross-sections and 2 worms used for sagittal sections). RNA concentrations 

were determined using Qubit Fluorometer (Thermo Fisher), and RNA integrity was analyzed 

using 2100 Bioanalyzer Instrument (Agilent).

RNA sequencing and gene expression analysis—Libraries were generated using 

Trueseq RNA stranded kit (Illumina), and 100 nt single-end sequencing reads were 

generated on Hi-Seq 2500 (Illumina). Trimming of adapters and low-quality reads as well 

as subsequent read mapping and differential gene expression analyses were performed 

using CLC Genomics Workbench (Qiagen). Reads were mapped to a de novo assembled 

S. mediterranea transcriptome (smed_20140614) (Robb et al., 2015) with the Smed-zfs1 
transcript added. The transcriptome was annotated in OmicsBox (BioBam) using the 

SwissProt Protein database. Heatmaps were generated in R using the ComplexHeatmaps 

package (Gu et al., 2016).

Molecular biology methods—200–1000 bp fragments of the gene of interest (Table S2) 

were amplified using Platinum Taq DNA Polymerase (Invitrogen) from cDNA. Amplified 

fragments were cloned into pJC53.2 (Collins et al., 2010) via TA cloning. Riboprobes and 

dsRNA were synthesized as previously described (King and Newmark, 2013; Rouhana et al., 

2013).

In situ hybridization and immunohistochemistry—Whole-mount ISH was 

performed as previously described (King and Newmark, 2013) with modifications for larger 

sexual worms: formaldehyde fixation was increased to 30 min, proteinase K treatment was 

increased to 20-25 min, and post-proteinase K fixation was increased to 30 min. pHH3 

was labeled using anti-phospho-Histone H3 (Ser10) (Millipore Sigma). AADC polyclonal 

antibody was generated by injecting a synthetic peptide (DVYTPKMDAEEFRKRGKE) 

into rabbits (Pierce Biotechnology, Rockford, IL). The serum was affinity purified with the 

peptide antigen and used at a dilution of 1:2000 for immunofluorescence. Colorimetric and 

FISH/immunofluorescence samples were imaged on Axio Zoom.V16 (Carl Zeiss) and LSM 

710 or 880 confocal microscope (Carl Zeiss), respectively. Cell counts were performed using 

the spot detection tool in Imaris (Bitplane).

RNA interference—Knockdowns were performed by feeding in vitro-transcribed dsRNA, 

as previously described (Rouhana et al., 2013). 6-8 mature sexual animals were fed ~10-20 

ug dsRNA mixed with 90 uL liver puree: water mixture 5:1 (with food coloring) in a petri 

dish. For all RNAi experiments, dsRNA corresponding to bacterial ccdB gene was used for 

negative controls. Animals were fed dsRNA 4 times, cut posterior to the ovaries, and tail 

fragments were allowed to regenerate for two weeks, followed by 8 dsRNA feedings.
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Protein domain \ analysis—Conserved protein domains were analyzed using 

InterProScan, SMART and Phobius protein domain analysis tools. Predicted protein 

sequences were aligned using MUSCLE.

QUANTIFICATION AND STATISTICAL ANALYSIS

All two-sample and three-sample comparisons were analyzed using Welch’s t-test or one-

way ANOVA (Dunnett’s test), respectively, in Prism (GraphPad). Differential expression for 

RNAseq was analyzed in CLC Genomics Workbench (Qiagen) using the Wald test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We would like to thank Melanie Issigonis, John Brubacher, Tania Rozario, Rosa Mejia-Sanchez, Jayhun Lee, 
Jiarong Gao, Tracy Chong, and Wenqi Shen for valuable contributions to this study and/or critical comments on the 
manuscript; David Forsthoefel (OMRF, Oklahoma) for sharing his initial work optimizing LCM-RNA-seq; Alyshia 
Scholl, Akshada Redkar, and Kaylee Browder for expert technical assistance; Mayandi Sivagaru (Institute for 
Genomic Biology, University of Illinois at Urbana-Champaign [UIUC]) for LCM training; and Alvaro Hernandez 
(Roy J Carver Biotechnology Center, UIUC) for library preparation and Illumina sequencing. This work was 
supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National 
Institutes of Health under award number R01HD043403 (to P.A.N.). P.A.N. is an investigator of the Howard 
Hughes Medical Institute.

REFERENCES

Amireault P, Hatia S, Bayard E, Bernex F, Collet C, Callebert J, Launay J-M, Hermine O, Schneider E, 
Mallet J, et al. (2011). Ineffective erythropoiesis with reduced red blood cell survival in serotonin-
deficient mice. Proc. Natl. Acad. Sci. U S A 108, 13141–13146. [PubMed: 21788492] 

Amireault P, Sibon D, and Cóté F (2013). Life without peripheral serotonin: insights from tryptophan 
hydroxylase 1 knockout mice reveal the existence of paracrine/autocrine serotonergic networks. 
ACS Chem. Neurosci 4, 64–71. [PubMed: 23336045] 

Atabay KD, LoCascio SA, de Hoog T, and Reddien PW (2018). Self-organization and progenitor 
targeting generate stable patterns in planarian regeneration. Science 360, 404–409. [PubMed: 
29545509] 

Baguñà J, Saló E, and Auladell C (1989). Regeneration and pattern formation in planarians. III. that 
neoblasts are totipotent stem cells and the cells. Development 107, 77–86.

Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, O’Donnell TA, Brierley SM, Ingraham HA, 
and Julius D (2017). Enterochromaffin cells are gut chemosensors that couple to sensory neural 
pathways. Cell 170, 185–198.e16. [PubMed: 28648659] 

Benazzi M, and Benazzi LG (1976). Platyhelminthes. In Animal Cytogenetics, Bernard J, ed. 
(Gebrüder Borntraeger), pp. 1–182.

Berninger J (1911). Über die Einwirkung des Hungers auf Planarien. Zool. Jahrb 30, 181–216.

Bertho S, Pasquier J, Pan Q, Le Trionnaire G, Bobe J, Postlethwait JH, Pailhoux E, Schartl M, Herpin 
A, and Guiguen Y (2016). Foxl2 and its relatives are evolutionary conserved players in gonadal sex 
differentiation. Sex Dev. 10, 111–129. [PubMed: 27441599] 

Beverdam A, and Koopman P (2006). Expression profiling of purified mouse gonadal somatic cells 
during the criticial time window of sex determination reveals novel candidate genes for human 
sexual dysgenesis syndromes. Hum. Mol. Genet 15, 417–431. [PubMed: 16399799] 

Bonnin A, Goeden N, Chen K, Wilson ML, King J, Shih JC, Blakely RD, Deneris ES, and Levitt 
P (2011). A transient placental source of serotonin for the fetal forebrain. Nature 472, 347–350. 
[PubMed: 21512572] 

Khan and Newmark Page 17

Cell Rep. Author manuscript; available in PMC 2022 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bray SJ (2006). Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol 7, 
678–689. [PubMed: 16921404] 

Byrd DT, and Kimble J (2009). Scratching the niche that controls Caenorhabditis elegans germline 
stem cells. Semin. Cell Dev. Biol 20, 1107–1113. [PubMed: 19765664] 

Campbell KH, McWhir J, Ritchie WA, and Wilmut I (1996). Sheep cloned by nuclear transfer from a 
cultured cell line. Nature 380, 64–66. [PubMed: 8598906] 

Cebrià F, and Newmark PA (2005). Planarian homologs of netrin and netrin receptor are required 
for proper regeneration of the central nervous system and the maintenance of nervous system 
architecture. Development 132, 3691–3703. [PubMed: 16033796] 

Chong T, Collins JJ 3rd, Brubacher JL, Zarkower D, and Newmark PA (2013). A sex-specific 
transcription factor controls male identity in a simultaneous hermaphrodite. Nat. Commun 4, 1814. 
[PubMed: 23652002] 

Clément-Ziza M, Munnich A, Lyonnet S, Jaubert F, and Besmond C (2008). Stabilization of RNA 
during laser capture microdissection by performing experiments under argon atmosphere or using 
ethanol as a solvent in staining solutions. RNA 14, 2698–2704. [PubMed: 18945804] 

Collins JJ 3rd, and Newmark PA (2013). It’s no fluke: the planarian as a model for understanding 
schistosomes. PLOS Pathog. 9, e1003396. [PubMed: 23874195] 

Collins JJ 3rd, Hou X, Romanova EV, Lambrus BG, Miller CM, Saberi A, Sweedler JV, and Newmark 
PA (2010). Genome-wide analyses reveal a role for peptide hormones in planarian germline 
development. PLOS Biol. 8, e1000509. [PubMed: 20967238] 

Côté F, Fligny C, Bayard E, Launay J-M, Gershon MD, Mallet J, and Vodjdani G (2007). Maternal 
serotonin is crucial for murine embryonic development. Proc. Natl. Acad. Sci. U S A 104, 329–
334. [PubMed: 17182745] 

Crisponi L, Deiana M, Loi A, Chiappe F, Uda M, Amati P, Bisceglia L, Zelante L, Nagaraja R, Porcu 
S, et al. (2001). The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/
ptosis/epicanthus inversus syndrome. Nat. Genet 27, 159–166. [PubMed: 11175783] 

Currie KW, and Pearson BJ (2013). Transcription factors lhx1/5-1 and pitx are required for the 
maintenance and regeneration of serotonergic neurons in planarians. Development 140, 3577–
3588. [PubMed: 23903188] 

Cuthbertson BJ, Liao Y, Birnbaumer L, and Blackshear PJ (2008). Characterization of zfs1 as an 
mRNA-binding and -destabilizing protein in Schizo-saccharomyces pombe. J. Biol. Chem 283, 
2586–2594. [PubMed: 18042546] 

Davies EL, Lei K, Seidel CW, Kroesen AE, McKinney SA, Guo L, Robb SM, Ross EJ, Gotting K, and 
Sánchez Alvarado A (2017). Embryonic origin of adult stem cells required for tissue homeostasis 
and regeneration. eLife 6, e21052. [PubMed: 28072387] 

Dubé F, and Amireault P (2007). Local serotonergic signaling in mammalian follicles, oocytes and 
early embryos. Life Sci. 81, 1627–1637. [PubMed: 18023821] 

Dumdie JN, Cho K, Ramaiah M, Skarbrevik D, Mora-Castilla S, Stumpo DJ, Lykke-Andersen J, 
Laurent LC, Blackshear PJ, Wilkinson MF, et al. (2018). Chromatin modification and global 
transcriptional silencing in the oocyte mediated by the mRNA decay activator ZFP36L2. Dev. Cell 
44, 392–402.e7. [PubMed: 29408237] 

Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, and 
Liotta LA (1996). Laser capture microdissection. Science 274, 998–1001. [PubMed: 8875945] 

Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, Geho DH, Petricoin EF 
3rd, and Liotta LA (2006). Laser-capture microdissection. Nat. Protoc 1, 586–603. [PubMed: 
17406286] 

Fincher CT, Wurtzel O, de Hoog T, Kravarik KM, and Reddien PW (2018). Cell type transcriptome 
atlas for the planarian Schmidtea mediterranea. Science 360, eaaq1736. [PubMed: 29674431] 

Fischlschweiger W (1991). Ultrastructure of the seminal receptacle, ovovitelline duct, and yolk-funnel 
cell of Dugesia tigrina (Platyhelminthes: Tricladida). Trans. Am. Microscopical Soc 110, 300–314.

Fischlschweiger W (1994). Ultrastructure of the reproductive system of Cura foremanii 
(Platyhelminthes: Tricladida). Trans. Am. Microsc. Soc 113, 1–14.

Forsthoefel DJ, Cejda NI, Khan UW, and Newmark PA (2020). Cell-type diversity and regionalized 
gene expression in the planarian intestine. eLife 9, e52613. [PubMed: 32240093] 

Khan and Newmark Page 18

Cell Rep. Author manuscript; available in PMC 2022 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Georges A, Auguste A, Bessière L, Vanet A, Todeschini A-L, and Veitia RA (2014). FOXL2: a central 
transcription factor of the ovary. J. Mol. Endocrinol 52, R17–R33. [PubMed: 24049064] 

Gremigni V, and Falleni A (1998). Characters of the female gonad and the phylogeny of 
Platyhelminthes. Hydrobiologia 383, 235–242.

Gremigni V, and Nigro M (1983). An ultrastructural study of oogenesis in a marine triclad. Tissue Cell 
15, 405–415. [PubMed: 6684334] 

Gremigni V, Miceli C, and Puccinelli I (1980a). On the role of germ cells in planarian regeneration. I. 
A karyological investigation. J. Embryol. Exp. Morphol 55, 53–63. [PubMed: 7373204] 

Gremigni V, Miceli C, and Picano E (1980b). On the role of germ cells in planarian regeneration. 
II. Cytophotometric analysis of the nuclear Feulgen-DNA content in cells of regenerated somatic 
tissues. J. Embryol. Exp. Morphol 55, 65–76. [PubMed: 6989946] 

Gu Z, Eils R, and Schlesner M (2016). Complex heatmaps reveal patterns and correlations in 
multidimensional genomic data. Bioinformatics 32, 2847–2849. [PubMed: 27207943] 

Guo T, Peters AHFM, and Newmark PA (2006). A Bruno-like gene is required for stem cell 
maintenance in planarians. Dev. Cell 11, 159–169. [PubMed: 16890156] 

Gurdon JB (1962). Adult frogs derived from the nuclei of single somatic cells. Dev. Biol 4, 256–273. 
[PubMed: 13903027] 

Handberg-Thorsager M, and Saló E (2007). The planarian nanos-like gene Smednos is expressed in 
germline and eye precursor cells during development and regeneration. Dev. Genes Evol 217, 
403–411. [PubMed: 17390146] 

Harrath AH, Alwasal SH, Alhazza I, Zghal F, and Tekaya S (2011). [An ultrastructural study of 
oogenesis in the planarian Schmidtea mediterranea (Platyhelminthe, Paludicola)]. C. R. Biol 334, 
516–525. [PubMed: 21784361] 

Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, 
Nakashima K, Saitou M, et al. (2016). Reconstitution in vitro of the entire cycle of the mouse 
female germ line. Nature 539, 299–303. [PubMed: 27750280] 

Hyman LH (1951). The Invertebrates, Vol II: Platyhelminthes and Rhynchocoela (McGraw-Hill Book 
Company Inc.).

Issigonis M, and Newmark PA (2019). From worm to germ: germ cell development and regeneration 
in planarians. Curr. Top. Dev. Biol 135, 127–153. [PubMed: 31155357] 

Issigonis M, Redkar AB, Rozario T, Khan UW, Mejia-Sanchez R, Lapan SW, Reddien PW, 
and Newmark PA (2021). Krüppel-like factor 4 is required for development and regeneration 
of germline and yolk cells from somatic stem cells in planarians. Preprint at bioRxiv. 
10.1101/2021.11.08.467675.

Kanoh J, Sugimoto A, and Yamamoto M (1995). Schizosaccharomyces pombe zfs1+ encoding a 
zinc-finger protein functions in the mating pheromone recognition pathway. Mol. Biol. Cell 6, 
1185–1195. [PubMed: 8534915] 

Kao D, Felix D, and Aboobaker A (2013). The planarian regeneration transcriptome reveals a shared 
but temporally shifted regulatory program between opposing head and tail scenarios. BMC 
Genom. 14, 797.

Kiger AA, White-Cooper H, and Fuller MT (2000). Somatic support cells restrict germline stem cell 
self-renewal and promote differentiation. Nature 407, 750–754. [PubMed: 11048722] 

Kimble JE, and White JG (1981). On the control of germ cell development in Caenorhabditis elegans. 
Dev. Biol 81, 208–219. [PubMed: 7202837] 

King RS, and Newmark PA (2013). In situ hybridization protocol for enhanced detection of gene 
expression in the planarian Schmidtea mediterranea. BMC Dev. Biol 13, 8. [PubMed: 23497040] 

Korta DZ, and Hubbard EJA (2010). Soma-germline interactions that influence germline proliferation 
in Caenorhabditis elegans. Dev. Dyn 239, 1449–1459. [PubMed: 20225254] 

Kulkarni A, Lopez DH, and Extavour CG (2020). Shared cell biological functions may underlie 
pleiotropy of molecular interactions in the germ lines and nervous systems of animals. Front. Ecol. 
Evol 8, 215.

Lacar B, Linker SB, Jaeger BN, Krishnaswami SR, Barron JJ, Kelder MJE, Parylak SL, Paquola 
ACM,Venepally P, Novotny M, et al. (2016). Nuclear RNA-seq of single neurons reveals 
molecular signatures of activation. Nat. Commun 7, 11022. [PubMed: 27090946] 

Khan and Newmark Page 19

Cell Rep. Author manuscript; available in PMC 2022 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lapan SW, and Reddien PW (2012). Transcriptome analysis of the planarian eye identifies ovo as a 
specific regulator of eye regeneration. Cell Rep. 2, 294–307. [PubMed: 22884275] 

Li R, and Albertini DF (2013). The road to maturation: somatic cell interaction and self-organization 
of the mammalian oocyte. Nat. Rev. Mol. Cell Biol 14, 141–152. [PubMed: 23429793] 

Lv J, and Liu F (2017). The role of serotonin beyond the central nervous system during 
embryogenesis. Front. Cell. Neurosci 11, 74. [PubMed: 28348520] 

März M, Seebeck F, and Bartscherer K (2013). A Pitx transcription factor controls the establishment 
and maintenance of the serotonergic lineage in planarians. Development 140, 4499–4509. 
[PubMed: 24131630] 

Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, and Zarkower D (2011). 
DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476, 101–104. 
[PubMed: 21775990] 

Matsuda M, Imaoka T, Vomachka AJ, Gudelsky GA, Hou Z, Mistry M, Bailey JP, Nieport KM, 
Walther DJ, Bader M, et al. (2004). Serotonin regulates mammary gland development via an 
autocrine-paracrine loop. Dev. Cell 6, 193–203. [PubMed: 14960274] 

Morgan TH (1901). Growth and regeneration in Planaria lugubris. Arch. Entw. Mech. Org 13, 179–
212.

Mortazavi A, Williams BA, McCue K, Schaeffer L, and Wold B (2008). Mapping and quantifying 
mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628. [PubMed: 18516045] 

Murray SM, Yang SY, and Van Doren M (2010). Germ cell sex determination: a collaboration between 
soma and germline. Curr. Opin. Cell Biol 22, 722–729. [PubMed: 21030233] 

Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, and Snyder M (2008). The 
transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–
1349. [PubMed: 18451266] 

Navarro FJ, Chakravarty P, and Nurse P (2017). Phosphorylation of the RNA-binding protein Zfs1 
modulates sexual differentiation in fission yeast. J. Cell Sci 130, 4144–4154. [PubMed: 29084823] 

Newmark PA, Wang Y, and Chong T (2008). Germ cell specification and regeneration in planarians. 
Cold Spring Harb. Symp. Quant. Biol 73, 573–581. [PubMed: 19022767] 

Nieuwkoop PD, and Sutasurya LA (1979). Primordial Germ Cells in the Chordates: Embryogenesis 
and Phylogenesis (Cambridge University Press).

Nieuwkoop PD, and Sutasurya LA (1981). Primordial Germ Cells in the Invertebrates: From 
Epigenesis to Preformation (Cambridge University Press).

Niu W, and Spradling AC (2020). Two distinct pathways of pregranulosa cell differentiation support 
follicle formation in the mouse ovary. Proc. Natl. Acad. Sci. U S A 117, 20015–20026. [PubMed: 
32759216] 

Paulmann N, Grohmann M, Voigt J-P, Bert B, Vowinckel J, Bader M, Skelin M, Jevsek M, Fink 
H, Rupnik M, et al. (2009). Intracellular serotonin modulates insulin secretion from pancreatic 
beta-cells by protein serotonylation. Plos Biol. 7, e1000229. [PubMed: 19859528] 

Raz AA, Wurtzel O, and Reddien PW (2021). Planarian stem cells specify fate yet retain potency 
during the cell cycle. Cell Stem Cell 28, 1307–1322.e5. [PubMed: 33882291] 

Reddien PW (2018). The cellular and molecular basis for planarian regeneration. Cell 175, 327–345. 
[PubMed: 30290140] 

Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, and Sánchez Alvarado A (2005). SMEDWI-2 
is a PIWI-like protein that regulates planarian stem cells. Science 310, 1327–1330. [PubMed: 
16311336] 

Reik W, and Surani MA (2015). Germline and pluripotent stem cells. Cold Spring Harb. Perspect. Bio 
7, a019422. [PubMed: 26525151] 

Robb SMC, Gotting K, Ross E, and Sánchez Alvarado A (2015). SmedGD 2.0: the Schmidtea 
mediterranea genome database. Genesis 53, 535–546. [PubMed: 26138588] 

Roshchina VV (2016). New trends and perspectives in the evolution of neurotransmitters in microbial, 
plant, and animal cells. Adv. Exp. Med. Biol 874, 25–77. [PubMed: 26589213] 

Khan and Newmark Page 20

Cell Rep. Author manuscript; available in PMC 2022 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rouhana L, Weiss JA, Forsthoefel DJ, Lee H, King RS, Inoue T, Shibata N, Agata K, and Newmark 
PA (2013). RNA interference by feeding in vitro-synthesized double-stranded RNA to planarians: 
methodology and dynamics. Dev. Dyn 242, 718–730. [PubMed: 23441014] 

Rouhana L, Tasaki J, Saberi A, and Newmark PA (2017). Genetic dissection of the planarian 
reproductive system through characterization of Schmidtea mediterranea CPEB homologs. Dev. 
Biol 426, 43–55. [PubMed: 28434803] 

Rozanski A, Moon H, Brandl H, Martín-Durán JM, Grohme MA, Hüttner K, Bartscherer K, Henry I, 
and Rink JC (2019). PlanMine 3.0-improvements to a mineable resource of flatworm biology and 
biodiversity. Nucleic Acids Res. 47, D812–D820. [PubMed: 30496475] 

Saberi A, Jamal A, Beets I, Schoofs L, and Newmark PA (2016). GPCRs direct germline development 
and somatic gonad function in planarians. PLOS Biol. 14, e1002457. [PubMed: 27163480] 

Sánchez Alvarado A, Newmark PA, Robb S, and Juste R (2002). The Schmidtea mediterranea database 
as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development 
129, 5659–5665. [PubMed: 12421706] 

Salvetti A, Rossi L, Lena A, Batistoni R, Deri P, Rainaldi G, Locci MT, Evangelista M, and 
Gremigni V (2005). DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell 
maintenance. Development 132, 1863–1874. [PubMed: 15772127] 

Sarkar A, Mukundan N, Sowndarya S, Dubey VK, Babu R, Lakshmanan V, Rangiah K, Panicker MM, 
Palakodeti D, Subramanian SP, et al. (2019). Serotonin is essential for eye regeneration in planaria 
Schmidtea mediterranea. FEBS Lett. 593, 3198–3209. [PubMed: 31529697] 

Sasidharan V, Marepally S, Elliott SA, Baid S, Lakshmanan V, Nayyar N, Bansal D, Sánchez Alvarado 
A, Vemula PK, and Palakodeti D (2017).The miR-124 family of microRNAs is crucial for 
regeneration of the brain and visual system in the planarian Schmidtea mediterranea. Development 
144, 3211–3223. [PubMed: 28807895] 

Sato K, Shibata N, Orii H, Amikura R, Sakurai T, Agata K, Kobayashi S, and Watanabe K (2006). 
Identification and origin of the germline stem cells as revealed by the expression of nanos-related 
gene in planarians. Dev. Growth Differ 48, 615–628. [PubMed: 17118016] 

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, 
Saalfeld S, Schmid B, et al. (2012). Fiji: an open-source platform for biological-image analysis. 
Nat. Methods 9, 676–682. [PubMed: 22743772] 

Schmidt D, Ovitt CE, Anlag K, Fehsenfeld S, Gredsted L, Treier A-C, and Treier M (2004). The 
murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and 
ovary maintenance. Development 131, 933–942. [PubMed: 14736745] 

Schultz E (1904). Uber reduktionen. I. Uber Hungerserscheinungen bei Planaria lactea. Arch. Entwm 
18, 555–577.

Sekii K, Yorimoto S, Okamoto H, Nagao N, Maezawa T, Matsui Y, Yamaguchi K, Furukawa 
R, Shigenobu S, and Kobayashi K (2019). Transcriptomic analysis reveals differences in the 
regulation of amino acid metabolism in asexual and sexual planarians. Sci. Rep 9, 6132. [PubMed: 
30992461] 

Seydoux G, and Braun RE (2006). Pathway to totipotency: lessons from germ cells. Cell 127, 891–
904. [PubMed: 17129777] 

Shah SP, Köbel M, Senz J, Morin RD, Clarke BA, Wiegand KC, Leung G, Zayed A, Mehl E, Kalloger 
SE, et al. (2009). Mutation of FOXL2 in granulosa-cell tumors of the ovary. N. Engl. J. Med 360, 
2719–2729. [PubMed: 19516027] 

Shi J, Jin Z, Yu Y, Zhang Y, Yang F, Huang H, Cai T, and Xi R (2021). A progressive somatic cell 
niche regulates germline cyst differentiation in the Drosophila ovary. Curr. Biol 31, 840–852.e5. 
[PubMed: 33340458] 

Shibata N, Umesono Y, Orii H, Sakurai T, Watanabe K, and Agata K (1999). Expression of vasa(vas)-
related genes in germline cells and totipotent somatic stem cells of planarians. Dev. Biol 206, 
73–87. [PubMed: 9918696] 

Simon J-C, Delmotte F, Rispe C, and Crease T (2003). Phylogenetic relationships between 
parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol. J. 
Linn. Soc. Lond 79, 151–163.

Khan and Newmark Page 21

Cell Rep. Author manuscript; available in PMC 2022 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Solana J, Lasko P, and Romero R (2009). Spoltud-1 is a chromatoid body component required for 
planarian long-term stem cell self-renewal. Dev. Biol 328,410–421. [PubMed: 19389344] 

Tu R, Duan B, Song X, Chen S, Scott A, Hall K, Blanck J, DeGraffenreid D, Li H, Perera A, 
et al. (2021). Multiple niche compartments orchestrate stepwise germline stem cell progeny 
differentiation. Curr. Biol 31, 827–839.e3. [PubMed: 33357404] 

Uda M, Ottolenghi C, Crisponi L, Garcia JE, Deiana M, Kimber W, Forabosco A, Cao A, Schlessinger 
D, and Pilia G (2004). Foxl2 disruption causes mouse ovarian failure by pervasive blockage of 
follicle development. Hum. Mol. Genet 13, 1171–1181. [PubMed: 15056605] 

Uhlenhaut NH, and Treier M (2011). Forkhead transcription factors in ovarian function. Reproduction 
142, 489–495. [PubMed: 21810859] 

Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, Treier A-C, Klugmann C, Klasen 
C, Holter NI, et al. (2009). Somatic sex reprogramming of adult ovaries to testes by FOXL2 
ablation. Cell 139, 1130–1142. [PubMed: 20005806] 

Wagner DE, Wang IE, and Reddien PW (2011). Clonogenic neoblasts are pluripotent adult stem cells 
that underlie planarian regeneration. Science 332, 811–816. [PubMed: 21566185] 

Wakayama T, Perry AC, Zuccotti M, Johnson KR, and Yanagimachi R (1998). Full-term development 
of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374. 
[PubMed: 9690471] 

Wang Y, Zayas RM, Guo T, and Newmark PA (2007). Nanos function is essential for development and 
regeneration of planarian germ cells. Proc. Natl. Acad. Sci. U S A 104, 5901–5906. [PubMed: 
17376870] 

Wang Y, Stary JM, Wilhelm JE, and Newmark PA (2010). A functional genomic screen in planarians 
identifies novel regulators of germ cell development. Genes Dev. 24, 2081–2092. [PubMed: 
20844018] 

Weiger WA (1997). Serotonergic modulation of behaviour: a phylogenetic overview. Biol. Rev. Camb. 
Philos. Soc 72, 61–95. [PubMed: 9116165] 

Wells ML, Perera L, and Blackshear PJ (2017). An ancient family of RNA-binding proteins: still 
important!. Trends Biochem. Sci 42, 285–296. [PubMed: 28096055] 

Wu YE, Pan L, Zuo Y, Li X, and Hong W (2017). Detecting activated cell populations using single-cell 
RNA-seq. Neuron 96, 313–329.e6. [PubMed: 29024657] 

Xie T, Song X, Jin Z, Pan L, Weng C, Chen S, and Zhang N (2008). Interactions between stem 
cells and their niche in the Drosophila ovary. Cold Spring Harb. Symp. Quant. Biol 73, 39–47. 
[PubMed: 19022749] 

Yamamoto K, and Vernier P (2011). The evolution of dopamine systems in chordates. Front. 
Neuroanat 5, 21. [PubMed: 21483723] 

Zayas RM, Hernández A, Habermann B, Wang Y, Stary JM, and Newmark PA (2005). The planarian 
Schmidtea mediterranea as a model for epigenetic germ cell specification: analysis of ESTs from 
the hermaphroditic strain. Proc. Natl. Acad. Sci. U S A 102, 18491–18496. [PubMed: 16344473] 

Zeng A, Li H, Guo L, Gao X, McKinney S, Wang Y, Yu Z, Park J, Semerad C, Ross E, et al. (2018). 
Prospectively isolated Tetraspanin+ neoblasts are adult pluripotent stem cells underlying planaria 
regeneration. Cell 173, 1593–1608.e20. [PubMed: 29906446] 

Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, Xie M, Liu M, Guo X, Zheng Y, et al. (2016). 
Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18, 
330–340. [PubMed: 26923202] 

Khan and Newmark Page 22

Cell Rep. Author manuscript; available in PMC 2022 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Laser-capture microdissection generated planarian gonad-specific 

transcriptomes

• Identified transcripts defining female germ cells and somatic ovarian cells

• Defined functional roles for conserved somatic gonadal genes in ovary 

regeneration

• Implicated somatically derived monoamines in male and female germ cell 

development
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Figure 1. Ovary transcriptome reveals progressive stages of female germ cell development
(A) Reproductive system of the sexual strain of S. mediterranea.

(B) LCM-RNA-seq approach to generate gonadal transcriptomes.

(C) Hierarchical clustering of genes with significantly enriched expression in ovaries, testes, 

or both.

(D) Representative whole-mount RNA in situ hybridizations (WISH) to detect candidate 

ovary-enriched transcripts.
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(E) Double fluorescent RNA in situ hybridization (FISH) to detect klf4 and lecg reveals a 

field of klf4+ cells anterior to the ovary.

(F) FISH to detect lecg and ubp8, revealing expression in oocytes. Smaller, immature 

oocytes (white arrows) are observed at the periphery of the ovary; larger, mature oocytes 

(yellow arrows) reside internally, proximal to the tuba (fertilization duct; asterisks).

(G) FISH to detect gwîn and klf4 or lecg shows gwîn expression in klf4+ cells anterior to 

the ovary (i) and at the margin of the ovary (ii). Co-expression of gwîn with lecg is observed 

in oocytes (iii). klf4+gwîn+ cells are presumptive female germ cell progenitors (FGPs) that 

differentiate into gwîn+lecg+ oocytes within the ovary. Nuclei are labeled with DAPI. Scale 

bars: (D) 500 μm, insets 200 μm; (E) 100 μm; (F) 50 μm; (G) 100 μm, insets 10 μm. See also 

Figures S1 and S2.
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Figure 2. FGPs express markers associated with a pluripotent neoblast subpopulation
(A) FISH to detect gwîn and the neoblast marker, piwi-1. Expression of piwi-1 is maintained 

from neoblasts (i) into FGPs (ii) and oocytes (iii).

(B) FISH to detect tgs-1 with klf4 and gwîn. tgs-1 marks a pluripotent subset of neoblasts 

and is enriched in FGPs.

(C and D) WISH to detect gwîn sexuals (C) and asexuals (D) during homeostasis (uncut) 

and 72 h post-amputation (hpa) or-wounding (hpw). gwîn is upregulated at wound sites in 

both sexuals and asexuals.
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(E and F) FISH to detect gwîn and piwi-1 in asexuals during homeostasis (E) and 72 hpa (F), 

shows upregulation of gwîn in neoblasts at wound sites after amputation. Scale bars: (A and 

B) 100 μm, insets 10 μm; (C and D) 500 μm; (E and F) 10 μm. See also Figures S3 and S4.
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Figure 3. Characterization of somatic ovarian cells
(A–C) FISH to detect delta3 (A), foxL (B), ece1 (C), and pooled probes for klf4 (FGPs) 

and lecg (oocytes) shows expression of these transcripts in non-germ-cell populations of the 

ovary.

(D) ophis+ ovarian somatic cells co-express delta3.

(E and F) delta3+ somatic support cells co-express foxL (E) and ece1 (F).

(G) FISH to detect ece1 and foxL reveals heterogeneity in gene expression within somatic 

ovarian cells: (i) ece1low foxLhigh cells are located proximal to the tuba and (ii) ece1high 
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foxLlow cells are located distal to the tuba. Arrowheads indicate ectopic ovaries often found 

in large sexual worms.

(H) Schematic depicting marker gene expression in somatic ovarian cells and associated 

reproductive structures (tuba and oviduct). Asterisks indicate tuba. Scale bars: 50 μm. See 

also Figure S5.
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Figure 4. Ovarian somatic cells are essential for female germ cell development
(A) Regeneration assay for RNAi-mediated gene knockdown: sexually mature planarians 

were fed double-stranded RNA (dsRNA) corresponding to the target gene four times over 

2 weeks. Then, the heads were amputated posterior to the ovaries and discarded; after head 

regeneration in tail fragments, eight dsRNA feedings were performed for 4 weeks before 

fixing the animals for further analysis.

(B) FISH to detect klf4 and lecg in control(RNAi) and foxL(RNAi) worms.
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(C) Quantification of klf4+ FGPs and lecg+ oocytes in control(RNAi) and foxL(RNAi) 
worms (mean with 95% confidence interval; ns, not significant).

(D) FISH to detect klf4 and lecg in control(RNAi), delta3(RNAi), notch2(RNAi), and 

notch4(RNAi) worms.

(E) Quantification of klf4+ FGPs and lecg+ oocytes in control(RNAi), delta3(RNAi), 
notch2(RNAi), and notch4(RNAi) worms (mean with 95% confidence interval; ns, not 

significant).

(F) Density plot of klf4+ FGPs in control(RNAi), delta3(RNAi), notch2(RNAi), and 

notch4(RNAi) worms. The brain lobe and tuba were used to define the relative position 

of cells.

(G) Double FISH for notch2 or notch4 with the somatic marker delta3. Asterisks indicate 

tuba. Scale bars: 100 μm. See also Figure S5.
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Figure 5. Female-specific role of zfs1 in germ cell regeneration
(A) zfs1 expression is enriched in the ovary versus testis and non-gonadal transcriptomes 

(mean ± SD).

(B) WISH to detect zfs1 reveals expression in the ovary and cells anterior to the ovary 

(ventral view). Dorsal view shows no detectable zfs1 expression in the testes.

(C) Double FISH to detect zfs1 and gwîn shows zfs1 expression in gwîn+ FGPs anterior to 

the ovary (i) and oocytes within the ovary (ii).

(D) FISH to detect klf4+ FGPs and lecg+ oocytes in control(RNAi) and zfs1(RNAi) worms.
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(E) Quantification of klf4+ FGPs and lecg+ oocytes in control(RNAi) and zfs1(RNAi) 
worms.

(F) FISH to detect klf4 (early male germ cells) in testes of control(RNAi) and zfs1(RNAi) 
worms.

(G) FISH to detect delta3 (somatic ovarian cells) and gwîn (female germline) in 

control(RNAi), zfs1(RNAi), and klf4(RNAi) worms.

(H) Quantification of delta3+ support cells in control(RNAi), zfs1(RNAi), and klf4(RNAi) 
worms. (E and H): means with 95% confidence intervals. Scale bars: (B) 500 μm; (C–F) 100 

μm. See also Figure S6.
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Figure 6. Opposing roles of AADC in female and male germ cell regeneration
(A) Expression of aadc (aromatic L-amino acid decarboxylase) is detected in the planarian 

reproductive system: (i) ovaries, (ii) testes, and (iii) vitellaria.

(B) FISH to detect aadc and ovarian somatic markers (delta3, ece1, and foxL): aadc 
transcripts are enriched in the distal ece1high foxLlow ovarian somatic cells.

(C) FISH to detect aadc and testis somatic marker (ophis) indicates aadc expression in testis 

somatic support cells.

(D and E) Immunostaining for AADC protein in testes (D) and ovaries (E).
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(F) FISH to detect klf4+ FGPs and lecg+ oocytes in control(RNAi) and aadc(RNAi) worms.

(G) FISH for delta3 to mark somatic ovarian cells in control and aadc(RNAi) worms.

(H and I) FISH to detect klf4 (H) and nanos (I), labeling early male germ cells in testes of 

control(RNAi) and aadc(RNAi) worms.

(J) FISH for ophis to mark testis somatic support cells in control and aadc(RNAi) worms.

(K–N) Quantification of klf4+ FGPs and lecg+ oocytes (K); delta3+ ovarian support cells 

(L); klf4+ early male germ cells (M); and ophis+ male somatic cells (N), in control(RNAi) 
and aadc(RNAi) worms. Means with 95% confidence intervals; ns, not significant. Asterisks 

in (B) and (E) indicate tuba. Scale bars: (A and H) 500 μm; (B–E, J) 50 μm; (F, G, and I) 

100 μm. See also Figure S7.
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Figure 7. Schematic of planarian female germ cell differentiation and the roles of somatic 
gonadal cells
(i) Neoblasts specialize into FGPs antero-ventrally toward the base of the brain. FGPs 

around the margin of the ovary differentiate peripherally into oocytes that mature 

and move internally toward the tuba. Gene expression at distinct stages of female 

germ cell differentiation is indicated to the left. Expression of female-specific zfs1 
reveals early and spatially restricted specification of germ cell sex in a simultaneous 

hermaphrodite. (ii) Somatic ovarian cells are closely associated with germ cells and display 

spatial heterogeneity in gene expression. Tuba-distal aadc+ somatic cells are required 
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for regeneration of the female germ cells, whereas foxL+ tuba-proximal cells regulate 

oocyte development, suggesting distinct functional domains within the ovarian somatic 

compartment. (iii) Loss of female germ cells triggers an expansion of ovarian somatic cells, 

suggesting that feedback from female germ cells regulates support cell numbers.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Digoxigenin-POD, Fab fragments (sheep polyclonal) Roche Cat: 11207733910 RRID: AB_514500

Anti-Dinitrophenyl-HRP (rabbit polyclonal) Vector Laboratories Custom made

Anti-Fluorescein-POD, Fab fragments (sheep polyclonal) Roche Cat: 11426346910 RRID: AB_840257

Anti-phospho-Histone H3 (Ser10) (rabbit monoclonal) Millipore Sigma Cat: 05-817R-I; RRID: AB_11215621)

Anti-SmedAADC (rabbit polyclonal) This paper N/A

Peroxidase AffiniPure Goat Anti-Rabbit IgG (H+L) Jackson ImmunoResearch Laboratories Cat: 111-035-003 RRID: AB_2313567

Alkaline Phosphatase AffiniPure Goat Anti-Rabbit IgG 
(H+L)

Jackson ImmunoResearch Laboratories Cat: 111-055-144 RRID: AB_2337953

Bacterial and virus strains

DH5-alpha Thermo Fisher Cat: EC0112

Chemicals, peptides, and recombinant proteins

Alcoholic Eosin Y Sigma Aldrich Cat: HT110116

Cresyl Violet Acetate Sigma Aldrich Cat: C5042

Critical commercial assays

PEN membrane glass slides Thermo Fisher Cat: LCM0522

Capsure HS LCM caps Thermo Fisher Cat: LCM0214

PicoPure RNA Isolation Kit Thermo Fisher Cat: KIT0204

Deposited data

Raw and analyzed data This paper GEO: GSE191229

Experimental models: Organisms/strains

Schmidtea mediterranea, Sexual strain Zayas et al., 2005 N/A

Schmidtea mediterranea, Asexual clonal strain CIW4 Sánchez Alvarado et al., 2002 N/A

Oligonucleotides

Sequences used for probes and dsRNA This Paper Table S2

Recombinant DNA

Plasmid: pJC53.2 Collins et al., 2010 Cat: 26536 RRID: Addgene_26536

Software and algorithms

CLC Genomics Workbench Qiagen RRID: SCR_011853

R Studio RStudio RRID: SCR_000432

Complex Heatmaps Gu et al., 2016 N/A

Zen ZEISS RRID: SCR_013672

GraphPad Prism GraphPad Software RRID: SCR_002798

Fiji Schindelin et al., 2012 RRID: SCR_002285

Imaris Oxford Instruments RRID: SCR_007370

Other

Differential gene expression analysis This paper Table S1

Transcriptome (smed_20140614) Robb et al., 2015 https://planosphere.stowers.org
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REAGENT or RESOURCE SOURCE IDENTIFIER

PlanMine Rozanski et al., 2019 https://planmine.mpibpc.mpg.de
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