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The mammalian target of rapamycin (mTOR) pathway plays an important role in the development of diabetic nephropathy and
other age-related diseases. One of the features of DN is the elevated expression of p21WAF1/CIP1. However, the importance of the
mTOR signalling pathway in p21 regulation is poorly understood. Here we investigated the effect of metformin and rapamycin
on mTOR-related phenotypes in cell lines of epithelial origin. This study reports that metformin inhibits high glucose-induced
p21 expression. High glucose opposed metformin in regulating cell size, proliferation, and protein synthesis. These effects were
associated with reduced AMPK activation, affecting downstreammTOR signalling. However, the inhibition of the mTOR pathway
by rapamycin did not have a negative effect on p21 expression, suggesting that metformin regulates p21 upstream of mTOR. These
findings provide support for the hypothesis that AMPK activation may regulate p21 expression, which may have implications for
diabetic nephropathy and other age-related pathologies.

1. Introduction

There has been a dramatic increase in the prevalence of
diabetes mellitus in recent years [1]. The chronic effects of
diabetes may manifest in macro- and microvascular compli-
cations that are the major causes of morbidity and mortality
in patients with diabetes. Diabetic nephropathy (DN), one of
the microvascular complications, is a leading cause of death
from kidney failure [2, 3]. Apart fromhaemodynamic factors,
hyperglycaemia has been shown to be an underlying cause of
pathogenesis in DN.The damaging effects of hyperglycaemia
have been partly attributed to increased cellular glucose
uptake in cells that are not protected from high ambient
glucose levels. Early cellular changes in the development of
DN include hyperplasia and hypertrophy [4].

Several investigators have associated the expression of
Cip/Kip cyclin-dependent kinase (CDK) inhibitors, p21 and
p27, with glomerular hypertrophy [5–7]. It has been proposed
that p21 and p27 may be involved in hypertrophy indepen-
dently of their cell cycle regulatory properties (Monkawa
2002). Furthermore, the induction of p21 and p27 is also
required for senescent arrest, a molecular signature of hyper-
trophic changes in the early stages of the development of

diabetic kidney disease [8].The fact that p21 null mice do not
develop glomerular hypertrophy supports the importance of
p21 in DN [9].

The activation of the mammalian target of rapamycin
(mTOR), a serine/threonine kinase, plays a pivotal role in
the pathologic forms of hypertrophy in the kidneys [10–
12]. mTOR forms two complexes with distinct functional
and physical properties. These complexes have two differ-
ent scaffolding proteins, raptor and rictor. By interacting
with distinct downstream targets, these scaffolding proteins
connect mTOR to different signalling pathways, resulting in
discrete functional roles [13].

The raptor-mTOR protein complex is rapamycin sensi-
tive; it integrates extracellular and intracellular signals orig-
inating from growth factors, hormones, and nutrients. This
complex plays a key role in regulating the cellular response to
nutrients by phosphorylating the downstream target proteins,
P70S6 Kinase1 (S6K) and initiation factor 4E [14]. Studies
on skeletal muscle cells have shown that, through a negative
feedback mechanism, the activation of the mTOR pathway
may lead to insulin resistance [15]. Furthermore chronic
rapamycin treatment in rats induced the expression of hepatic
gluconeogenic enzymes, which may adversely affect glucose
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levels in a diabetic state [12]. On the other hand, it has
been shown by several investigators that the inhibition of the
mTOR signalling pathway has a therapeutic potential for the
treatment of DN [13, 16].

mTOR is also regulated by AMP-activated protein kinase
(AMPK), a sensor of intracellular AMP levels [17]. Mam-
malian AMPK is a heteromeric complex consisting of one
catalytic subunit 𝛼 and regulatory 𝛽, 𝛾 subunits. Through
a conformational change in the 𝛾 subunit, AMP facili-
tates the phosphorylation of Thr-172 on the 𝛼 subunit
by various upstream kinases, including Ca2+-calmodulin-
dependent kinase 𝛽, TGF-𝛽-activated kinase 1, and LKB1
serine/threonine kinase [18]. AMPK activation has been
generally associated with inhibition of mTOR signalling. The
antidiabetic drug metformin depletes cellular ATP levels by
blocking mitochondrial respiratory complex I. In turn, the
elevated AMP levels induce the activation of AMPK [19].
Nevertheless, it has been suggested that metformin may
activate AMPK through an AMP-independent mechanism
[20]. Although AMPK activation results in the inhibition of
mTOR signalling, recent findings also suggest thatmetformin
may abolish mTOR activation independently of AMPK [17].
Apart from its insulin-sensitising properties, metformin may
have several beneficial effects in various clinical settings [21].

According to clinical studies in both type 1 and type 2
diabetes, longstanding hyperglycaemia is the primary cause
of DN [11, 22]. Several studies have shown that excess
glucose increases cell size in various cell types through the
activation of Akt-mTOR signalling; however, the mechanism
leading to glucose-induced mTOR activation has not been
well defined. It has been suggested that the hypertrophic
changes induced by hyperglycaemia may be the consequence
ofmTORactivation through autocrine TGF-𝛽 signalling [23].
In addition, mTOR activity has also been associated with
increased expression of the glucose transporter 1 (GLUT1) in
mesangial cells [24]. However, saturation of glucose uptake
in mesangial cells has been reported to occur at 30mM,
indicating that hyperglycaemia can induce mTOR in the
absence of increased GLUT1 expression [25].

The aim of this study was to compare the inhibitory
effects of rapamycin and metformin on proliferation and cell
growth in the context of high glucose-inducedAMPK/mTOR
signalling.We have observed differential effects ofmetformin
and rapamycin in several AMPK/mTOR-related aspects with
relevance to dysregulated cell growth and cell cycling in DN.

2. Materials and Methods

2.1. Cell Culture, Treatments, and Transfection. Human
embryonic kidney (HEK293) cell line was maintained in
Minimum Essential Media (Invitrogen) supplemented with
10% FBS, 1% Pen/Strep (Invitrogen), and 1%MEMnonessen-
tial amino acid solution. The cells were cultured at 37∘C in a
95% air/5% CO2 environment and passaged every 3-4 days at
subconfluence.

Conditionally immortalised human podocyte cells (cour-
tesy of Professor Saleem, Bristol) were cultured in RPMI
1640medium containing 11mMD-glucose, 10% foetal bovine

serum 1% Penicillin/Streptomycin. Briefly, the cell line was
generated by isolating podocyte cells from a normal human
kidney specimen and transfectedwith a temperature sensitive
simian virus-40 large T-antigen. The cells proliferate at a
permissive 33∘C, then culturing the cells at 37∘C switches off
T-antigen expression, allowing the cells to assume a native
phenotype. In the experiments, these cells were used under
growth-permissive conditions.

The cells were cultured with different concentrations
of D-glucose (Sigma-Aldrich). Where appropriate, manni-
tol (Sigma-Aldrich) was used to control osmotic effects.
Rapamycin stock solutionswere prepared in 95%ethanol.The
final concentration of ethanol was maintained below 0.1%.
Metformin (Sigma-Aldrich) stock solution was prepared in
phosphate buffered saline (PBS). Stock solutions were filter
sterilized. Vehicle controls were included in each experiment
and exerted no effect on cell viability.

Eight pGIPZ lentiviral shRNA constructs against human
AMP-activated, alpha2 catalytic subunit (PRKAA2), and a
nonsilencing construct were purchased from Open Biosys-
tems. pGIPZ plasmids were stored in bacterial cultures of E.
coli (Prime Plus) in LB Lennox (5 g NaCl/L) with 8% glycerol,
100 𝜇g/mL carbenicillin, and 25𝜇g/mL zeocin. Isolation of
plasmid DNA was done by Plasmid Midi Kit (Qiagen)
according to the protocol supplied by the manufacturer.
Stable cell lines were generated by transfecting HEK293 cells
with 2 𝜇g/mL plasmid DNA in 24 well plates using Arrest-in
Transfection Reagent (Open Biosystems). Selection for stably
transfected cells was done in medium supplied with 8 𝜇g/mL
puromycin.

2.2. Proliferation Assay. The cell suspension was loaded
in 96 well microtitre plates at 1 × 104/mL density and
allowed to grow until 50% confluence when the cells were
exposed to experimental conditions. Cell proliferation was
determined using the Cell Titre96 AQueous Non-Radioactive
Cell Proliferation Assay (Promega).The proliferation assay is
anMTS-basedmethod that spectrophotometricallymeasures
the conversion of tetrazolium salt into a formazan product.
The absorbance of this product was measured at 490 nm by
spectrophotometry. The quantity of this product is directly
proportional to the number of living cells in culture.

2.3. Flow Cytometry. Flow cytometry was performed to anal-
yse cell cycle distribution and cell size in HEK293 cells. After
treatment, the cells were trypsinised and washed with PBS
by centrifuging them twice at 200 g for 5 minutes (min). The
cells for cell cycle analysis were fixed in cold saline GM and
90% ethanol (1 : 3 ratio) and stored at –80∘C. Before analysis,
the cells were centrifuged at 500 g for 5min, resuspended
in FACS buffer (PBS, 2% FCS, 10mM sodium azide), and
treated with 100 𝜇g/mL RNase A (Sigma). DNA was stained
with 50𝜇g/mL propidium iodide (Sigma) for 1 hour (h) at
room temperature (RT), and the percentage of 1 × 104 cells
in the G1/G0, S, and G2/M phases cells was determined. The
cells for cell size analysis were resuspended in FACS buffer
and relative forward side scatter determined on a Becman-
Coulterton Epics XL.MCL flow cytometer running EXPO32
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ADC software (10,000 events). In order to investigate the
viability of the cells, propidium iodide staining was used.
Floating and adherent cells were harvested by trypsinisation,
pelleted by centrifugation at 200 g for five minutes, and then
washed twice with FACS buffer. The pellet was resuspended
in FACS buffer with 20𝜇g/mL propidium iodide, incubated
on ice for 10 minutes, and analysed for dye inclusion on a BD
Accuri C6 flow cytometer.

2.4. Protein Extraction and Western Blotting. Cell proteins
from at least two independent experiments were extracted by
addition of lysis buffer containing 20mM Tris-HCl (pH 7.4),
150mM NaCl, 1mM EDTA, 1% TX100, and 1 tablet/10mL
PhosSTOP Phosphatase Inhibitor (Roche). The suspension
was centrifuged at 14000×g and the supernatant containing
cellular protein was collected. For western blotting, a 12.5%
sodium dodecyl sulphate polyacrylamide gel was run under
standard conditions, loading 25 𝜇g of total protein in each
lane. The gel was placed in transfer buffer and set up for
transfer onto a polyvinylidene fluoride membrane at 250mA
overnight. The membrane was rinsed in Tris-buffered saline
immersed in blocking buffer (2% BSA) for 1 h then incubated
with primary antibodies (P-mTOR Ser2448, P-AMPK𝛼Thr172,
P-S6K Thr389, p21, 1 : 1000, and cell signalling) overnight at
4∘C. After rinsing in wash buffer, the membrane was incu-
bated with horseradish peroxidase-conjugated secondary
antibody (cell signalling) for 1 h at 1 : 5000 dilution at RT. An
enhanced chemiluminescence kit (Amersham) was used for
detection of the bands. In order to control protein loading,
total-mTOR, and 𝛽-actin antibodies were used (1 : 1000, cell
signalling).

2.5. Immunocytochemistry. HEK293 cells were cultured on
glass slides to reach 60% confluence. After exposure to
8mM metformin for 24 h, the cells were fixed with 4%
paraformaldehyde in PBS for 15min at RT. The slides were
washed in PBS, permeabilized, and blocked with 0.2% Triton
X-100, 10% FCS, 125mM L-lysine, and 10% sodium azide
for 30min. The slides were washed and incubated with the
primary antibody at 1 : 400 dilution (p21, cell signalling)
overnight. The cells were rinsed and subsequently incubated
with Alexa Fluor 568 (Invitrogen) goat anti-mouse secondary
antibody at 1 : 500 and DAPI at 1 : 1000 dilutions for 1 h at RT.
The slides were analysed by fluorescent microscopy (Nikon
eclipse 80i microscope and a Nikon digital colour camera).
Controls included the omission of primary antibody.

2.6. Total Protein/Cell Number Ratio. Total protein/cell num-
ber ratio was used to determine whether the alteration of cell
growth in response to high glucose treatment was accompa-
nied by cell hypertrophy. For the experiments, HEK293 cells
were cultured in Minimal Essential Medium. At the end of
the treatment period, the cells were trypsinised and washed
twice with PBS and counted in a haemocytometer chamber.
The cells then were lysed to measure the total protein content
by the BCA protein assay (Thermo Scientific). The total
protein/cell number ratio expressed as 𝜇g/105 cells was used
as a hypertrophy index.

2.7. Data Analysis. All data analyses were performed with
IBM SPSS 19. Data are expressed as means ± SEM. Nor-
mality of distribution was verified by Shapiro-Wilk test and
homogeneity of variance by Levene’s test. Unless otherwise
indicated, statistical significance of differences was calculated
by 𝑡-test or one-way ANOVA. Comparison among groups
was conducted with Tukey’s posthoc test. Differences were
considered significant at 𝑃 < 0.05.

3. Results

3.1. Dose-Response Studies of the Effects of Metformin and
Rapamycin on HEK293 Cell Proliferation. In order to charac-
terise the effects ofmetformin and rapamycin onHEK293 cell
proliferation, a dose-response study was carried out, using
the MTS assay. In other studies the effects of metformin
and rapamycin have already been compared by using the
Alamar blue metabolic assay [26]. The investigators have
found a concentration-dependent difference between the
effects of metformin and rapamycin on proliferation. In
order to test whether their result could be reproduced by
using the MTS assay, the two drugs were used in the same
concentration ranges [26]. The results show that over a
24 h period, metformin and rapamycin inhibited cell growth
in HEK293 cells in a dose-dependent manner (Figure 1).
However, increasing concentrations of metformin inhibited
proliferation in a linear fashion, whereas increasing the
concentration of rapamycin in the range of 10–500 nM did
not cause a significant change in cell proliferation. Although
Zakikhani et al. [26] used lower serum concentration and
longer incubation time; the findings presented here are in
line with their results, showing that the inhibitory effect of
metformin on cell proliferation is concentration-dependent
and, at higher concentrations, more pronounced than that
of rapamycin. Furthermore, 20𝜇M compound C (dorsomor-
phin), a research compound widely used for the inhibition
of AMPK had an opposing effect on metformin-induced
decrease in proliferation.

3.2. HighGlucose-TreatedHEK293Cells Differentially Respond
to Cell Cycle Inhibition by Metformin and Rapamycin. The
purpose of this experiment was to investigate how cell cycling
is affected by metformin and rapamycin treatments, and
whether cell cycle changes are modulated by high glucose
concentration. The effect of metformin on cell growth and
proliferation has been investigated by various cell culture
studies [17, 27, 28]. In these studies metformin was used at a
concentration range of 10–20mM.The use of these relatively
high concentrations of metformin may be attributed to the
low uptake of this drug by immortalised cell lines [21]. In the
context of the inhibition of hepatic gluconeogenesis, the use
of metformin in the millimolar range has been shown to be
physiologically relevant [19]. The inhibitory effect of 8mM
metformin on cell cycle progression has been demonstrated
in a cell culture study of breast cancer cells. In susceptible cells
this concentration caused an approximately 50% reduction in
cell number over a 24 h culture period [29]. As demonstrated
in Figure 1, at 8mM concentration, metformin caused an
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Figure 1: Inhibition of HEK293 cell proliferation by metformin (a) and rapamycin (b). 5000 cells per well were seeded in 96-well plates in
MEM, cultured overnight and then exposed to increasing concentrations of metformin (Met) and rapamycin for 24 h. In combination with
metformin treatments, 20 𝜇Mof compound C (Cc) was used. Cell proliferation was measured by theMTS cell proliferation assay. Composite
results expressed as mean ± SEM of three independent experiments. (a) Mixed ANOVA: within subject effects of metformin concentration
(𝐹 (5, 85) = 52.48 𝑃 < 0.001), between subject effects of combination treatments with compound C 𝐹 (1, 17) = 52.15 𝑃 < 0.001. (b)
∗
𝑃 < 0.05, compared with 100%.

approximately 50% reduction in proliferation, suggesting that
our findingsmay be comparable to earlier studies [29]. In this
experiment metformin was used at 8mM and its effect on
cell cycling was compared to that of rapamycin. The effect of
rapamycin on proliferation has also been studied in vascular
smooth muscle cells. The inhibitory effect of rapamycin on
proliferation has been shown in a range of concentrations (1–
100 ng/mL). It has also been reported that rapamycin did not
affect the viability of cultured cells in this concentration range
[30]. In order to maximise its effect on cell cycling, in this
experiment rapamycin was used at 100 nM.

In cell culture models of diabetes high glucose concentra-
tions range from 25 to 30mM [31]. It has also been shown by
several investigators that after 24 to 72 h high glucose induces
cellular changes implicated in the development of diabetic
nephropathy, including increased protein synthesis, prolifer-
ation, and the expression of TGF-𝛽. In these studies, up to
72 h culture period, high glucose did not have a significant
effect on viability [32–35]. In order to study whether high
glucose influences cell cycling, 30mM D-glucose treatment
was used for 72 h. In order to control the osmotic effects of
high glucose, the normal culture media containing 5.5mM
D-glucose was supplemented with 24.5mM mannitol. This
sugar is widely used for similar research purposes [36–38].

The results of cell cycle analysis show that bothmetformin
and rapamycin increased the percentage of cells in the G0/G1
phase (Figure 2(a)). In comparison, the effect of metformin
on cell cycle inhibition was higher than that of rapamycin.
In the high glucose treated conditions, however, metformin-
induced cell cycle arrest was abrogated. In contrast, high
glucose did not have an effect on rapamycin-induced cell

cycle arrest. The probability that osmotic effects played a role
in the reversal of metformin-induced cell cycle arrest by high
glucose is low, as mannitol at an equimolar concentration
to high glucose, did not influence cell cycling in the same
way. Nevertheless, mannitol treatment caused a significant
decrease in the G2/M phase in the metformin-treated con-
dition. This effect in the mannitol-only condition could not
be observed. Since apoptosis can be induced through G0/G1
arrest, it was important to test whether cell cycle arrest
mediated by metformin and rapamycin could have been
associated with increased apoptosis [39]. To investigate this,
the percentage of pre-G0/G1 cells was measured as described
in the methods. The results indicate that neither metformin
nor rapamycin caused a statistically significant increase in the
percentage of pre-G0/G1 cells (Figure 2(b)).

3.2.1. Cell Cycle Inhibition byMetformin Is AMPK-Dependent.
Metformin is a well described activator of AMPK [40].
HEK293 cells express both the 𝛼1 and 𝛼2 isoforms of AMPK;
however, it is the 𝛼2 subunit that is primarily involved in
AMPK activation induced by reduced ATP synthesis [41].
According to a widely accepted view, the cellular effects
of metformin involve the inhibition of the mitochondrial
electron transport chain; therefore, it was expected that
metformin would exert its effects in an AMPK𝛼2-dependent
manner [21, 42]. In order to investigate the involvement of
AMPK in cell cycle regulation, the alpha2 isoform of AMPK
was knocked down in HEK293 cells by a ShRNA-mediated
approach. AMPK𝛼2 knockdown was validated by measuring
phosphorylation of threonine 172 on both isoforms (𝛼1, 𝛼2)
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Figure 2: (a) High glucose inhibits metformin-induced cell cycle arrest in G0/G1 phase. HEK293 cells were cultured in 5.5mM (Control),
5.5mM D-glucose + 24.5mM mannitol (Man), and 30mM D-glucose (HG) for 3 days. For the last 24 hours, metformin 8mM (Met) or
rapamycin 100 nM (Rap) was added. Representative flow cytometry panels containing data expressed as mean per cent cell cycle distribution
+ SEM. ∗𝑃 < 0.05; ∗∗𝑃 < 0.01; ∗∗∗𝑃 < 0.001, relative to control. (b) Percentage of cells in pre-G0/G1 apoptosis. Data expressed as mean ±
SEM.

of the alpha subunit (Figures 3(a) and 3(b)). In contrast to
the nonsilencing condition, in AMPK𝛼2 knockdown cells
metformin did not induce cell cycle arrest in the G0/G1
phase (Figures 3(c) and 3(d)). AMPK𝛼2 deficiency had a
comparable effect to high glucose treatment in reversing
metformin-induced cell cycle arrest.

3.3. High Glucose Has an Opposing Effect on Cell Size Reduc-
tion Induced by Metformin. Relative to cycling cells, G0/G1
arrested cells have a reduced cell size phenotype [23]. In
order to investigate if cell size measurements correlate with
the cell cycle experiments, the size of HEK293 cells was
measured by flow cytometry.This cell type has been reported
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Figure 3: Metformin does not induce cell cycle arrest in AMPK𝛼2-deficient cells. (a) Representative western blot image showing the effect
of AMPK𝛼2 knockdown, nonsilencing control (NS), knockdown (KD). (b) Densitometry analysis of P-AMPK𝛼 expression (mean ± SEM,
∗
𝑃 < 0.05). (c) Flow cytometry panels representing the effect of AMPK𝛼2 knockdown on cell cycle arrest induced by 8mM metformin

(Met), compared with control (Ctrl). (d) High glucose treatment is comparable to AMPK𝛼2-deficiency. The cells were cultured in 5.5mM
NG, 25mM D-glucose (HG), for 48 h. For the last 24 h, 8mM metformin (Met) was added in the indicated conditions. Data expressed as
mean + SEM. NS 𝑃 > 0.05; ∗∗𝑃 < 0.01, compared with Ctrl.
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Figure 4: (a) High glucose reverses metformin-induced cell size decrease in HEK293 cells. The cells were cultured with 5.5mM (Ctrl) or
30mM D-glucose (HG) for 3 days. For the last 24 h, 8mM metformin or 100 nM rapamycin was added. Cell size was measured by flow
cytometry. (b) AMPK𝛼2-deficiency has no effect on metformin-mediated cell size reduction. The cells were incubated in 5.5 or 25mM (HG)
D-glucose for 3 days. For the last 24 h, metformin 8mM (Met) was added. (c) Compound C reverses metformin-induced cell size reduction.
HEK293 cells were cultured with or without (Ctrl) 8mM Met. At the indicated concentrations, compound C (Cc) was added to the cells
and cocultured with Met for 24 h. The viability of the cells was determined by propidium iodide staining. Vehicle effects of compound C
were controlled by keeping the concentration of DMSO at 0.2% in the conditions. (d) Dose-dependent reversal of metformin-induced cell
cycle arrest by compound C. HEK293 cells were exposed to the experimental conditions described in Figure 4(c). The results are expressed
as mean ± SEM of three independent experiments. ∗𝑃 < 0.05; ∗∗𝑃 < 0.01; #

𝑃 < 0.001.

to have an intrinsic variation in cell size at various stages
of confluence [43]. Nevertheless, in our study no significant
differences were detected in the size of HEK293 cells up to
60% confluence level (data not shown). Metformin caused
approximately 20% decrease in cell size, which was at a
comparable level to the effect of rapamycin (Figure 4(a)). In
the combination conditions with high glucose, the effects of
the drugs on cell size were reversed, with a more pronounced
effect in the metformin-treated condition.

The dependence of metformin on AMPK in cell size
regulation was also investigated. In line with the results
presented in Figure 4(a), metformin caused a decrease in
cell size in the control, nonsilencing condition (Figure 4(b)).
In AMPK𝛼2-deficient cells metformin inhibited cell size to
the same extent as it did in control cells. As expected, high

glucose reversed the effect of metformin on cell size in both
control and AMPK𝛼2-deficient cells. The role of AMPK
was further studied by using compound C. Some reports
have suggested that compound C may promote cell death
through apoptosis [44, 45]. To investigate the toxic effects
of compound C, the viability of the cells was determined
by propidium iodide staining. Although the viability of
cells was not significantly affected by the treatments, cell
size was measured on the propidium iodide-negative cell
population. Compound C reversed metformin-induced cell
size reduction in a concentration-dependent manner, with
a maximal effect of compound C at 20𝜇M (Figure 4(c)). In
order to investigate whether the effect of compound C on cell
size could be associated with corresponding changes in cell
cycle, cell cycle analysis was done on cells exposed to the same
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Figure 5: (a) Rapamycin and metformin differentially affect high glucose-induced total protein synthesis. HEK293 cells were incubated
with 5.5mMD-glucose (Ctrl), 5.5mMD-glucose + 24.5mMmannitol (Man), and 30mMD-glucose (HG) for 48 h. For the last 24 h, 100 nM
rapamycin (Rap) and 8mMmetformin (Met) were added toHG-treated conditions.The results expressed asmean + SEMof four independent
experiments. ∗∗∗𝑃 < 0.001. (b) Metformin (Met) and rapamycin (Rap) differentially affect S6K phosphorylation in high glucose pretreated
HEK293 cells. The cells were incubated with 5.5mM (NG) or 30mM D-glucose (HG) for 3 days. For the last 24 h, 8mM metformin (Met)
or 100 nM rapamycin (Rap) was added. The expression of the indicated proteins was analysed by western blotting. (c) Western blot results of
the effect of metformin and high glucose on AMPK and S6K phosphorylation. HEK293 cells were cultured in normal medium supplemented
with 5.5mM D-glucose. At the indicated final concentrations, (mM) metformin (Met) and D-glucose (HG) were added for 24 h and three
days, respectively.

experimental conditions described in Figure 4(c). At 20𝜇M,
compound C blunted the effect of metformin on inducing an
increase in the G0/G1 phase of the cell cycle (Figure 4(d)).

3.4. The Hypertrophic Effects of High Glucose Are Associated
with the Activation of the mTOR Signalling Pathway. An
increased cell size can correlate with increased protein con-
tent. As an index of high glucose-induced hypertrophy, total
protein content was measured in HEK293 cells. The results
show that high glucose caused a 25% increase in total protein
synthesis over a culture period of two days (Figure 5(a)).This
hypertrophic effect of high glucose treatment was reduced
by rapamycin. In contrast, metformin did not exert an
observable inhibitory effect on total protein synthesis in high
glucose-treated cells.

The inhibitory effects of rapamycin and metformin on
mTOR signalling were assessed by measuring the phospho-
rylation level of mTOR and S6K at Ser2448 and Thr389,
respectively (Figure 5(b)). Incubating HEK293 cells with
8mM metformin and 100 nM rapamycin for 24 h reduced
mTOR and S6K phosphorylation, with more pronounced

effects on S6K. In contrast to the combination condition with
rapamycin, 30mM D-glucose pretreatment had an opposing
effect on mTOR inhibition by metformin.

In order to investigate whether high glucose opposes
metformin-inducedmTOR inhibition viaAMPK, as amarker
of its activation, we measured the phosphorylation level of
threonine 172 on both isoforms (𝛼1, 𝛼2) of the alpha subunit.
Metformin activated AMPK in a dose-dependent manner.
As expected, AMPK activation resulted in a concomitant
decrease in S6K phosphorylation (Figure 5(c)). In the range
of 15–30mM, D-glucose inhibited AMPK phosphorylation
and at 25mM concentration D-glucose treatment opposed
the effect of metformin on AMPK/S6K signalling.

3.5. AMPK Inhibition Is Associated with the Reversal of
Metformin-Induced p21 Downregulation in HEK293 Cells.
The expression of p21 was investigated in the context of
AMPK/mTOR/S6K signalling by western blotting. Met-
formin treatment caused a decrease in p21 expression in a
dose-dependent manner (Figure 6(a)). The expression level
of phosphorylated S6K and cyclin D1 was also investigated.
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Figure 6: Western blot results indicate that AMPK inhibition is associated with the reversal of metformin-induced p21 downregulation in
HEK293 cells. In these experiments, the protein level of P-S6KThr389, cyclin D1, P-AMPK𝛼12Thr172, and P-mTORSer2448 was measured in order
to confirm the expected effects of treatments. mTOR and 𝛽-actin were used to control equal protein loading. (a) The cells were treated with
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induced p21 downregulation.The cells were treated withMet and Cc for 24 h at the indicated concentrations (mM and 𝜇M, resp.). (c) HEK293
cells stably transfected with shRNA expression plasmids targeting AMPK𝛼2 (KD) or nonsilencing (NS) were cultured with or without
8mM metformin for 18 h in whole cell culture medium. (d) The proteasome inhibitor carbobenzoxy-Leu-Leu-leucinal (MG132) prevents
metformin-induced (Met) downregulation of p21. HEK293 cells stably transfected with shRNA expression plasmids targeting AMPK𝛼2 (KD)
or nonsilencing (NS) were cultured with or without 8mM metformin and 10𝜇M MG132 overnight in whole cell culture medium. Vehicle
effects were controlled by adding 0.05% DMSO to the conditions.

As expected, metformin caused downregulation of both P-
S6K and cyclin D1 with more pronounced effects in the
5–8mM concentration range. High glucose treatments (15–
30mM) increased the expression of p21, cyclin D1, and P-
S6K and at 25mM concentration blunted the inhibitory
effects of metformin. Similar to high glucose, compound
C had an opposing effect of metformin-induced AMPK
activation, S6K dephosphorylation, and p21 downregula-
tion (Figure 6(b)). The inhibitory effect of metformin on
p21 expression was also confirmed in HEK293 cells sta-
bly expressing ShRNA against AMPK𝛼2 (Figure 6(c)). In
AMPK𝛼2-deficient cells, metformin-induced AMPK activa-
tion was reduced. Correspondingly, reciprocal changes in
mTOR phosphorylation could also be observed. Metformin
treatment reduced p21 expression in the nonsilencing control
condition. In contrast, in theAMPK𝛼2 knockdown condition
the inhibitory effect of metformin on p21 expression was

less pronounced. The expression of p21 can be regulated
by the proteasome and recently it has been suggested that
AMPK activation may inhibit the function of the protea-
some [46–48]. To investigate whether metformin-induced
downregulation of p21 is proteasome-dependent, the pro-
teasome inhibitor, carbobenzoxy-Leu-Leu-leucinal (MG132),
was used in control and AMPK𝛼2-deficient cells. In both
control and knockdown cells, the downregulation of p21 was
prevented by MG132 treatments (Figure 6(d)). In order to
confirm the above western blot results and obtain informa-
tion about changes in p21 localisation, immunofluorescence
microscopy was performed on metformin and high glucose
treated HEK293 cells. As expected, metformin treatment
decreased the expression of p21 and high glucose treatment
reversed metformin-induced p21 downregulation (Figure 7).
In addition, high glucose treatment enhanced the nuclear
compartmentalisation of p21.
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3.6. Inhibition of mTOR Signalling Has no Effect on p21
Expression. mTOR plays a central role in cell cycle regulation
[49]. Furthermore, rapamycin downregulates p21 in mouse
fibroblasts [50]. In order to investigate whether mTOR inhi-
bition plays a role in p21 regulation, the effect of rapamycin
on p21 expression was determined by immunoblotting in
HEK293 cells.The inhibition of themTOR signalling pathway
was demonstrated by the reduced level of S6K phosphory-
lation. Rapamycin did not have an effect on p21 expression
(Figure 8). This finding was also confirmed in condition-
ally immortalised human podocytes that expressed p21 in
a metformin-sensitive but rapamycin-insensitive manner
(Figure 9).

4. Discussion

Wehave found that inHEK293 cells high glucose opposes the
negative effects ofmetformin and rapamycin on proliferation,

cell size, and protein synthesis, parameters that are widely
associated with structural changes early in the development
of DN [51]. It has also been observed that high glucose
differentially affects mTOR-related phenotypes induced by
metformin and rapamycin. This differential effect of high
glucose may be attributed to inhibition of AMPK activation.
Contrary to our expectations, we have found that metformin
inhibits p21 expression in a concentration-dependent man-
ner, independently of its effect onmTOR signalling.High glu-
cose, AMPK𝛼2-deficiency, and compound C overcome the
inhibitory effect of metformin on p21 expression, suggesting
that AMPK may play a role in the regulation of this cyclin-
dependent kinase inhibitor.

Early cellular changes in the development of DN involve
hyperplasia and hypertrophy in both the tubular and mesan-
gial compartments [4]. These cellular changes have been
attributed to increased cellular glucose uptake in cells that are
not protected from high ambient glucose levels [52, 53]. In
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the past decades a considerable interest has been devoted to
cell cycle regulatory proteins in glomerular hypertrophy [54–
57]. These studies have suggested that the initial pathological
changes in the diabetic kidney are associated with low-
grade proliferation followed by cellular hypertrophy. In vitro
and in vivo studies have shown that the absence of p21
prevents the development of hypertrophy associated with
the diabetic kidney [56, 58]. It has been shown that the
expression of p21 gene (CDKN1A) is robustly induced in
both type 1 and type 2 diabetic animals [7]. According to
a widely held view, high p21 expression is associated with
cell cycle arrest [59–61]. However, the role of p21 as a cell
cycle inhibitor has been challenged by the finding that p21
may serve as an assembly factor for cyclin D-Cdk4 complex
formation. The cyclin D-Cdk4 complex is required for cell

cycle progression and is known to be ubiquitous among
different cell types [62, 63]. Furthermore, several studies have
suggested that increased cyclin D1 expression is associated
with renal and cardiac hypertrophy, which may be attributed
to increased stabilisation of p21 [64–66]. In this study, high
glucose opposed the inhibitory effects of metformin on both
cyclin D1 and p21 expression. In addition, these effects of
high glucose correlated with the promotion of cell cycle
progression in metformin treated cells, suggesting that high
glucose-induced expression of cyclin D1 and p21 may be
linked by a common mechanism.

The results of this study suggest that inhibition of AMPK
may be the underlying mechanism by which high glucose
induces p21 expression, which in turn may stimulate prolif-
eration and cell growth. The involvement of AMPK in the
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regulation of proliferation has been reported in other studies
[26, 27, 67]. In contrast to the 𝛼1 isoform, AMPK𝛼2 has
been shown to respond to stress-related conditions, such as
hypoxia and glucose deprivation. Furthermore, in AMPK𝛼2
knockout mice the antihypertrophic effects of metformin
are known to be attenuated [68]. These findings suggest
that energy-depleting agents, such as metformin or AICAR,
exert their antihypertrophic effects through activation of
this isoform [69]. However, both drugs may have some
limitations in the interpretation of their cellular actions.
It has been reported that, in a time- and concentration-
dependent manner, AICAR may act as an ATP analogue
due to the increase in ZTP, its triply phosphorylated form
[70]. Furthermore, it has been suggested that AICAR may
also mediate AMPK-independent processes by regulating
AMP-sensitive enzymes, such as glycogen phosphorylase
[71]. AMP-independent activation of AMPK by metformin
has also been reported [72, 73]. However, a recent study
has demonstrated that AICAR-induced AMPK activation
downregulates p21 expression in retinoblastoma cells [74].
Similarly, despite inhibition of cell cycling, AICAR treatment
reduced p21 levels in myoblast cultures [75]. The results
of this latter study also show that inhibition of AMPK
with compound C associates with the reversal of AICAR-
induced loss of p21 expression. Our finding that compound C
abrogates metformin-induced cell cycle arrest is in line with
the concept that AMPK inhibition promotes proliferation.
Furthermore, in experiments studying metformin-induced
cellularmechanisms, compoundChas been successfully used
for blunting AMPK activation [76, 77]. In accordance with
these studies, our results also show that compoundC opposes
the effects of metformin on the AMPK/S6K pathway and
p21 expression. These latter findings suggest that AMPK
inhibition may promote proliferation through increased p21
expression.

The effects of metformin have generally been associated
with the activation of AMPK [21]. Evidence suggests that
metformin may lower the risk of cancer in patients with
diabetes [78]. In cancer studies the antiproliferative effect
of metformin has been attributed to its ability to induce
cell cycle arrest through an AMPK-dependent mechanism
[17, 27, 29]. According to a suggested mechanism, through
the activation of AMPK,metformin downregulates cyclin D1,
leading to the release of sequestered CDK inhibitors, p27
and p21. In turn p27 and p21 may associate with E/CDK2
complexes and inhibit cell cycling at theG1/S checkpoint [29].
On the other hand, in melanoma cells p21 expression was
not required for metformin-induced cell cycle arrest [79].
Our results show that both metformin and rapamycin inhibit
proliferation in HEK293 cells by inducing cell cycle arrest
in the G0/G1 phase. Interestingly, high glucose pretreatment
abrogated the inhibitory effect of metformin on cell cycling
but did not affect rapamycin-induced cell cycle inhibition.
Furthermore, rapamycin neither increased nor decreased p21
expression in this study.These findings suggest that increased
p21 expression is not required for cell cycle inhibition by
metformin and rapamycin.

The involvement of cell cycle regulatory proteins in the
development of DN has long been suggested [5, 56, 80–82].

These studies have suggested that glomerular hypertrophy is a
consequence of increased cyclin-dependent kinase inhibitor
expression-mediated cell cycle arrest. However, that role
of p21 in pathogenesis is more complex. The expression
of p21 is generally associated with regulation of cell cycle,
apoptosis, and ameliorating DNA damage [83]. In relation to
the AMPK/mTOR signalling pathway, the induction of p21
as a senescence marker has been described with relevance to
age-related diseases [84].

Accumulating evidence indicates that senescence may
play an important role in the development of DN. Pre-
mature senescence has been observed in fibroblasts and
proximal tubular cells isolated from patients with DN [85–
87]. Downregulation of connexin 43, a gap junction protein,
has been reported in podocytes of diabetic patients as well
as in high glucose treated glomerular mesangial cells that
showed increased expression of senescence markers, such
as p21, p27, and 𝛽-galactosidase staining [82, 88]. Connexin
43 has also been implicated in glomerular hypertrophy [89].
Furthermore, high glucose induces cyclin D1 expression, and
interestingly, increased cyclin D1 expression is associated
with senescence in fibroblasts [90]. Diabetes contributes to
vascular ageing, and endothelial cell senescence is induced
by high glucose or advanced glycosylated end products [91].
In a study on rat kidney proximal tubule cells, an increase
in the expression of p21 and p27 was associated with a
phenotypic transition to senescence [8]. Differentiated cells
cannot progress to senescence. However, it has been shown
that dedifferentiation of cells in the kidney may contribute
significantly to the pool of proliferating cells [92, 93]. In
turn, dedifferentiated cells responding to mitogenic factors
can progress to senescent arrest [59]. Overexpression of
fibronectin, one of the extracellular matrix proteins induced
in diabetic nephropathy, is one of the characteristics of
senescence cells [94]. Furthermore, proteasomal protein
degradation is reduced in senescent cells, which can be a
contributing factor for increased hypertrophy [95].

The involvement of apoptosis in diabetic nephropathy has
been indicated by several investigators [96–98]. It has been
widely acknowledged that apart from senescence, damaged
cells rely on apoptosis to evade tumour formation [99].
It has been suggested that apoptotic cell loss may be a
process of normal tissue homeostasis regulating mesangial
cell populations in enlarged glomeruli [100, 101]. Jung et al.
[96] have demonstrated using diabetic rats that apoptosis
may differentially affect glomerular cells in small and large
glomeruli. They also showed that cellular hypertrophy was
responsible for the differences in size, as the expression
level of fibronectin, an extracellular matrix marker, was
the same in both small and large glomeruli. Increased
expression of proapoptotic proteins was found in large
glomeruli, suggesting that apoptosis may selectively operate
in a more hypertrophied cellular environment. Interestingly,
upregulation of cyclin D1, p21, and p27 was only detected in
smaller glomeruli, indicating that the higher expression of
these proteins is associated with the initiation of glomerular
hypertrophy.

Inhibition of mTOR by rapamycin has been found to
prevent the permanent loss of proliferative potential that is
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characteristic of cellular senescence [102]. Since metformin
also inhibits the mTOR signalling pathway, a similar effect
of metformin to that of rapamycin could be expected in the
prevention of senescent transformation. However, in contrast
to rapamycin, chronic exposure to lower doses of metformin
has been shown to promote cancer-protective senescence in
other studies [40, 103]. It has been proposed that rapamycin
regulates proliferation by preventing the formation of cyclin-
dependent kinase complexes. mTOR activation by growth
factors or high energy levels induces p21 that in turn facil-
itates the assembly of these complexes [104]. In this study
metformin inhibited p21 in both HEK293 cells and human
podocytes, suggesting that energy depletion may affect the
expression of this cell cycle inhibitor. The underlying factor
that determines the cellular actions of AMPK may be its
level of activation [84, 105]. However, a major limitation to
understanding the role of AMPK in the diabetic kidney is
the lack of studies investigating cell-specific differences in
AMPK expression [106]. Cells in the medulla predominantly
depend on glycolyticmetabolism, whereas tubular cells in the
cortex depend on oxidative metabolism [107, 108]. Glycolytic
flux is known to be reduced during the process of cellular
senescence; therefore one can envisage that senescence-
induced metabolic disturbances may differentially impact
on cell populations in the kidney [109, 110]. Immortalised
cells may have a relatively high glycolytic flux; therefore, it
is possible that in our experiments high glucose exerted its
effects through enhanced glycolysis [111].

In preclinical studies, the doses of metformin are much
higher than the level of the drug reported to accumulate in
tissues after oral administration; therefore, it is difficult to
extrapolate the results of these studies to a clinical setting
because of the differential and possibly poor expression of
OCTs in immortalised cell lines [21]. Nevertheless, these
studies show that metformin may have beneficial effects in
pathologic states, including cancer and inflammation [17, 112,
113]. Several molecular pathways in these diseases are also
relevant to the aetiology of diabetic nephropathy, suggesting
that metformin may have a therapeutic potential for the
prevention of DN. Indeed, by modulating the expression
of proinflammatory genes, metformin has been shown to
ameliorate DN in rats and AMPK activation by metformin
reduced renal hypertrophy in diabetic rats [114, 115].

5. Conclusion

In summary, the above indicates that metformin can reduce
the expression of p21 and AMPK may play a role in the
underlying mechanism. It can also be inferred from these
results that p21 is not required for metformin-induced cell
cycle arrest. This finding lends support to other studies
that look beyond the role of p21 as a cell cycle inhibitor
[74, 75]. Metformin has implications for the treatment of
both diabetes and cancer and p21 has different, poorly
understood roles in both diseases. Recently, energy sensing
pathways have been investigated in the context of both
diabetic complications and cancer [116–118]. In addition,
reentry of differentiated cells into the cell cycle as well as

genetic polymorphism in the p21 gene has been implicated
in Alzheimer’s disease [119, 120]. Our findings may prompt
further research in these fields.
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