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Phylogenetic investigation of enteric
bovine coronavirus in Ireland reveals
partitioning between European and global
strains
L. Gunn1, P. J. Collins1, M. J. O’Connell2 and H. O’Shea1*

Abstract

Background: Bovine coronavirus is a primary cause of neonatal calf diarrhea worldwide, and is also associated with
acute diarrhea in adult cattle during the winter season. There are no reports on molecular characterization of bovine
coronavirus in Ireland, and little data exists apart from serological studies.

Findings: In this study, 11 neonatal (mean age 9 days) calf BCoV strains from the south of Ireland were collected over
a one year period and characterized using molecular methods. The spike gene which encodes a protein involved in
viral entry, infectivity and immune response shows the most variability amongst the isolates and was subsequently
selected for in depth analysis. Phylogenetic analysis of the spike gene revealed that the Irish strains clustered with
novel BCoV strains from Europe in a unique clade, possibly indicating lineage partitioning. Direct analysis of
alignments identified amino acid changes in the spike protein unique to the Irish clade.

Conclusion: Thus, monitoring of bovine coronavirus in Ireland is important as the current isolates in circulation in
the south of Ireland may be diverging from the available vaccine strain, which may have implications regarding
future BCoV vaccine efficacy.
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Findings
Coronaviruses (CoV, family Coronaviridae) are large envel-
oped viral particles containing a positive sense single
stranded RNA genome (26–30 kb), coding for several
structural proteins, including polymerase (Pol), nucleo-
capsid (N), membrane (M), hemagglutinin-esterase (HE),
spike (S) proteins and several non-structural proteins
(NSPs). Coronaviruses have been associated with respira-
tory and enteric infections in humans and ruminants [1].
Enteric Bovine coronavirus (BCoV) replicates in the epi-

thelial cells of the gut, destroying villi, resulting in severe,
often bloody diarrhea in calves, which can be life threaten-
ing, due to loss of electrolytes and malnutrition [2]. Dis-
ease in calves usually occurs within the first month of life,

with respiratory and enteric infections being the most
common conditions diagnosed. In adult cows, as a result
of close confinement during transport or housing, BCoV
is associated with winter dysentery and shipping fever [2].
The spike proteins of BCoV play an important role in im-
mune response, eliciting both cellular immune responses
and neutralizing antibodies [3].
BCoV has been detected in Ireland using molecular or

immunological techniques [4–6], but it has not been char-
acterized or compared to other global BCoV strains. En-
teric pathogens frequently isolated from neonatal calves
with enteritis in Ireland are rotavirus, cryptosporidium and
much less frequently, coronavirus [7]. Currently in Ireland,
a trivalent vaccine is licensed for the immunization of
pregnant cows against rotavirus, coronavirus and Escheri-
chia coli, confering passive immunity to calves, the corona-
virus aspect of the vaccine is based on an inactivated
Mebus strain. [8] In this study we aimed to: (i) characterize
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bovine coronavirus in the South of Ireland via analysis of
the Spike gene, and (ii) compare Irish BCoV to global and
vaccine isolates to identify variations in the hyper-variable
region of the spike gene.

Methods
Faecal samples were collected from the Cork Regional
Veterinary Laboratory (CRVL) after they had tested posi-
tive for coronavirus using an immunochromatographic
commercial kit (ICK), Corona Vet (Serosep, Ireland). Fae-
cal samples were also screened for rotavirus, cryptosporid-
ium and Salmonella. A total of 11 coronavirus positive
samples were collected from neonatal calves, mean age
9 days, presenting with diarrhea between 2010 and 2011.
Samples were stored at −80 °C prior to analysis.
Prior to extraction, faecal samples were homogenized

in an equal volume of 0.89 % NaCl, centrifuged and fil-
tered using a 0.20 μm pore size. The RNA was then ex-
tracted from the cell free fluid using Qiagen Viral RNA
mini kit (Qiagen), following the manufacturers’ instruc-
tions. Extracted RNA was stored at −20 °C prior to ana-
lysis. Extracted RNA was tested for the presence of
Coronavirus using degenerate oligonucleotide primers

described previously [9], targeting a 250 bp region of the
polymerase gene. A nested PCR was used to amplify the
spike (S) gene [10], specifically the hypervariable region
(HVR) [11].
Following analysis of this region, the most variable

isolate was selected for complete characterization of
the S gene using primers previously described [12, 13].
Reactions were carried out using Enhanced Avian Re-
verse Transcriptase kit (Sigma-Aldrich), following the
manufacturers’ instructions, all reactions were carried
out using a Biometra T3000 thermocycler. Amplified
products were run on 1.5 % agarose gels, stained with eth-
idium bromide and visualized using a UV light trans-
illuminator. Bands containing positive samples were
cleaned using Roche High Pure PCR clean kit (Roche) and
sequenced using a commercial service (MWG Eurofins,
Germany).
Resulting sequence data was then analysed and edi-

ted using Bioedit v7.0.9.0 [14] and online BLAST tool
(http://blast.ncbi.nlm.nih.gov/Blast.cgi), to identify homolo-
gous strains. Sequence alignment was carried out using
Clustal W in Bioedit [14], and a sequence alignment profile
generated (Fig. 1). For analysis of the whole S gene, contigs

Fig. 1 Amino acid sequence alignment profile of the hypervariable region of the spike protein. The profile was produced using Clustal W alignment
and Bioedit. Amino acids in columns of the alignment with no alterations are shown as dots. A unique amino acid change occurs at position 21 in
isolate RVLC4, novel alterations were detected at position 60 in RVLC7 and position 149 for all isolates
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Fig. 2 Maximum Likelihood tree based on partial length of the spike gene specifically the HVR (464 bp), nt positions 1324 to 1787. All Irish
isolates from this study are represented by a filled circle (●)
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were assembled using DNAstar program Seqman. The
phylogenetic trees for the S gene were constructed
using Maximum likelihood (ML) in MEGA5.1 [15] with
a GTR model, plus gamma distribution and invariant
sites with 1000 bootstrap replicates (Figs. 2 and 3). In
ML trees shown, all strains are displayed with accession
numbers.
Partial nucleotide sequences are available for Poly-

merase gene (JN204179, JN204180), Spike (KF272908,
KF272910, KF272912, KF272914). The complete gene
sequence of the spike protein of Irish BCoV strain
RVLC7 was registered in Genbank under the accession
number-KF272919.

Results
Eleven coronavirus ICK positive specimens were collected
from the CRVL and then subjected to further analysis at
the Virology Unit, Department of Biological Sciences,
Cork Institute of Technology (CIT). Of the 11 positive
faecal samples tested using an ICK, 8/11 (72.7 %) tested
positive for coronavirus using molecular techniques
(Table 1). Initial analysis was carried out using the online
BLAST tool, Bioedit [14], and using MEGA5.1 [15] for
phylogenetic analysis. Initially, a partial sequence repre-
senting the HVR of the spike was characterized, 7/8
strains were successfully amplified, and 4 representative
strains were selected and sequenced.
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Fig. 3 Maximum likelihood tree based on the complete spike gene (4092 bp), including the S1 and S2 subunits. Irish isolates from this study are
indicated by a filled circle (●) in the tree
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Sequence alignment of the spike HVR showed that Irish
strains had novel substitutions compared to the Mebus
strain sharing between 92.2–93.5 % amino acid identity.
The hypervariable region of the spike gene (S) had 7 single
nucleotide polymorphisms (SNPs) in a 464 bp sequence,

resulting in 3 amino acid changes (Fig. 1); the amino
acid changes occurred at positions 21, 60 and 149. Pos-
ition 21 had a substitution from proline to leucine,
found only in isolate RVLC4. Position 60 shows two
different residue changes, the most common being
proline to serine (RVLC4, 9, 10 However, only 3/4 of
the Irish strains contained this proline to serine substi-
tution, while the fourth contained a change from pro-
line to phenylalanine (RVLC 7), which has a different
polarity and lacks the ability to be phosphorylated. The
position 149 shift was found in all strains and resulted
in an aspartic acid residue being changed to glutamic
acid here.
From alignment analysis of the HVR sequences, one iso-

late was selected for complete sequencing of the whole S
gene, using primers previously described [12, 13]. Isolate
RVLC7 was selected due to the novel polymorphism iden-
tified in position 60 of the HVR (proline to phenylalanine,
corresponding to position 501 in the complete S protein).
As depicted in Table 2, the complete spike protein con-
tained a total of 14 residue changes when compared to the
Mebus strain; 9 of these changes were shared with other
strains found in Europe (light grey regions in Table 2),

Table 1 Summary of the 11 isolates used in this study, number
as per main text

Coronavirus

Name Age Year Polymerase Spike

RVLC1 30 days 2010 - -

RVLC2 7 days 2010 + +

RVLC3 5 days 2010 - -

RVLC4 7 days 2011 + +

RVLC5 5 days 2011 + +

RVLC6 7 days 2011 - -

RVLC7 7 days 2011 + +

RVLC8 21 days 2011 - +

RVLC9 8 days 2011 + +

RVLC10 3 days 2011 + +

RVLC11 9 days 2011 + -

Table 2 Sub-sampling of the complete alignment of the spike gene

Amino acid positions

Strain 3 4 23 115 141 257 501 590 608 897 909 927 1260 1278

Bo/MEBUS/U00735 L I T K Q T P D D S K S D N

RVLC7 F L S N H N F E G F R A N I

Bo/BCoV 
339/06/EF445634

L I T N Q N S D G S R A N N

Bo/BUBALUS 
179/07/EU019216

L I T N Q N S D G S R A N N

Bo/438/06-
TN/EU814647

L I S K Q N S D G S R A N N

Bo/468/06-TN-
50/EU814648

L I S K Q N S D G S R A N N

Bo/SWE/C/92/KF16993
5

L I T D Q T P E G S R A D N

Bo/SWE/M/06-
4/KF169924

L I S N Q N F E G S R A N N

Bo/DEN/03-2/KF169914 L I S D Q N S D G S R A N N

Hu/HCoV 
4408/NC005147

L I T N Q T P E G S R A D N

Bo/LY-138/AF058942 L I T N Q T S D D S K S D N

Bo/DB2/DQ811784 L I T N Q T P D D S K S H N

All 14 amino acid substitutions present within the Irish isolate RVLC7 in comparison to vaccine strain Mebus are shown. Light grey regions are shared residue
alterations while dark grey regions are unique to RVLC7
Abbreviation: Bo Bovine, Hu Human
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while 5 were unique to Irish isolate RVLC7 (dark grey re-
gions in Table 2).

Discussion
In 2012, BCoV was the most commonly isolated virus from
live clinical cases of pneumonia and is also an important
cause of enteric disease in young Irish calves [7]. In this
study, we aimed to characterize bovine coronavirus in
Ireland, and compare Irish BCoV strains with field and vac-
cine global strains. The partial gene tree for the hypervari-
able region of the S1 subunit of the spike gene showed that
the Irish isolates clustered together with other European
isolates (Italian, Swedish and Dutch) (Fig. 2). The phylo-
genetic tree of the complete spike gene shows that the
European isolates form a distinct clade in comparison to
American, Canadian and Korean isolates these different
clades may represent differences in antigenicity [16] and
possibly different lineages (Fig. 3). The Irish isolates group
together, clustering with European isolates, in a distinct
clade. It is known that viral lineages can form natural
groups based on geographical location as can be seen with
human Group A Rotavirus[17]. Sequence alignment pro-
files of the HVR revealed a polymorphism in all Irish iso-
lates (position 149 in Fig. 1, position 590 in the whole
protein), a change from aspartic acid to glutamic acid. This
change is also present in Human Coronavirus 4408, a
BCoV-like isolate from a child in USA [18]. A previously
identified polymorphism was identified in Irish isolate
RVLC7 [11], (position 60 in Fig. 1, residue 501 in whole
protein), a substitution from proline to phenylalanine
was detected, this substitution has been associated im-
munological escape mutants through changes in pro-
tein secondary structure [12, 19]. The vaccine licensed
for use in Ireland is based on the Mebus strain, which
is in a different clade. This phylogenetic difference be-
tween wild type and vaccine strains has been reported
previously in other jurisdictions [20]. The data pre-
sented here suggests partitioning of Irish BCoV wild
type strains away from the vaccine strain, and we iden-
tified the presence of novel mutation in spike HVR in
wild type strain (RVLC 7, phenylalanine 501).

Conclusion
Monitoring of bovine coronavirus in Ireland is important
as the data suggests that the current isolates in circulation
maybe diverging. In addition, phylogenetic analysis dem-
onstrated clear differences between European and global
BCoV strains, therefore, continuous monitoring of BCoV
is essential in order to detect new BCoV strains which
may emerge and provide data which can be used to in-
form future BCoV vaccine design.
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