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Abstract: We herein showcase the ability of NHC-coordinated
dinuclear NiI–NiI complexes to override fundamental reactivity
limits of mononuclear (NHC)Ni0 catalysts in cross-couplings.
This is demonstrated with the development of a chemoselective
trifluoromethylselenolation of aryl iodides catalyzed by a NiI

dimer. A novel SeCF3-bridged NiI dimer was isolated and
shown to selectively react with Ar@I bonds. Our computational
and experimental reactivity data suggest dinuclear NiI catalysis
to be operative. The corresponding Ni0 species, on the other
hand, suffers from preferred reaction with the product,
ArSeCF3, over productive cross-coupling and is hence inactive.

Despite the widespread existence of multinuclear metal
sites in naturally occurring catalysts (enzymes), man-made
homogeneous catalysis is dominated by mononuclear metal
cores.[1] This might be due to our still limited understanding of
the underlying synergism and reactivity of multimetallic
assemblies. A prominent example is nickel, which is of
significant current synthetic interest and predominantly
investigated as a monomer in synthesis,[2,3] although it is
featured in higher-order clusters in several enzymes.[4]

Whereas the greater sustainability of nickel is advantageous,
its high reactivity and mechanistic diversity can make it
difficult to tame this metal in a synthetic context, impacting in
particular chemoselectivity—a key requirement for applica-
tions in synthesis. The relative instabilities of NiII intermedi-
ates and their comparably low propensities towards trans-
metalation as required in traditional Ni0/NiII catalysis have
been identified as an origin of this reactivity behavior, leading
to side reactions, undesired side products, multiple potentially
reactive species, as well as catalyst deactivation.[2a,b,5]

We hypothesized that dinuclear Ni catalysis could be
particularly advantageous in this context as the elementary

steps, that is, oxidative addition and transmetalation, would
be formally reversed, circumventing the intermediacy of
poorly reactive NiII species that are prone to side reactions
(Figure 1). Our group recently showed this concept to be
viable for palladium.[6] However, whereas NiI complexes have
been successfully synthesized,[7] detected in catalytic trans-
formations employing typical Ni0 catalysts,[8] used as preca-
talysts,[9] or implicated as mechanistic intermediates,[10] unam-
biguous mechanistic support and a rationale for the direct
catalytic involvement of NiI dimers in cross-couplings have
not been reported.

Building on our research in the area of PdI dimer
catalysis,[6] which led to the development of a catalytic
trifluoromethylselenolation of aryl iodides,[6c] we herein
describe our efforts in exploring whether such a dinuclear
catalysis concept is feasible also with the less precious and
more sustainable element nickel.

The SeCF3 group features several agrochemically and
pharmaceutically important properties in terms of the result-
ing membrane permeability and bioavailability.[11] Conse-
quently, there have been numerous activities in devising
synthetic methods to access this compound class.[12] The direct
catalytic incorporation of the SeCF3 moiety is of particular
interest as it may be used for late-stage manipulations of
molecules. The latter concept has, however, rarely been
realized;[13] it has been accomplished for aryl diazonium salts
under Cu catalysis,[14] and a coupling of aryl iodides with
(Me4N)SeCF3 catalyzed by a dinuclear PdI complex has been
developed by our group.[6c]

We started our investigations with assessing as to whether
Ni0(cod)2 in combination with the NHC ligand 1,3-bis(2,6-
diisopropylphenyl)imidazolin-2-ylidene (SIPr) could trigger
the trifluoromethylselenolation of aryl halides. In the pres-

Figure 1. Catalysis with mononuclear M0/MII versus dinuclear MI–MI

complexes.
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ence of this catalyst and ligand, 4-iodoanisole (1) was
converted into the corresponding ArSeCF3 product in 59%
yield (Figure 2). The analogous aryl bromide and chloride did
not give the ArSeCF3 product. In all cases, the formation of
the corresponding biaryls and dehalogenation were observed.
The remainder was unreacted starting material. The latter
observation may appear surprising at first given that Ni0

complexes are typically highly reactive, catalyzing even
cross-couplings of unactivated aryl ethers or aryl fluorides.[2,5]

However, the formation of biaryl species hints toward
a possible explanation. Such biaryl products can be an
indication of a change in catalyst, arising from a ligand
exchange between [LnNiII(Ar)(X)] intermediates to form
[LnNiII(Ar)2] and [LnNiII(X)2]. Ultimately, biaryls are
obtained upon reductive elimination. The resulting [LnNi0]
species may then undergo comproportionation with [NiII(X)2]
to [NiI]n.

[5a] We speculated that the lack of significant
conversion with ArBr and ArCl may be associated with the
intermediacy of [NiI]n, rather than [Ni0] .

Sigman and co-workers have synthesized a Cl-bridged
SIPr-derived NiI dimer and its unsaturated counterpart (i.e.,
with the IPr ligand).[7b] Matsubara and co-workers very
recently showed that the latter complex triggers Kumada
cross-couplings, and it was suggested that a NiI dimer or
monomer may be involved in the process.[15] Smaller NHC NiI

monomers have also been shown to trigger C@C and C@N
couplings.[9] A pronounced ligand effect was observed by
Louie et al. for the formation of NiI or NiII in reactions with
(NHC)Ni0.[16] While the origins are not understood, the data
suggest that the NiI monomer or dimer species might function
as precatalysts under these conditions. In this context, no
rationale has been presented to date as to why a NiI may
potentially be preferred over a Ni0 pathway. For phosphine-

based NiI complexes, our group and others have recently
demonstrated that NiI is catalytically inactive or serves as
a precatalyst.[17] To obtain conclusive insight, we set out to
prepare NiI complexes with iodine and SeCF3 ligands. We
succeeded in the synthesis of an iodine- (3) and a SeCF3-
bridged (4) dinuclear NiI complex. The X-ray structures are
shown in Figure 2.

Given that we saw significantly more conversion with ArI
but mainly biaryl formation with ArBr (Figure 2), we
surmised that NiI species are formed in these cases and take
over as the active catalyst for ArI, but may not be reactive
enough for ArBr. To test this, we subjected our newly
synthesized SeCF3-bridged NiI dimer 4 (1 equiv) to ArI and
ArBr (10 equiv). Whereas trifluoromethylselenolation was
indeed observed for ArI (and 80 % of the total available
SeCF3 was incorporated into ArI), there was no conversion
for ArBr (Figure 2). Importantly, no biaryl species were
detected in these reactions, suggesting that the NiI complex
does not simply serve as a precursor to Ni0. Moreover, our
kinetic studies under the same conditions gave first order in
NiI dimer 4, in agreement with a direct reaction between the
dimer and the aryl iodide. These data strongly suggest that NiI

is a competent trifluoromethylselenolation species, and hence
also likely a competent species in catalysis when generated
from the iodine-bridged NiI dimer 3 in the presence of
(Me4N)SeCF3. Separate studies showed that a facile displace-
ment of the iodine bridges in 3 with (Me4N)SeCF3 takes place
to give 4, in analogy to our previously developed PdI–PdI

chemistry.[6c]

Pleasingly, with 10 mol% of [(SIPr)NiI(I)]2 (3) and
(Me4N)SeCF3 (1.5 equiv) in benzene at 45 88C, a range of
aryl iodides were successfully transformed into the corre-
sponding ArSeCF3 products (Table 1). A number of electron-
rich and electron-poor aryl iodides were functionalized in
good to excellent yields. The method proved to be compatible
with various functional groups, such as ketone (5a and 5 d),
methoxy (5 f), and amine (5 i) moieties, as well as the
pharmaceutically interesting unprotected indole motif (5e).

We hypothesized that the formally less electron-rich NiI

dimer might offer a platform for selective functionalizations
and tested its potential to also trigger chemoselective catalytic
C@SeCF3 bond formations. Pleasingly, we observed exclusive
functionalization of C@I bonds in the presence of C@Br and
C@Cl bonds (Table 1, bottom).

These data showcase the superiority of an isolated
dinuclear NiI complex as a catalyst in the chemoselective
SeCF3 functionalization of aryl iodides without the formation
of side products. In this context, it was unclear why a NiI

dimer would be the preferred reactive species in C@SeCF3

couplings over Ni0. To address this, we turned to computa-
tional studies.[18]

We initially assessed the feasibility of a [Ni0] catalyst to
oxidatively add to PhI, PhBr, and PhCl with DFT methods.[20]

The activation barriers for oxidative addition follow the
expected trend, that is, DG* follows ArI<ArBr<ArCl. We
previously demonstrated that another important factor for
the efficiency and scope of Ni-catalyzed functionalizations is
the likelihood of the catalyst reacting with the desired
product.[19] In our case, an activated C@SeCF3 moiety was

Figure 2. Direct reactivity of the NiI–NiI complex with ArI. X-ray
structures of iodine- and SeCF3-bridged NiI dimers and comparison
with Ni0.
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installed, which could also be prone to oxidative addition to
[Ni]. Interestingly, we observed that the oxidative addition of
PhSeCF3 to [Ni0] is characterized by a substantially lower
activation barrier than addition of PhI, PhBr, and PhCl
(Figure 3 and Table S1 in the Supporting Information).
Depending on the level of theory (we considered M06L,
M06, and PBE0-D3),[20] addition of PhSeCF3 is favored by
DDG* = 4.0 to 6.6 kcal mol@1 over addition of PhI. These data
suggest that [Ni0] should preferentially react with the product
PhSeCF3 as soon as it is formed, rather than with the aryl
halide substrate. The thereby generated [(SIPr)NiII(SeCF3)-
(Ar)] could then undergo side reactions, for example, the
commonly occurring ligand exchange between two such NiII

species to ultimately generate biaryl. In line with this, our
experimental studies indeed gave the corresponding biaryls
(7%) when we subjected 20 mol% of Ni0(cod)2/SIPr to
ArSeCF3 2 in benzene at 45 88C for 30 min. Thus the reason for
the ineffectiveness of the Ni0(cod)2/SIPr process is the higher
reactivity of the product, ArSeCF3, towards oxidative addi-
tion to Ni0 compared to the reactivity of the corresponding
starting material.

With the origin of the ineffectiveness of Ni0 having been
determined, we subsequently set out to assess the reactivity of
the NiI dimer. We succeeded in the location of transition
states for the direct oxidative addition of the NiI dimer to PhI
(Figure 3).[20] We optimized the dinuclear transition state as

both closed-shell singlet and open-shell triplet states. While
the singlet-state TSs display a high degree of Ni@Ni bonding,
the triplet-state TSs show a larger distance between the two
Ni centers (Figure 3) along with pronounced spin densities at
both Ni centers, indicating open-shell biradical character (see
the Supporting Information). Our energy evaluation of the
singlet versus triplet oxidative addition at various levels of
theory (M06L, M06, and PBE0-D3) suggested the triplet state
to be consistently favored.[20] As such, the computational data
suggest that there will be a spin change from singlet (in the
ground-state dimer) to triplet (in the transition state).
Following endergonic oxidative addition, a NiII@NiII inter-
mediate may form and subsequently eliminate PhSeCF3

under formation of the mixed NiI dimer 8 bearing an iodine
and a SeCF3 bridge. The latter species (8) is predicted to be
more reactive than the doubly SeCF3-bridged NiI dimer 4 and
also favorably adds via the triplet transition state, leading to
the conversion of another equivalent of ArI into ArSeCF3

(see the Supporting Information for the full path). The overall
transformation was calculated to be exergonic (by DGrxn =

@10.1 kcalmol@1 at M06L), and as such, to be thermodynami-
cally driven.

As a mechanistic alternative, a NiI monomer pathway
might be followed. If open-shell NiI monomers were to be
involved, we would expect EPR activity. However, our EPR
investigations of the reaction mixture of the catalytic SeCF3

coupling of aryl iodides with 3, the substoichiometric reaction
of NiI dimer 4 with ArI (as shown in Figure 2), as well as the
NiI dimer itself in solution showed no EPR signals.

Figure 3. Top: Relative energy difference between triplet (favored) and
singlet (disfavored) TSs for oxidative addition of ArI to a mixed NiI

dimer (bearing a SCF3 and an I bridge). Bottom: Selectivity divergence
for Ni0 versus NiI–NiI.[20]

Table 1: Scope of the trifluoromethylselenolation catalyzed by NiI dimer
3.

Reaction conditions: 3 (0.01 mmol, 10.9 mg), ArI (0.1 mmol),
(Me4N)SeCF3 (0.15 mmol, 33 mg), benzene (1.0 mL). Yields determined
by 19F NMR analysis with PhCF3 as an internal standard or upon isolation
(in parentheses). [a] (Me4N)SeCF3 (3 equiv).
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Lastly, we set out to investigate why the NiI dimer allows
for productive catalysis, while Ni0 does not. To address this, we
computationally studied the relative preference for oxidative
addition to the product ArSeCF3 relative to ArI, ArBr, and
ArCl once again. We employed a range of DFT methods (see
the Supporting Information for details), and all consistently
predicted the same reactivity trend. Interestingly, whereas Ni0

clearly preferred addition to the product ArSeCF3 by
DDG* = 6.3 kcalmol@1 (with M06L), for NiI–NiI, a different
reactivity pattern is seen, substantially favoring addition to
the aryl halide over the product (by DDG* = 9.0 kcalmol@1 at
M06L; see Figure 3). As such, remarkably, nickel in oxidation
state I follows a different selectivity pattern than nickel in
oxidation state 0.[20]

In conclusion, we have reported compelling data in
support of NHC-derived dinuclear Ni(I) catalysis in cross-
couplings with aryl iodides. The first iodine- (3) and SeCF3-
bridged (4) NiI dimers were synthesized, fully characterized,
and complex 4 was shown to react directly with aryl iodides.
Using the NiI dimer as the catalyst avoids the formation of
undesired biaryl side products through the suppression of
alternative pathways and circumvents mononuclear NiII

intermediates, which are prone to side reactions. Selective
functionalization of C@I bonds over C@Br, C@Cl, and
alternative functional groups was possible. The corresponding
Ni0 species was found to be inferior and inactive owing to its
propensity to preferentially react with the product, ArSeCF3.
Our computational and experimental data suggest funda-
mentally different reactivity trends, that is, for Ni0 :
ArSeCF3>ArI>ArBr&ArCl and for NiI–NiI : ArI>
ArBr>ArCl>ArSeCF3. These data provide an example of
the superior reactivity of dinuclear NiI over mononuclear Ni0

catalysis and showcase the potential and importance of
precisely controlling and harnessing the distinct metal oxida-
tion states in catalysis.
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