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A Spiking Neural Network (SNN) is trained with Spike Timing Dependent Plasticity

(STDP), which is a neuro-inspired unsupervised learning method for various machine

learning applications. This paper studies the generalizability properties of the STDP

learning processes using the Hausdorff dimension of the trajectories of the learning

algorithm. The paper analyzes the effects of STDP learning models and associated

hyper-parameters on the generalizability properties of an SNN. The analysis is used to

develop a Bayesian optimization approach to optimize the hyper-parameters for an STDP

model for improving the generalizability properties of an SNN.

Keywords: spiking neural networks, leaky integrate and fire, generalization, Hausdorff dimension, logSTDP,

addSTDP, multSTDP, Bayesian optimization

1. INTRODUCTION

A Spiking Neural Network (SNN) (Maass, 1997; Gerstner and Kistler, 2002b; Pfeiffer and Pfeil,
2018) is a neuro-inspired machine learning (ML) model that mimics the spike-based operation of
the human brain (Bi and Poo, 1998). The Spike Timing Dependent Plasticity (STDP) is a policy for
unsupervised learning in SNNs (Bell et al., 1997; Magee and Johnston, 1997; Gerstner and Kistler,
2002a). The STDP relates the expected change in synaptic weights to the timing difference between
post-synaptic spikes and pre-synaptic spikes (Feldman, 2012). Recent works using STDP trained
SNNs have demonstrated promising results as an unsupervised learning paradigm for various
tasks such as object classification and recognition (Masquelier et al., 2009; Diehl and Cook, 2015;
Kheradpisheh et al., 2018; Lee et al., 2018; Mozafari et al., 2019; She et al., 2021).

Generalizability is a measure of how well an ML model performs on test data that lies
outside of the distribution of the training samples (Kawaguchi et al., 2017; Neyshabur et al.,
2017). The generalization properties of Stochastic Gradient Descent (SGD) based training for
deep neural network (DNN) have received significant attention in recent years (Allen-Zhu et al.,
2018; Allen-Zhu and Li, 2019; Poggio et al., 2019). The dynamics of SGD have been studied
via models of stochastic gradient Langevin dynamics with an assumption that gradient noise
is Gaussian (Simsekli et al., 2020b). Here SGD is considered to be driven by a Brownian
motion. Chen et al. showed that SGD dynamics commonly exhibits rich, complex dynamics when
navigating through the loss landscape (Chen et al., 2020). Recently Gurbuzbalaban et al. (2020)
and Hodgkinson and Mahoney (2021) have simultaneously shown that the law of the SGD iterates
can converge to a heavy-tailed stationary distribution with infinite variance when the step-size η
is large and/or the batch-size B is small. These results form a theoretical basis for the origins of
the observed heavy-tailed behavior of SGD in practice. The authors proved generalization bounds
for SGD under the assumption that its trajectories can be well-approximated by the Feller Process
(Capocelli and Ricciardi, 1976), a Markov-based stochastic process. Modeling the trajectories of
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SGD using a stochastic differential equation (SDE) under heavy-
tailed gradient noise has shed light on several interesting
characteristics of SGD.

In contrast, the generalizability analysis of STDP trained
SNNs, although important, has received much less attention.
Few studies have shown that, in general, the biological learning
process in the human brain has significantly good generalization
properties (Sinz et al., 2019; Zador, 2019). However, none of them
have characterized the generalization of an STDP-trained SNN
using a mathematical model. There is little understanding of how
hyperparameters of the STDP process impact the generalizability
of the trained SNNmodel. Moreover, the generalization of STDP
cannot be characterized by directly adopting similar studies for
SGD. For example, SGD has been modeled as a Feller process for
studying generalizability.

Rossum et al. showed that random variations arise due
to the variability in the amount of potentiation (depression)
between the pre-and post-synaptic events at fixed relative timing
(Van Rossum et al., 2000). At the neuron level, fluctuations
in relative timing between pre-and post-synaptic events also
contribute to random variations (Roberts and Bell, 2000).
For many STDP learning rules reported in the literature, the
dynamics instantiate aMarkov process (Bell et al., 1997;Markram
et al., 1997; Bi and Poo, 1998; Han et al., 2000; Van Rossum
et al., 2000); changes in the synaptic weight depend on the
learning rule only on the current weight and a set of random
variables that determine the transition probabilities. However,
recent literature has shown that weight update using STDP is
better modeled as an Ornstein-Uhlenbeck process (Câteau and
Fukai, 2003; Legenstein et al., 2008; Aceituno et al., 2020).

As described by Camuto et al. (2021), fractals are complex
patterns, and the level of this complexity is typically measured
by the Hausdorff dimension (HD) of the fractal, which is a
notion of dimension. Recently, assuming that SGD trajectories
can be well-approximated by a Feller Process, it is shown that
the generalization error,which is the difference between the
training and testing accuracy, can be controlled by the Hausdorff
dimension of the trajectories of the SDE Simsekli et al. (2020a).
That is, the ambient dimension that appears in classical learning
theory bounds is replaced with the Hausdorff dimension. The
fractal geometric approach presented by Simsekli et al. can
capture the low dimensional structure of fractal sets and provides
an alternative perspective to the compression-based approaches
that aim to understand why over parametrized networks do
not overfit.

This paper presents a model to characterize the
generalizability of the STDP process and develops a methodology
to optimize hyperparameters to improve the generalizability of
an STDP-trained SNN. We use the fact that the sample paths of
a Markov process exhibit a fractal-like structure (Xiao, 2003).
The generalization error over the sample paths is related to the
roughness of the random fractal generated by the drivingMarkov
process which is measured by the Hausdorff dimension (Simsekli
et al., 2020a) which is in turn dependent on the tail behavior of
the driving process. The objective of the paper is to get a model
which is more generalizable in the sense that the performance of
the network on unknown datasets should not differ much from

its performance in the training dataset. It is to be noted that in
this paper we are using the generalization error as the metric
of generalizability of the network. Generalization error is not a
measure of absolute accuracy, but rather the difference between
training and test accuracy.

Normally, the validation loss of a model on a testing set
is used to characterize the accuracy of that model. However,
the validation loss is dependent on the choice of the test
set, and does not necessarily give a good measure of the
generalization of the learning process. Therefore, generalization
error in a model is generally measured normally measured by
comparing the difference between training and testing accuracy
- a more generalizable model has less difference between
training and testing accuracy (Goodfellow et al., 2016). However,
such a measure of generalization error requires computing the
validation loss (i.e., testing accuracy) for a given test dataset.
To optimize the generalizability of the model, we need an
objective function that measures the generalizability of the
learning process. If the validation loss is used as a measure, then
for each iteration of the optimization, we need to compute this
loss by running the model over the entire dataset, which will
significantly increase the computation time. We use Hausdorff
Dimension as a measure of generalizability of the STDP process
to address the preceding challenges. First, the Hausdorff measure
characterizes the fractal nature of the sample paths of the learning
process itself and does not depend on the testing dataset. Hence,
HD provides a better (i.e., test set independent) measure of
the generalization of the learning process. Second, HD can be
computed during the training process itself and does not require
running inference on the test data set. This reduces computation
time per iteration of the optimization process.

We model the STDP learning as an Ornstein-Uhlenbeck
process which is a Markov process and show that the
generalization error is dependent on the Hausdorff dimension
of the trajectories of the STDP process. We use the SDE
representation of synaptic plasticity and model STDP learning as
a stochastic process that solves the SDE.

Using the Hausdorff dimension we study the generalization
properties of an STDP trained SNN for image classification. We
compare three different STDP processes, namely, log-STDP, add-
STDP, and mult-STDP, and show that the log-STDP improves
generalizability. We show that modulating hyperparameters
of the STDP learning rule and learning rate changes the
generalizability of the trained model. Moreover, using log-
STDP as an example, we show the hyperparameter choices that
reduce generalization error increases the convergence time, and
training loss, showing a trade-off between generalizability and
the learning ability of a model. Motivated by the preceding
observations, we develop a Bayesian optimization technique for
determining the optimal set of hyperparameters which gives an
STDP model with the least generalization error. We consider an
SNN model with 6,400 learning neurons trained using the log-
STDP process. Optimizing the hyperparameters of the learning
process using Bayesian Optimization shows a testing accuracy of
90.65% and a generalization error of 3.17 on the MNIST dataset.
This shows a mean increase of almost 40% in generalization
performance for a mean drop of about 1% in testing accuracy
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in comparison to randomly initialized training hyperparameters.
In order to further evaluate the learning methodologies, we also
evaluated them on themore complex FashionMNIST dataset and
observed a similar trend.

2. MATERIALS AND METHODS

2.1. Background
2.1.1. Spiking Neural Networks
We chose the leaky integrate-and-fire model of a neuron where
the membrane voltage X is described by

τ
dX

dt
= (Erest − X)+ ge (Eexc − X)+ gi (Einh − X)

where Erest is the resting membrane potential; Eexc and Einh are
the equilibrium potentials of excitatory and inhibitory synapses,
respectively; and ge and gi are the conductances of excitatory and
inhibitory synapses, respectively. The time constant τ , is longer
for excitatory neurons than for inhibitory neurons. When the
neuron’s membrane potential crosses its membrane threshold,
the neuron fires, and its membrane potential is reset. Hence, the
neuron enters its refractory period and cannot spike again for the
duration of the refractory period.

Synapses are modeled by conductance changes, i.e., synapses
increase their conductance instantaneously by the synaptic
weight w when a pre-synaptic spike arrives at the synapse,
otherwise, the conductance decays exponentially. Thus, the
dynamics of the conductance g can be written as:

τg
dg

dt
= −g (1)

If the pre-synaptic neuron is excitatory, the dynamics of the
conductance is g = ge with the time constant of the excitatory
post-synaptic potential being τg = τge . On the other hand, if
the pre-synaptic neuron is inhibitory, it’s synaptic conductance
is given as g = gi and the time constant of the inhibitory
post-synaptic potential as τg = τgi .

2.1.2. STDP Based Learning Methods
Spike-timing-dependent plasticity is a biologically plausible
learning model representing the time evolution of the
synaptic weights as a function of the past spiking activity
of adjacent neurons.

In a STDP model, the change in synaptic weight induced by
the pre-and post-synaptic spikes at times tpre, tpost are defined by:

1W = η(1+ ζ )H
(

W; tpre − tpost
)

(2)

where the learning rate η determines the speed of learning. The
Gaussian white noise ζ with zero mean and variance σ 2 describes
the variability observed in physiology. The function H(W; u)
describes the long term potentiation (LTP) and depression (LTD)
based on the relative timing of the spike pair within a learning
window u = tpre − tpost , and is defined by:

H(W; u) =







a+(W) exp
(

− |u|
τ+

)

for u < 0

−a−(W) exp
(

− |u|
τ−

)

for u > 0
(3)

The shape of the weight distribution produced by STDP can be
adjusted via the scaling functions a±(W) in (3) that determine
the weight dependence. We study three different types of STDP
processes, namely, add-STDP, mult-STDP, and log-STDP. All
STDP models follow the Equations (2) and (3), however, they
have different scaling functions (a±) in (3) as discussed below.
The weight distributions of these three different STDP processes
at the end of the last training iteration are shown in Figure 1.
At the beginning of the training iterations, the distribution
is uniform for all three reflecting on the weight initialization
conditions. Additive STDP gives rise to strong competition
among synapses, but due to the absence of weight dependence,
it requires hard boundaries to secure the stability of weight
dynamics. To reach a stability point for the add-STDP, we
followed the analysis done by Gilson and Fukai (2011) and
Burkitt et al. (2004) and chose the fixed point W0 = 0.006.
Figure 1 approximates the probability density function based on
the weight distributions of the different STDP models. We are
using a Gaussian KDE to get this pdf from the empirical weight
distribution obtained. Given N independent realizations XN ≡
{X1, . . . ,XN} from an unknown continuous probability density
function (p.d.f.) f on X , the Gaussian kernel density estimator is
defined as

f̂ (x; t) = 1

N

N
∑

i=1

φ (x,Xi; t) , x ∈ R (4)

where

φ (x,Xi; t) =
1√
2π t

e−(x−Xi)
2/(2t) (5)

is a Gaussian p.d.f. (kernel) with location Xi and scale
√
t. The

scale is usually referred to as the bandwidth. Much research has
been focused on the optimal choice of t, because the performance

of f̂ as an estimator of f depends crucially on its value (Sheather
and Jones, 1991; Jones et al., 1992).

Logarithmic STDP (log-STDP) (Gilson and Fukai, 2011).
The scaling functions of log-STDP is defined by:

a+(W) = c+ exp (−W/W0γ ) (6)

a−(W) =











c−W/W0 for W ≤ W0

c−

[

1+
ln

[

1+S

(

W
W0

−1
)]

S

]

for W >W0
(7)

In this study, W0 is chosen such that LTP and LTD in log-STDP
balance each other for uncorrelated inputs, namely A (W0) =
τ+a+ (W0)−τ−a− (W0) ≃ 0. Therefore,W0 will also be referred
to as the “fixed point” of the dynamics. Since depression increases
sublinearly (blue solid curve for a− in Figure 1), noise in log-
STDP is weaker than that for mult-STDP for which depression
increases linearly (orange dashed curve for a− in Figure 1).

The weight dependence for LTD in logSTDP is similar to
mult-STDP for W ≤ W0, i.e., it increases linearly with W.
However, the LTD curve a− becomes sublinear for W ≥ W0,
and S determines the degree of the log-like saturation. For larger
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FIGURE 1 | (A) Resulting weight distribution for log-STDP (Gilson and Fukai, 2011);multSTDP (Van Rossum et al., 2000) and add-STDP (Song et al., 2000). (B) Plot

for Functions a+ for LTP and −f− for LTD in log-STDP (blue solid curve); mult-STDP (orange dashed line); and add-STDP model green dashed-dotted curve for

depression and orange dashed curve for potentiation.

S , LTD has a more pronounced saturating log-like profile and the
tail of the synaptic weight distribution extends further.

We choose the function a+ for LTP to be roughly constant
aroundW0, such that the exponential decay controlled by γ only
shows for W >> W0. Thus, the scaling functions a+, a−, S ,
and γ are the hyperparameters that can be tuned to model an
efficient log-STDP learning model. tAs discussed by Gilson and
Fukai (2011), we choose the activation function a+ to be roughly
constant around the threshold fixed-point weight W0. For W ≥
W0, the exponential decay factor γ of log-STDP coincides with
mlt-STDP when S → 0 and γ → ∞. Log-STDP tends toward
add-STDP when S → ∞ and γ → ∞. High values of S leads
to stronger saturation of LTD and large values of γ leads to a
stronger potentiation and keeps LTP almost constant which leads
to favoring a winner-takes-all behavior.

Additive STDP (add-STDP) (Song et al., 2000). It is weight
independent and is defined by the following scaling functions:

a+(W) = c+
a−(W) = c−

(8)

with c+τ+ < c−τ− such that LTD overpowers LTP. The drift
due to random spiking activity thus causes the weights to be
depressed toward zero, which provides some stability for the
output firing rate (Gilson and Fukai, 2011). For the simulations,
we are using a fast learning rate that is synonymous to a high level
of noise, and more stability. This requires a stronger depression.
Thus, we use c+ = 1 and c− = 0.6.

Multiplicative STDP (mult-STDP) (Van Rossum et al., 2000).
The multiplicative STDP has a linear weight dependence for LTD
and constant LTP:

a+(W) = c+ (9)

a−(W) = c−W (10)

The equilibrium mean weight is then given by W∗
av = c+τ+

/ (c−τ−) . For the simulations we use c+ = 1 and c− = 0.5/W0 =
2. This calibration corresponds to a similar neuronal output firing
rate to that for log-STDP in the case of uncorrelated inputs.

2.1.3. Generalization - Hausdorff Dimension and Tail

Index Analysis
Recent works have discussed the generalizability of SGD based on
the trajectories of the learning algorithm. Simsekli et al. (2020a)
identified the complexity of the fractals generated by a Feller
process that approximates SGD. The intrinsic complexity of a
fractal is typically characterized by a notion called the Hausdorff
dimension (Le Guével, 2019; Lőrinczi and Yang, 2019), which
extends the usual notion of dimension to fractional orders. Due to
their recursive nature, Markov processes often generate random
fractals (Xiao, 2003). Significant research has been performed in
modern probability theory to study the structure of such fractals
(Khoshnevisan, 2009; Bishop and Peres, 2017; Khoshnevisan and
Xiao, 2017; Yang, 2018). Thus, the STDP learning method follows
an Ornstein-Uhlenbeck (O-U) process which is a special type
of Lévy process. Again, the Hausdorff Dimension measures the
roughness of the fractal patterns of the sample paths generated by
the stochastic process which is measured using the tail properties
of the Lévy measure of the O-U process. Lévy measure is a Borel
measure on R

d\{0} satisfying
∫

Rd ‖x‖2/
(

1+ ‖x‖2
)

ν(dx) <

∞. The Ornstein-Uhlenbeck process which is a Lévy process
can thus be characterized by the triplet (b,6, ν) where b ∈
R
d denotes a constant drift, 6 ∈ R

d×d is a positive semi-
definite matrix and ν is the Lévy measure as defined above.
Thus, taking Lévy processes as stochastic objects, their sample
path behavior can be characterized by the Hausdorff dimension
which is in turn measured using the BG-indices. Thus, the
generalization properties of the STDP process can be modeled
using the Hausdorff dimension of the sample paths of the O-
U process. We formally define the Hausdorff dimension for
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the Ornstein-Uhlenbeck process modeling the STDP learning
process in section 3.2.

2.2. STDP as a Stochastic Process
In this paper, we evaluate the generalization properties of an
STDP model using the concept of the Hausdorff dimension. In
this section, we discuss the learning methodology of STDP and
how the plasticity change can be modeled using a stochastic
differential equation. The state of a neuron is usually represented
by its membrane potential X which is a key parameter to
describe the cell activity. Due to external input signals, the
membrane potential of a neuron may rise until it reaches some
threshold after which a spike is emitted and transferred to the
synapses of neighboring cells. To take into account the important
fluctuations within cells, due to the spiking activity and thermal
noise, in particular, a random component in the cell dynamics has
to be included in mathematical models describing the membrane
potential evolution of both the pre-and post-synaptic neurons
similar to the analysis shown by Robert and Vignoud (2020).
Several models take into account this random component using
an independent additive diffusion component, like Brownian
motion, of the membrane potential X. In our model of synaptic
plasticity, the stochasticity arises at the level of the generation
of spikes. When the value of the membrane potential of the
output neuron is at X = x, a spike occurs at rate β(x) where
β is the activation function (Chichilnisky, 2001). In particular,
we consider the instants when the output neuron spikes are
represented by an inhomogeneous Poisson process as used by
Robert and Vignoud (2020). Thus, in summary, (1) The pre-
synaptic spikes are modeled using a Poisson process and hence,
there is a random variable added to membrane potential. (2)
The post-synaptic spikes are generated using a stochastic process
based on the activation function. Hence, STDP, which depends
on the pre-and post-synaptic spike times can be modeled using
a stochastic differential equation (SDE). Hence, we formulate the
STDP as a SDE. The SDE of a learning algorithm shares similar
convergence behavior of the algorithm and can be analyzed more
easily than directly analyzing the algorithm.

2.2.1. Mathematical Setup
We consider the STDP as an iterative learning algorithmAwhich
is dependent on the dataset D and the algorithmic stochasticity
U . The learning process A(D,U) returns the entire evolution of
the parameters of the network in the time frame [0,T] where
[A(D,U)]t = Wt being the parameter value returned by the
STDP learning algorithm at time t. So, for a given training set D,
the learning algorithm A will output a random process wt∈[0,T]
indexed by time which is a trajectory of iterates.

In the remainder of the paper, we will consider the case where
the STDP learning process A is chosen to be the trajectories
produced by the Ornstein-Uhlenbeck (O-U) process W(D),
whose symbol depends on the training set D. More precisely,
given D ∈ Zn, the output of the training algorithm A(D, ·)
will be the random mapping t 7→ W

(D)
t , where the symbol of

W(D) is determined by the drift bD(w), diffusion matrix 6D(w),
and the Lévy measure νD(w, ·), which all depend on U . In this
context, the random variable U represents the randomness that is

incurred by the O-U process. Finally, we also define the collection
of the parameters given in a trajectory, as the image ofA(D), i.e.,

WD : =
{

w ∈ R
d
: ∃t ∈ [0, 1],w = [A(D)]t

}

and the collection

of all possible parameters as the unionW : =
⋃

n≥1

⋃

D∈Zn WS.
Note thatW is still random due to its dependence on U .

We consider the dynamics of synaptic plasticity as a function
of the membrane potential X(t) and the synaptic weightW(t).

2.2.2. Time Evolution of Synaptic Weights and

Plasticity Kernels
As described by Robert and Vignoud (2020), the time evolution
of the weight distribution W(t) depends on the past activity of
the input and output neurons. It may be represented using the
following differential equation:

dW(t)

dt
= M(�p(t),�d(t),W(t)) (11)

where�p(t),�d(t) are two non-negative processes where the first
one is associated with potentiation i.e., increase in W and the
latter is related to the depression i.e., decrease inW. The function
M needs to be chosen such that the synaptic weight W stays at
all-time in its definition interval KW . The functionM can thus be
modified depending on the type of implementation of STDP that
is needed. Further details regarding the choice ofM for different
types of STDP is discussed by Robert and Vignoud (2020).

When the synaptic weight of a connection between a pre-
synaptic neuron and a post-synaptic neuron is fixed and equal to
W, the time evolution of the post-synaptic membrane potential
X(t) is represented by the following stochastic differential
equation (SDE) (Robert and Vignoud, 2020):

dX(t) = − 1

τ
X(t)dt +WNλ(dt)− g(X(t−))Nβ ,X( dt) (12)

whereX(t−) is the left limit ofX at t > 0, and τ is the exponential
decay time constant of the membrane potential associated with
the leaking mechanism. The sequence of firing instants of the
pre-synaptic neuron is assumed to be a Poisson point processNλ

onR+ with the rate λ. At each pre-synaptic spike, the membrane
potentialX is increased by the amountW. IfW > 0 the synapse is
said to be excitatory, whereas forW < 0 the synapse is inhibitory.
The sequence of firing instants of the post-synaptic neuron is
an inhomogeneous Poisson point process Nβ ,X on R+ whose
intensity function is t 7→ β(X(t−)). The drop of potential due
to a post-synaptic spike is represented by the function g. When
the post-synaptic neuron fires in-state X(t−) = x, its state X(t)
just after the spike is x− g(x).

2.2.3. Uniform Hausdorff Dimension
TheHausdorff dimension for the training algorithmA is a notion
of complexity based on the trajectories generated by A. Recent
literature has shown that the synaptic weight update using an
STDP rule can be approximated using a type of stochastic process
called the Ornstein-Uhlenbeck process which is a type of Markov
process (Câteau and Fukai, 2003; Legenstein et al., 2008; Aceituno
et al., 2020). Hence, we can infer that the STDP process will
also have a uniform Hausdorff dimension for the trajectories.
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FIGURE 2 | Plot showing the trajectories of the α−stable Lévy process Lαt for varying values of α.

We use the Hausdorff Dimension of the sample paths of the
STDP based learning algorithm which has not been investigated
in the literature.

Let 8 be the class of functions ϕ :(0, δ) → (0,∞) which are
right continuous, monotone increasing with ϕ(0+) = 0 and such
that there exists a finite constant K > 0 such that

ϕ(2s)

ϕ(s)
≤ K, for 0 < s <

δ

2
(13)

A function ϕ in8 is often called a measure function. For ϕ ∈ 8,
the ϕ-Hausdorff measure of E ⊆ R

d is defined by

ϕm(E) = lim
ε→0

inf

{

∑

i

ϕ (2ri) :E ⊆
∞
⋃

i=1

B (xi, ri) , ri < ε

}

(14)

where B(x, r) denotes the open ball of radius r centered at x. The
sequence of balls satisfying Equation (14) is called an ε -covering
of E. We know that ϕm is a metric outer measure and every Borel
set inRd is ϕm measurable. Thus, the function ϕ ∈ 8 is called the
Hausdorff measure function for E if 0 < ϕm(E) <∞.

It is to be noted here that in Equation (14), we only use
coverings of E by balls, hence ϕm is usually called a spherical
Hausdorff measure in the literature. Under Equation (13), ϕm is
equivalent to the Hausdorff measure defined by using coverings
by arbitrary sets. The Hausdorff dimension of E is defined by

dimH E = inf
{

α > 0 : sα −m(E) = 0
}

. (15)

The STDP learning process is modeled using the SDEs for the
temporal evolution of the synaptic weights and the membrane
potential given in Equations (11), (12). Considering the empirical
observation that STDP exhibits a diffusive behavior around a
local minimum (Baity-Jesi et al., 2018), we take wD to be the
local minimum found by STDP and assume that the conditions
of Proposition hold around that point. This perspective indicates
that the generalization error can be controlled by the BG index
βD of the Lévy process defined by ψS(ξ ); the sub-symbol of the
process (11) around wD . The choice of the SDE (11) imposes
some structure on ψD , which lets us express βD in a simpler

form. This helps us in estimating the BG index for a general Lévy
process. As shown by Simsekli et al., there is a layer-wise variation
of the tail-index of the gradient noise in a DNN-basedmulti-layer
neural network (Simsekli et al., 2019). Thus, for our STDP model
we assume that around the local minimum wD , the dynamics of
STDP will be similar to the Lévy motion with frozen coefficients:
62 (wS) L

α(wD). Also assuming the coordinates corresponding to
the same layer l have the same tail-index αl around wD , the BG
index can be analytically computed as βD = maxl αl ∈ (0, 2]
(Meerschaert and Xiao, 2005). We note here that dimH WD and
thus, βD determines the order of the generalization error. Using
this simplification, we can easily compute βD , by first estimating
each αl by using the estimator proposed by Mohammadi et al.
(2015), that can efficiently estimate αl by usingmultiple iterations
of the STDP learning process.

As explained by Simsekli et al. (2020a), due to the
decomposability property of each dataset D, the stochastic
process for the synaptic weights given by W(D)(t) behaves like
a Lévy motion around a local point w0. Because of this locally
regular behavior, the Hausdorff dimension can be bounded by the
Blumenthal-Getoor (BG) index (Blumenthal and Getoor, 1960),
which in turn depends on the tail behavior of the Lévy process.
Thus, in summary, we can use the BG-index as a bound for the
Hausdorff dimension of the trajectories from the STDP learning
process. Now, as the Hausdorff dimension is a measure of the
generalization error and is also controlled by the tail behavior of
the process, heavier-tails imply less generalization error (Simsekli
et al., 2020a,b).

To further demonstrate the heavy-tailed behavior of the
Ornstein-Uhlenbeck process (a type of α−stable Lévy process
Lαt ) that characterizes the STDP learning mechanism, we plot its
trajectories and their corresponding pdf distributions. We plot
these for varying values of the stability factor of the Lévy process
Lαt , α. We hence also plotted the probability density function
of the Lévy processes to show the heavy-tailed nature of the
Lévy trajectories as the tail index α decreases. Figure 2 shows a
continuous-time randomwalk performed using the O-U random
process in 3D space. In the figure, X, Y, Z are random variables
for the α-stable distributions generated using the O-U process.
Figure 3, shows the corresponding probability density function
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FIGURE 3 | Figure showing the probability density functions of the α−stable

Lévy process Lαt for varying values of α.

of the O-U process for varying values of α corresponding to the
different trajectories shown in Figure 2. From Figures 2, 3, that
as the O-U process becomes heavier-tailed (i.e., α decreases), and
the Hausdorff dimension dimH gets smaller.

2.3. Optimal Hyperparameter Selection
Using the Hausdorff Dimension as a metric for the
generalizability of the learning process, we formulate an
optimization process that selects the hyperparameters of the
STDP process to improve the generalizability of the models. The
Hausdorff dimension is a function of the hyperparameters of
the STDP learning process. Thus, we formulate an optimization
problem to select the optimal hyperparameters of the STDP
using the Hausdorff dimension of the STDP learning process
as the optimization function. Now, since the BG-index is
the upper bound of the Hausdorff dimension, as discussed
earlier, we in turn aim to optimize the BG-index of the STDP
stochastic process. The optimization problem aims to get the
optimal set of hyperparameters of the STDP process that can
give a more generalizable model without looking at the test
set data. Now, given an STDP process, we aim to tune its
hyperparameters to search for a more generalizable model. Let us
define λ : = {λ1, . . . , λN}where λ is the set ofN hyperparameters
of the STDP process, λ1, . . . , λN . Let3i denote the domain of the
hyperparameter λi. The hyperparameter space of the algorithm
is thus defined as 3 = 31 × . . . × 3N . Now, we aim to
design the optimization problem to minimize the Hausdorff
Dimension of the learning trajectory for the STDP process.
This is calculated over the last training iteration of the model,
assuming that it reaches near the local minima. When trained
with λ ∈ 3 on the training dataDtrain, we denote the algorithm’s
Hausdorff dimension as dimH G(λ;Dtrain). Thus, using K-fold
cross validation, the hyperparameter optimization problem for a
given dataset D is to given as follows:

λs = argmin
λ∈3

1

K

K
∑

i=1

dimH G(λ;Dtrain) (16)

We choose the Sequential Model-based Bayesian Optimization
(SMBO) technique for this problem (Feurer et al., 2015). SMBO
constructs a probabilistic model M of f = dimH G based on
point evaluations of f and any available prior information. It then
uses that model to select subsequent configurations λ to evaluate.
Given a set of hyperparameters λ for an STDP learning processG,
we define the point functional evaluation as the calculation of the
BG index ofGwith the hyperparameters λ. The BG index gives an
upper bound on the Hausdorff dimension of the learning process.
In order to select its next hyperparameter configuration λ using
model M, SMBO uses an acquisition function aM :λ → R,
which uses the predictive distribution of model M at arbitrary
hyperparameter configurations λ ∈ 3. This function is then
maximized over 3 to select the most useful configuration λ to
evaluate next. There exists a wide range of acquisition functions
(Mockus et al., 1978), all of whom aim to trade-off between
exploitation and exploration. The acquisition function tries to
balance between locally optimizing hyperparameters in regions
known to perform well and trying hyperparameters in a relatively
unexplored region of the space.

In this paper, for the acquisition function, we use the expected
improvement (Mockus et al., 1978) over the best previously-
observed function value fmin attainable at a hyperparameter
configuration λ where expectations are taken over predictions
with the current modelM:

a(λ,M) =
∫ fmin

−∞
max

{

fmin − f , 0
}

· pM(f | λ)df (17)

3. RESULTS

3.1. Experimental Setup
We empirically study the generalization properties of the STDP
process by designing an SNN with 6,400 learning neurons for
hand-written digit classification using the MNIST dataset. The
MNIST dataset contains 60, 000 training examples and 10, 000
test examples of 28 × 28 pixel images of the digits 0 − 9. It must
be noted here that the images from the ten classes in the MNIST
dataset are randomized so that there is a reinforcement of the
features learned by the network.

3.1.1. Architecture
We use a two-layer SNN architecture as done by the
implementation of Diehl and Cook (2015) as shown in Figure 4.
The first layer is the input layer, containing 28× 28 neurons with
one neuron per image pixel. The second layer is the processing
layer, with an equal number of excitatory and inhibitory neurons.
The excitatory neurons of the second layer are connected in a
one-to-one fashion to inhibitory neurons such that each spike
in an excitatory neuron will trigger a spike in its corresponding
inhibitory neuron. Again, each of the inhibitory neurons is
connected to all excitatory ones, except for the one from
which it receives a connection. This connectivity provides lateral
inhibition and leads to competition among excitatory neurons.
There is a balance between the ratio of inhibitory and excitatory
synaptic conductance to ensure the correct strength of lateral
inhibition. For a weak lateral inhibition, the conductance will not
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FIGURE 4 | The intensity values of the MNIST image are converted to Poisson-spike trains. The firing rates of the Poisson point process are proportional to the

intensity of the corresponding pixel. These spike trains are fed as input in an all-to-all fashion to excitatory neurons. In the figure, the black shaded area from the input

to the excitatory layer shows the input connections to one specific excitatory example neuron. The red shaded area denotes all connections from one inhibitory

neuron to the excitatory neurons. While the excitatory neurons are connected to inhibitory neurons via one-to-one connection, each of the inhibitory neurons is

connected to all excitatory ones, except for the one it receives a connection from.

have any influence while an extremely strong signal would ensue
that one dominant neuron suppresses the other ones.

The task for the network is to learn a representation of the
dataset on the synapses connecting the input layer neurons to the
excitatory layer neurons. The excitatory-inhibitory connectivity
pattern creates competition between the excitatory neurons.
This allows individual neurons to learn unique filters where the
single most spiked neuron in each iteration updates its synapse
weights to match the current input digit using the chosen STDP
rule. Increasing the number of neurons allows the network to
memorize more examples from the training data and recognize
similar patterns during the test phase.

3.1.2. Homeostasis
The inhomogeneity of the input leads to different firing rates of
the excitatory neurons, and lateral inhibition further increases
this difference. However, all neurons should have approximately
equal firing rates to prevent single neurons from dominating the
response pattern and to ensure that the receptive fields of the
neurons differentiate. To achieve this, we employ an adaptive
membrane threshold resembling intrinsic plasticity (Zhang and
Linden, 2003). Specifically, each excitatory neuron’s membrane
threshold is not only determined by vthresh but by the sum
vthresh + θ , where θ is increased every time the neuron fires
and is exponentially decaying (Querlioz et al., 2013). Therefore,

the more a neuron fires, the higher will be its membrane
threshold and in turn, the neuron requires more input to a
spike soon. Using this mechanism, the firing rate of the neurons
is limited because the conductance-based synapse model limits
the maximum membrane potential to the excitatory reversal
potential Eexc, i.e., once the neuron membrane threshold is close
to Eexc (or higher) it will fire less often (or even stop firing
completely) until θ decreases sufficiently.

3.1.3. Input Encoding
The input image is converted to a Poisson spike train with firing
rates proportional to the intensity of the corresponding pixel.
This spike train is then presented to the network in an all-to-all
fashion for 350 ms as shown in Figure 4. The maximum pixel
intensity of 255 is divided by 4, resulting in input firing rates
between 0 and 63.75 Hz. Additionally, if the excitatory neurons
in the second layer fire less than five spikes within 350 ms, the
maximum input firing rate is increased by 32 Hz and the example
is presented again for 350 ms. This process is repeated until
at least five spikes have been fired during the entire time the
particular example was presented.

3.1.4. Training and STDP Dynamics Analysis
To train the network, we present digits from the MNIST training
set to the network. It is to be noted that, before presenting a
new image, no input to any variable of any neuron is given

Frontiers in Neuroscience | www.frontiersin.org 8 October 2021 | Volume 15 | Article 695357

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Chakraborty and Mukhopadhyay Characterization of Generalizability of STDP

TABLE 1 | Table showing the set of hyperparameters for various STDP processes.

Hyperparameter logSTDP addSTDP multSTDP

Synaptic Delay 0.75 ms 0.75 ms 0.75 ms

Synaptic epsp τA 1 ms 1 ms 1 ms

Synaptic epsp τB 5 ms 5 ms 5 ms

Number of correlated pools 4 4 4

Number of neurons per pool 50 50 50

Spiking rate of inputs 10 Hz 10 Hz 10 Hz

Learning rate (η) 0.0002 0.0002 0.0002

STDP Apre (LTP) time constant 17 ms 17 ms 17 ms

STDP Apre (LTD) time constant 34 ms 34 ms 34 ms

Increase in Apre (LTP), on pre-spikes Apre0 1.0 1.0 1.0

Increase in Apost (LTD), on post-spikes Apost0 0.5 0.55 100

LTD curvature factor t(S ) 5 N/A N/A

Exponential LTP decay factor t(γ ) 50 N/A N/A

Threshold fixed-point weight (W0) 0.006 N/A N/A

for a time interval of 150 ms. This is done to decay to their
resting values. All the synaptic weights from input neurons to
excitatory neurons are learned using the STDP learning process
as described in section 2.1.2. To improve simulation speed, the
weight dynamics are computed using synaptic traces such that
every time a pre-synaptic spike xpre arrives at the synapse, the
trace is increased by 1 (Morrison et al., 2007). Otherwise, xpre
decays exponentially. When a post-synaptic spike arrives at the
synapse the weight change 1w is calculated based on the pre-
synaptic trace as described in section 2.1.2. To evaluate themodel,
we divide the training set into 100 divisions of 600 images each
and check the model performance after each such batch is trained
using the STDP learningmodel. In the remainder of the paper, we
call this evaluation of the model after 600 images as one iteration.

3.1.5. Inference
After the training process is done, the learning rate is set to zero
and each neuron’s spiking threshold is fixed. A class is assigned
to each neuron based on its highest response to the ten classes
of digits over one presentation of the training set. This is the
first time labels are used in the learning algorithm, which makes
it an unsupervised learning method. The response of the class-
assigned neurons is used to predict the digit. It is determined
by taking the mean of each neuron response for every class and
selecting the class with the maximum average firing rate. These
predictions are then used to measure the classification accuracy
of the network on the MNIST test set.

3.1.6. Computation of Generalization Error and

Hausdorff Dimension
We empirically study the generalization behavior of STDP
trained SNNs. We vary the hyperparameters of the STDP
learning process which controls the LTP/LTD dynamics of the
STDP learning algorithm. Table 1 shows the hyperparameters
for various STDP processes. We trained all the models for
100 training iterations. In this paper, we consider the synaptic
weight update to follow a Lévy process, i.e., continuous with

discrete jumps similar to the formulation of Stein (1965) and
Richardson and Swarbrick (2010). As discussed in section 2.2, the
generalizability can be measured using the Hausdorff dimension
which is bounded by BG-index.

Therefore, the BG-index is computed in the last iterationwhen
all the neurons have learned the input representations. We also
compute the generalization error as the difference between the
training and test accuracy. we study the relations between BG-
index, generalization error, testing accuracy, and convergence
behavior of the networks.

3.2. Analysis of Generalizability of STDP
Processes
3.2.1. Impact of Scaling Functions
Kubota et al. showed that the scaling functions play a vital
role in controlling the LTP/LTD dynamic of the STDP learning
method (Kubota et al., 2009). In this subsection, we evaluate the
impact of scaling functions (i.e., a± in the Equation 3) on the
generalizability properties of the STDP methods. We define the
ratio of the post-synaptic scaling function to the pre-synaptic one
(i.e., c+/c− in add-, mult-, and log- STDP equations), hereafter
referred to as the scaling function ratio (SFR), as our variable.
Kubota et al. has shown that the learning behavior is best when
this SFR lies between the range of 0.9 to 1.5. Hence, we also
modulate the SFR within this set interval. Table 2 shows the
impact of scaling function on Hausdorff dimension (measured
using BG-index), generalization error, and testing accuracy. We
observe that a smaller SFR leads to a lower Hausdorff dimension
and a lower generalization error, while a higher ratio infers a less
generalizable model. However, a higher SFR marginally increases
the testing accuracy. The analysis shows confirms that a higher
Hausdorff dimension (i.e., a higher BG-index) corresponds to a
higher generalization error, as discussed in section 2.2, justifying
the use of BG-index as a measure of the generalization error. We
also plot the learned digit representations for different SFRs for
better visualization of the distinction in generalization behavior.
The plots are shown in Figure 5.

3.2.2. Impact of the Learning Rate
One of the major parameters that control the weight dynamics
of the STDP processes is the learning rate i.e., the variable η in
Equation (2). In this subsection, we evaluate the effect of the
learning rate on the generalizability of the STDP process. We
have summarized the results in Table 3. We observe that a larger
learning rate converges to a lesser generalizable solution. This
can be attributed to the fact that a higher learning rate inhibits
convergence to sharper minimas; rather facilitates convergence
to a flatter one resulting in a more generalizable solution. We
also observe the monotonic relation between the BG-index and
the generalization error.

3.2.3. Impact of STDP models on Generalizability
In this section, we compare the three different STDP
models, namely, add-STDP, mult-STDP, and log-STDP to
its generalization abilities with changing SFR (scaling function
ratio) and learning rate. The results are summarized in Tables 2,
3. In all the above cases we see that the log-STDP process has a
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TABLE 2 | Impact of the post-synaptic to pre-synaptic scaling functions ratio on generalization.

c+

c−
log-STDP add-STDP mult-STDP

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

2.1 1.352 6.8 89.92 1.969 9.7 88.17 1.824 8.1 89.26

1.7 1.294 6.2 89.98 1.911 9.3 88.12 1.797 7.6 89.15

1.2 1.209 5.9 89.79 1.875 8.9 88.09 1.702 7.0 88.99

0.9 1.174 5.7 89.26 1.799 8.6 88.10 1.633 6.5 88.87

The values noted as generalization error in the table is computed as: (|Training Accuracy–Test Accuracy|).

FIGURE 5 | Neuron connection weights for learned digit representations for (A) SFR = 0.9 and (B) SFR = 2.1.

TABLE 3 | The impact of learning rate on the generalization error.

η log-STDP add-STDP mult-STDP

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

0.2 1.312 6.6 89.12 1.844 9.1 87.69 1.769 7.9 88.38

0.15 1.255 6.1 89.03 1.783 8.9 87.53 1.648 7.4 88.19

0.1 1.112 5.3 88.35 1.698 8.5 87.11 1.596 6.8 87.95

0.05 1.068 5.0 88.01 1.632 8.2 87.02 1.512 6.3 87.82

The values noted as Generalization Error in the table is computed as: (|Training Accuracy–Test Accuracy|).

TABLE 4 | Table showing comparison of the STDP models on the fashion-MNIST dataset.

log-STDP add-STDP mult-STDP

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

BG

index

Generalization error

(| Train Acc. - Test Acc.|)

Testing

accuracy

c+/c_ = 0.9 1.322 10.02 82.43 1.788 13.87 79.16 1.573 11.38 81.92

η = 0.05 1.204 9.93 81.75 1.692 11.73 79.76 1.489 10.11 80.35

The values noted as generalization error in the table is computed as: (|Training Accuracy–Test Accuracy|).
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FIGURE 6 | Figure showing the variation in the training loss with increasing iterations for different types of STDP models keeping (A) SFR= 0.9 and (B) η = 0.05.

significantly lower generalization error compared to the other
two STDP methods. The difference between the generalizability
of various STDP models comes from the nature of the stochastic
distribution of weights generated by different models.

Gilson and Fukai (2011) has discussed that add-STDP (Gütig
et al., 2003) can rapidly and efficiently select synaptic pathways
by splitting synaptic weights into a bimodal distribution of
weak and strong synapses. However, the stability of the
weight distribution requires hard bounds due to the resulting
unstable weight dynamics. In contrast in mult-STDP (Rubin
et al., 2001), weight-dependent update rules can generate
stable unimodal distributions. However, mult-STDP weakens
the competition among synapses leading to only weakly skewed
weight distributions. The probability distributions of the three
different STDPmodels are shown in Figure 1. On the other hand,
log-STDP proposed by Gilson and Fukai (2011) bypass these
problems by using a weight-dependent update rule while does
not make the other synapses weak as in mult-STDP. The log-
STDP results in a log-normal solution of the synaptic weight
distribution as discussed by Gilson and Fukai (2011). A log-
normal solution has a heavier tail and thus a smaller Hausdorff
dimension leading to a lower generalization error. A detailed
comparison of the weight distributions of the three types of
STDP processes can be found in the paper by Gilson and Fukai
(2011). We further evaluated the training loss for iterations for
the different STDP models. The results are plotted in Figure 6.
From the figures, we see that the log-STDP outperforms the
add-STDP and the mult-STDP in terms of training loss for either
case.

3.2.4. Impact on Different Datasets
To demonstrate the generalizability of the STDP models, we
also tested its performance on Fashion-MNIST (Xiao et al.,
2017) which is an MNIST-like fashion product dataset with 10
classes. Fashion-MNIST shares the same image size and structure
of the training and testing splits as MNIST but is considered
more realistic as its images are generated from front look
thumbnail images of fashion products on Zalando’s website via
a series of conversions. Therefore, Fashion-MNIST poses a more

challenging classification task than MNIST. We preprocessed
the data by normalizing the sum of a single sample gray value
because of the high variance among examples. The results for
SFR c+/c− = 0.9 and learning rate η = 0.05 is shown in
Table 4. We see that as seen in MNIST datasets, for the Fashion-
MNIST also, the log-STDP method has a lower generalization
error corresponding to a lower BG Index.

3.3. Generalizability vs. Trainability Tradeoff
In this section, we study the relations between the generalizability
and trainability of a learning model. For the sake of brevity,
we only focus on the log-STDP process as it has shown better
generalizability compared to add-STDP and mult-STDP.

We plot the training loss as a function of the time evolution
of the synaptic weights trained with the STDP learning method.
Since STDP is an online unsupervised learning algorithm, there
is no formal concept of training loss. So, to evaluate the
performance of the model, we define the training loss as follows:
We divide the MNIST dataset into 100 divisions, with each
division consisting of 600 images. We evaluate the model after
training the model on each subset of the full training dataset and
this is considered as one training iteration. We train the SNN
model using STDP with this limited training dataset. After the
training is done, we set the learning rate to zero and fix each
neuron’s spiking threshold. Then, the image of each class is given
as input to the network, and the total spike count of all the
neurons that have learned that class is calculated. Hence, the spike
counts are normalized by dividing the number of spikes by the
maximum number of spike counts and the cross-entropy loss was
calculated across all the classes. This is defined as the training loss.
To show the confidence interval of each training iteration, we
evaluated each of the partially trained models on the test dataset
5 times, randomizing the order of images for each of the test
runs. We see from Figures 7, 8, that initially, as the model was
trained with fewer images, the variance in training loss was high
demonstrating low confidence. However, as the model is trained
on a larger training set, the variance decreases as expected.

Table 2 and Figure 4 show the training loss vs. the number
of iterations for the log-STDP process for various SFR.
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FIGURE 7 | Figure showing the change in training loss with iterations for varying scaling function ratios for the log-STDP learning process.

FIGURE 8 | Figure showing the change in training loss with iterations for varying learning rates for the log-STDP learning process.

We see that the SFR = c+/c− = 0.9 shows a lower
generalization error and almost similar testing accuracy,
compared to the other SFRs. The results show that increasing
the SFR increases the generalization error. If the pre-synaptic
scaling function is stronger than the post-synaptic scaling
function (i.e., c+/c− is lower), it implies that the synaptic
weights of the neurons gradually decay. Since we have
the images in the MNIST dataset randomized over the

ten classes, the more important features which help in the
generalization ability of the network over unknown data are
reinforced so that the network does not forget these filters
as shown by Panda et al. (2017). Thus, the network only
forgets the less important features and preserves the more
important ones, hence making it more generalizable. Since
the neuron forgets some features which would help to fit
better into the current dataset, it affects its training/testing
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FIGURE 9 | (A) Plots for the impact of the scaling function ratios on generalization (results shown in Table 2). (B) Plots for the impact of the learning rates on

generalization (results shown in Table 3).

TABLE 5 | Table showing the set of hyperparameters used for the Bayesian optimization problem for the log-STDP process.

Hyperparameter Domain
logSTDP add-STDP

Before BO After BO Before BO After BO

Learning

rate (η)
[0.05, 0.2] 0.1 0.063 0.1 0.017

Variance of

Noise ζ (σ )
[0.1, 1] 0.5 0.581 0.5 0.632

Degree of log-like

saturation (S )
Z ∈ [1, 10] 3 5 N/A N/A

Exponential Decay

factor (γ )
Z ∈ [10, 100] 45 57 N/A N/A

Threshold Fixed-point

weight (W0)
[0, 1] 0.5 0.244 N/A N/A

Scaling functions

(c+, c−)
(0,1]×(0,1]

0.5, 0.45

( c+
c−

= 1.11)

0.752, 0.788

( c+
c−

= 0.954)

0.5, 0.45

( c+
c−

= 1.11)

0.894, 0.652

( c+
c−

= 1.371)

Time Constants

(ms) (τ+, τ−)
[10,20]×[20, 40] 15,30 17, 36 15,30 18,22

Testing accuracy 91.41 90.65 88.68 89.77

Generalization error 5.79 3.17 8.29 4.61

accuracy as can be seen in Tables 2, 3. Thus, the model
learns the more important features and is essentially
more generalizable. The results for testing accuracy,
generalization error and BG index for varying SFR and
learning rates are shown in Figure 9.

Note here that the training loss for the STDP processes all
reach their convergence around iteration 60 - i.e., images after

that added little information for the training of the model.
The models here are not optimized and hence optimizing the
hyperparameters can also help in reducing the number of images
required for extracting enough information from the training
dataset. Thus, if SFR is too high, training gets messed up since
a neuron starts spiking for multiple patterns, in which case there
is no learning. As the SFR value increases from 1, the SNN tends
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FIGURE 10 | Plot showing the change of BG Index, Training and Testing Accuracy between the add-STDP and log-STDP over functional evaluations during Bayesian

Optimization.

to memorize the training pattern and hence the generalization
performance is poor. On the other hand, if when SFR is less
than 1 but is close to 1, it is hard to memorize the training
patterns as the STDP process tends to forget the patterns which
are non-repeating, leading to better generalization.

On the other hand, if the post-synaptic scaling function is
stronger than the pre-synaptic one (i.e., c+/c− is higher), then the
neurons tend to learn more than one pattern and respond to all
of them. Similar results can be verified from Figure 7 where the
learning rate was varied instead of the SFR. In this study as well
we observe that a higher learning rate, although leads to faster
convergence and lower training loss, leads to a less generalizable
model. Hence, we empirically observe that hyperparameters of
STDPmodels that lead to better generalizability can also make an
SNN harder to train.

3.4. Results of Hyperparameter
Optimization
In section 3.2, we empirically showed that the Hausdorff
dimension is a good measure of the generalizability of the
model and it can be very efficiently controlled using the
hyperparameters of the STDP learning process. In this section,
we show the application of our Bayesian optimization strategy
to search for the optimal hyperparameters to increase the
generalizability of an STDP-trained SNN model. For the
sake of brevity, we demonstrate the application of Bayesian
optimization on the log-STDP process. Table 5 shows the set
of hyperparameters that are optimized and their optimal values
obtained by our approach. It should be clarified here that
the hyper-parameters are not necessarily the absolute global
optimum but a likely local optimum found in the optimization
algorithm. The optimized log-STDP model results in a training
accuracy of 93.75%, testing accuracy of 90.49%, and a BG Index
of 0.718 for the MNIST dataset.

We study the behavior of Bayesian optimization. Each
iteration in the Bayesian optimization process corresponds to
a different set of hyperparameters for the log-STDP model.
Each such iteration is called a functional evaluation. For each
functional evaluation, the Bayesian Optimization trains the SNN
with the corresponding set of hyperparameters of the log-STDP
model and measures the BG-index of the weight dynamics of
the trained-SNN. Figure 10 shows the change in the BG-Index
as a function of a number of the function evaluations of the
search process. It is to be noted here that at each functional
evaluation, we train the network with the STDP learning rule
with the chosen hyperparameters and estimate the Hausdorff
dimension from the trained network. We see that for the optimal
set of hyperparameters, the BG Index converges to 0.7. Figure 10
also shows the corresponding training accuracy of the model
with the change in iteration number. We see that the log-
STDP configurations during Bayesian optimization that have a
higher BG Index (i.e., a higher generalization error) also have
has a higher training accuracy. These results further validate our
observations on the generalizability vs. trainability tradeoff for a
log-STDP trained SNN.

3.4.1. Comparison With Add-STDP
In order to compare the performance of the log-STDP, we
performed a similar analysis using the add-STDP model. The
results of the Bayesian Optimization for the add-STDP and
the log-STDP are plotted in Figure 10. We see that the log-
STDP process outperforms the add-STDP model in terms of
both training/testing accuracy and the generalization error thus
showing the robustness of the log-STDP process. We see that
though the add-STDP has a higher training accuracy, and
a comparable test accuracy, its generalization error is higher
compared to the log-STDP method.
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4. DISCUSSION

In this paper, we presented the generalization properties of the
spike timing-dependent plasticity (STDP) models. A learning
process is said to be more generalizable if it can extract
features that can be transferred easily to unknown testing sets
thus decreasing the performance gap between the training and
testing sets. We provide a theoretical background for the
motivation of the work treating the STDP learning process
as a stochastic process (an Ornstein-Uhlenbeck process) and
modeling it using a stochastic differential equation. We control
the hyperparameters of the learning method and empirically
study their generalizability properties using the Hausdorff
dimension as a measure. From Tables 2, 3 and corresponding
Figure 9, we observed that the Hausdorff Dimension is a good
measure for the estimation of the generalization error of an
STDP-trained SNN. We compared the generalization error and
testing error for the log-STDP, add-STDP, and mult-STDP
models, as shown in Tables 2, 3. We observed that the lognormal
weight distribution obtained from the log-STDP learning process
leads to a more generalizable STDP-trained SNN with a minimal
decrease in testing accuracy. In this paper, when we refer to
a model as more generalizable, we mean there is a smaller
difference between the training and testing performance, i.e., the
generalization error. The objective of the paper was to get amodel
which is more generalizable in the sense that the performance of
the network on unknown datasets should not differ much from
its performance in the training dataset. It is to be noted that in
this paper we are using the generalization error as the metric
of generalizability of the network. Generalization error is not a
measure of absolute accuracy, but rather the difference between
training and testing datasets. As such, we see that models which
have lower generalization error extract lesser andmore important
features compared to less generalizable models. However, we
see that with this reduced set of features, the model has almost
no drop in the testing accuracy, showing the generalizability
of the model at comparable accuracy. Thus, we get a model
which is more generalizable in the sense that the performance
of the network on unknown datasets does not differ much from
its performance in the training dataset. As such, these “more
generalizable” models, extract lesser andmore important features
compared to less generalizable models. However, we see that with
this reduced set of features, the model has almost no drop in
the testing accuracy, showing the generalizability of the model as
we can see from Tables 2, 3. This phenomenon can be explained
using the observations of Panda et al. (2017) on how the ability
to forgets boosts the performance of spiking neuron models.
The authors showed that the final weight value toward the end
of the recovery phase is greater for the frequent input. The
prominent weights will essentially encode the features that are
common across different classes of old and new inputs as the
pre-neurons across those common feature regions in the input
image will have frequent firing activity. This eventually helps the
network to learn features that are more common with generic
representations across different input patterns. This extraction
of more generalizable features can be interpreted as a sort of

regularization wherein the network tries to generalize over the
input rather than overfitting such that the overall accuracy of
the network improves. However, due to this regularization, we
see that the training performance of the network decreases.
However, since the model is more generalizable, the testing
performance remains almost constant as seen in Figure 10. We
further observe that the log-STDP models which have a lower
Hausdorff dimension and hence have lower generalization error,
have a worse trainability i.e., takes a long time to converge
during training and also converges to a higher training loss.
The observations show that an STDP model can have a trade-
off between generalizability and trainability. Finally, we present
a Bayesian optimization problem that minimizes the Hausdorff
dimension by controlling the hyperparameter of a log-STDP
model leading to a more generalizable STDP-trained SNN.

Future work on this topic will consider other models
of STDP. In particular, the stochastic STDP rule where the
probability of synaptic weight update is proportional to the
time difference of the arrival of the pre and post-synaptic
spikes has shown improved accuracy over deterministic STDP
studied in this paper. The trajectories of such a stochastic
STDP model will lead to a Feller process as shown by Kuhn
(Helson, 2017). Hence, in the future, we will perform a similar
Hausdorff dimension-based analysis for generalization for the
stochastic STDP model. Moreover, in this work, we have only
considered the hyperparameters of the STDP model to improve
the generalizability of the SNN. An important extension is
to consider the properties of the neuron dynamics, which
also controls the generation of the spikes and hence, weight
distribution. The choice of the network architecture will also
play an important role in the weight distribution of the
SNN. Therefore, a more comprehensive optimization process
that couples hyperparameters of the STDP dynamics, neuron
dynamics, and network architecture like convolutional SNN
(Kheradpisheh et al., 2018) and heterogeneous SNN (She et al.,
2021) will be interesting future work.
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