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Protein domain families are usually classified on the basis of similarity of amino acid sequences. Selection of a single
representative sequence for each family provides targets for structure determination or modeling and also enables fast
sequence searches to associate new members to a family. Such a selection could be challenging since some of these domain
families exhibit huge variation depending on the number of members in the family, the average family sequence length or
the extent of sequence divergence within a family. We had earlier created 3PFDB database as a repository of best repre-
sentative sequences, selected from each PFAM domain family on the basis of high coverage. In this study, we have im-
proved the database using more efficient strategies for the initial generation of sequence profiles and implement two
independent methods, FASSM and HMMER, for identifying family members. HMMER employs a global sequence similarity
search, while FASSM relies on motif identification and matching. This improved and updated database, 3PFDB+ generated
in this study, provides representative sequences and profiles for PFAM families, with 13519 family representatives having
more than 90% family coverage. The representative sequence is also highlighted in a two-dimensional plot, which reflects
the relative divergence between family members. Representatives belonging to small families with short sequences are
mainly associated with low coverage. The set of sequences not recognized by the family representative profiles, highlight
several potential false or weak family associations in PFAM. Partial domains and fragments dominate such cases, along with
sequences that are highly diverged or different from other family members. Some of these outliers were also predicted to
have different secondary structure contents, which reflect different putative structure or functional roles for these domain
sequences.

Database URL: http://caps.ncbs.res.in/3pfdbplus/

Introduction

Proteins are one of the fundamental biomolecules import-
ant for cellular integrity and survival. They perform many
important and varying roles like catalysing reactions,
signal-transmission, transporting different molecules or
ions, stabilizing cytoskeleton, etc. Proteins sharing simi-
lar sequences tend to have similar structures and subse-
quently similar functions (1). These related proteins can

© The Author(s) 2014. Published by Oxford University Press.

be classified at sequence, structural and functional
levels. In this high throughput sequencing era, determin-
ation of structure and function of proteins cannot match
the rate of incoming sequence information. This results in a
large portion of sequenced data being with no struc-
tural information or with no function annotation.
Hence, the use of different computational approaches has
become inevitable for obtaining structural or functional
insights.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly

cited.
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Proteins are often described to have compact structural
or functional units called domains. These domains exhibit
significant conservation with respect to both amino acid
sequence and tertiary fold (2). Assignment of domains to
protein sequences or structures facilitate classification and
functional annotation. PFAM (3) database is an excellent
attempt to facilitate the function annotation based on
domain assignments. This database consists of protein
domain families which are automatically classified on the
basis of sequence similarities, built around Hidden Markov
Models (HMM). A HMM profile derived from a set of rep-
resentative seed sequences, is associated to each domain
family. New sequences are grouped under one family
based on comparison with the family HMM profile.
Hence, the family seed dataset reflects multiple represen-
tatives covering all the sequence information of the family.

The composition and size of PFAM families vary signifi-
cantly. In some families, members are very similar to each
other, while in other cases, sequence identity between
members is quite low. On an average, the seed sets are
seen to span a sequence identity range of 30-40%.
At this sequence identity range and especially in case of
highly diverse families, multiple sequence alignments may
not be trivial. This may deteriorate the quality of HMM
profiles generated for these families. Profiles generated
with sequences in the identity range between 30% and
50% are reported to be efficient in homology detection
(4). Besides, the sequence divergence within a family, the
average sequence length also varies from 6 (PF08261) to
1402 (PF06317) residues. Short proteins may falsely associ-
ate with a part of HMM model of certain families. PFAM
family assignments could have ambiguities when the pro-
teins have signal peptides or transmembrane helices (5).
Such wrong family assignments might reduce reliability of
the classification and the selection of representative seed
dataset.

3PFDB database was designed to find a best representa-
tive sequence (BRS) for each PFAM family (6). A profile
generated from the BRS, (best representative profile, BRP)
is expected to identify maximum number of family mem-
bers. These profiles can provide a more refined representa-
tion, owing to the large diversity observed in certain
families. Sensitive homology detection methods like
HMMER (7), FASSM (8) and RPS-BLAST (9, 10) were used
for associate new sequences with the representative
family profiles. Repertoire of representative family se-
quences can be used to carry out simple sequence searches
which are computationally very fast and they also serve as
targets for structure determination or computational
modeling.

In PFAM database, whole domain alignments are used
for constructing models without any added information on
the conserved motifs. Small conserved motifs often reflect
family signatures. One of our in-house programs, FASSM (8)
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(Function Association using Sequence and Structural
Motifs) can detect remote homologs evolved through circu-
lar permutation or discontinuous domains. This algorithm is
quite sensitive and can detect homologs for small proteins
with few conserved residues.

In this work, we improve the 3PFDB database using more
efficient strategies for generation of BRPs and implement
the two methods FASSM (8) and HMMERS3 (7) for identify-
ing family members. RPS-BLAST (9) was not used in this
study, due to the relatively poor performance when com-
pared to these two methods. Further, instead of using
PFAM seeds for generating representative profiles, inde-
pendent sequence sets gathered with an identity threshold
of 50%, were used. The framework of the current protocol
permits easier automation and periodic updates of the
database.

The members which failed to recognize their family
representative profiles were further assessed to check the
reliability of their family association. These sequences could
not be associated with the family profile by both motif
(FASSM) and sequence based (HMMER) approaches. Our
assumption was that certain sequences in a family might
have diverged extensively with respect to other family
members. However, we observed several cases of weak or
false associations in a family. Those families where the rep-
resentatives give poor coverage are studied in detail in
terms of sequence dispersion, average length and family
size. Multiple representatives were selected for those
families where a single BRS gives low coverage. The
updated version of the database, 3PFDB+, provides these
new sets of representative sequences and profiles. The dis-
persion of sequences in each family is represented with
a PCA plot and the location of BRS is highlighted.
Representative profiles are provided as HMM models and
the motifs identified in each family are also given. Users can
also search any sequence of interest against the represen-
tative profiles using HMMER (7) and FASSM (8).

Methods

PFAM v26, consisting of 13672 families, was used to iden-
tify representatives in each domain family. To extract the
set of possible representatives, all the family members were
clustered at a sequence identity threshold of 25% using
BlastClust (11). From each cluster, the longest sequence
was chosen, to form the seed dataset. Profiles correspond-
ing to the representative sequences were generated by per-
forming PSI-BLAST (12) searches against a non-redundant
PFAM family dataset gathered at 50% identity cut-off
(Figure 1). The searches were performed for three iterations
at an E-value threshold of 1073. In an earlier study, three
different sequence similarity search methods were com-
pared, for their efficiency in identifying representatives,
for a small dataset of 100 PFAM families (10). The same
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Figure 1. Workflow for the identification BRSs and associated profiles in 3PFDB+ database. The portion highlighted in the
circular background shows the differences in the profile generation approach in the earlier study (6).

dataset was used for optimizing the improved protocol
devised in this work.

The set of sequences generated from PSI-BLAST (12) runs
forms the representative profiles. Each of these profiles was
then assessed for the family coverage using sensitive tools
like HMMER (7) and FASSM (8). The efficiency in identifying
other members from the same PFAM family was computed
as the family coverage. In case of HMMER (7), an E-value
cut-off of 1072 was used to associate family members.
FASSM (8) program incorporates different parameters,
viz., size of the motif, number of the motifs allowed in
the family, order of the motifs, distance between motifs,
motif conservation score, etc. FASSM (8) program employs
neural network with optimized weights for each parameter
to decide whether query sequence belongs to given PFAM
family. The coverage for each seed sequence of PFAM
family was calculated and that seed with maximum cover-
age were considered as BRS.

For sequences not associated with the representative
profiles, detailed analysis was carried out. Low complexity
regions were detected using SEG (13) with a minimal length
of 10 residues and transmembrane proteins were predicted
using SOSUI (14) and TM-HMM (15).

Results

The new approach, as followed in 3PFDB+, was tested on
the 100-family dataset used for the earlier 3PFDB analysis

(10). As expected, profiles generated from three PSI-BLAST
(12) iterations provide better coverage in almost all families
when compared to a simple BLAST search (Figure 2A). The
choice of an initial dataset, at 50% non-redundancy cut-off,
for generating profiles also improved the coverage when
compared to the seed set (Figure 2B). Only in two families,
coverage was quite higher (86% and 16% increase), with
the original seed dataset proposed within PFAM. For both
families, seed set had more sequences (start points) than
the 50% non-redundant dataset. Hence, enriching these
profiles with more sequence information can give better
coverage in these cases.

Improvement with new approach

For the 100-family dataset (10), new representative se-
quences were identified with the improved protocol
(Figure 1). The family coverage of profiles derived from
these representatives was then compared to that obtained
with the previously identified representatives (6) (Figure 2C
and D). Best representatives were selected separately using
two efficient sequence homology detection methods,
HMMER (7) and FASSM (8). In case of HMMER (7) derived
representatives, 99% of them had similar or better cover-
age (Figure 2C). Only for one family, Picornavirus core pro-
tein 2A (PFAM ID: PF00947), the coverage was 32% lower
with the use of new representative profile. The se-
quences in this family are highly conserved and the 50%
non-redundant set was left with only four sequences, out
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Figure 2. Comparison of representative coverage in a family. (A) Comparison of coverage obtained where the representative family
profile is generated using three iterations of PSI-BLAST and the ones generated from single iteration. The PSI-BLAST (12) searches
were carried out against the 50% non-redundant set of the family. The coverage was calculated by checking family associations
using HMMER (7) (B) Comparison of coverage obtained when is the representative family profile is generated by performing three
iterations of PSI-BLAST searches against the 50% non-redundant set of the family and those obtained when the search is carried out
against PFAM seed dataset (3). The coverage was calculated by checking family associations using HMMER. (C) Comparison of
coverage obtained using the representatives derived based on 3PFDB+ protocol and those obtained with representatives identified
in the earlier work (6). The coverage was calculated by checking family associations using HMMER. (D) Comparison of coverage
obtained using the representatives derived based on 3PFDB+ protocol and those obtained with representatives identified in the
earlier work (6). The coverage was calculated by checking family associations using FASSM (8).

of which three are partial domains (<60% of average
family length). Hence the quality of representative profile
was reduced and enrichment with more family sequences
was required. FASSM-based representatives also showed
significant improvement in coverage (Figure 2D). Only for
two family representatives, Picornavirus core protein 2A
and Rotavirus NS26 family, the coverage values were

significantly lower than that obtained with representatives
previously identified for these families.

In a small percent of families, representative profile
coverage was low, and the 50%-set had only a few se-
quences. These profiles were enriched by carrying out
searches against the full family set, instead of 50% non-
redundant set. This was performed for all families where
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Figure 3. Coverage obtained with best representatives identified in 3PFDB+. (A) Comparison of family coverage of best repre-
sentatives identified by HMMER (3) and FASSM (8). For the 153 families where the representatives by both methods had
coverage <90%, (B) the distribution of average family sequence length and (C) family size, are plotted.

the best representative coverage was <90%. Profile enrich-
ment resulted in improvement of coverage for about 644
(out of 1160) and 55 (out of 1605) families using HMMER (7)
and FASSM (8), respectively.

HMMER vs FASSM

The BRSs, identified by HMMER and FASSM, were com-
pared for their family coverage. In the case of HMMER,
13214 representatives retain family coverage of more
than 90%, while 12122 representatives identified using
FASSM exhibit coverage more than 90% (Figure 3A). For
3473 families, the same BRS were identified by both
HMMER and FASSM. The coverage obtained for

representatives, identified by HMMER, is better than that
chosen using FASSM for 33.5% of families. However,
FASSM-based representatives retained better coverage in
only 16.6% of cases.

Only for 153 out of 13672 families, the representatives
identified by both methods had coverage <90%. Out of
these families, 94 retained average family length <50 resi-
dues and 97 families had <100 members (Figure 3B and Q).
Hence, the families exhibiting low coverage are small
families with short sequences. 73% of these families,
where representatives had low coverage, do not belong
to any PFAM clan. The clan covering 10 of these families
is the tetratricopeptide repeat superfamily, whose
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members are involved in diverse cellular activities like cell
cycle regulation, transcriptional control, protein transport,
neurogenesis and folding (16). The underlying families in-
volve short repeat sequences and are inherently highly
diverse.

Scope of the database

The updated database of PFAM family representatives
covers 13672 families from PFAM v 26 (3), and for 13519
(~99%) families, the representatives have more than 90%
coverage. BRSs were identified using HMMER (7) and
FASSM (8) which are highly efficient in detecting sequence
homologs by global sequence similarity and local motif
matching, respectively. Best representatives chosen by
each of these methods are now provided. Users can also
search new sequences against the dataset of best represen-
tatives to check the association with any PFAM family.

MySQL is used as a backend for 3PFDB+ database. All the
CGlI scripts for the server side are coded in PERL. FASSM
scripts are coded in C++ and PERL. In this update,
we have provided useful information about the PFAM
protein families and user-friendly access options (see
Supplementary Table S1 for details).

The improved and updated version of 3PFDB database
(3PFDB+) provides the new sets of representatives for all
PFAM families (Figure 4). A 3D-PCA plot reflects the se-
quence divergence in the family and also highlights the
location of the representative sequence among the mem-
bers in the 50% non-redundant set. The conserved motifs
identified in the family using FASSM are also listed in the
database. User can also download the PSSMs, multiple se-
quence alignments and HMM models corresponding to the
BRPs (Figure 4). The complete dataset of representative
profiles can be downloaded from http://caps.ncbs.res.in/
3pfdbplus/PFAM_BRP/.

Comparison with PFAM domain assignment

In order to realize the importance of 3PFDB+ representa-
tives in domain assignments in comparison to PFAM HMM
profiles, we randomly selected a set of 50 reviewed human
protein entries from UNIPROT where the domain assign-
ments were different. These sequences were associated
with PFAM HMM profiles and 3PFDB+ BRPs by carrying
out HMMscan searches at E-value threshold of 1072. For
29 sequences, different but related (same PFAM clan) do-
mains were assigned by 3PFDB+ and PFAM. Loose family
definitions and tendency of certain members to associate
strongly with related families have been an important con-
cern and family-specific gathering threshold scores
were implemented to alleviate such cross-talks (17).
However the quality of seed profile needs to be checked
for underlying problems of ‘profile dilution’. In this analysis,
we have not incorporated GA scores for PFAM searches
as we aim to have a direct comparison of associations

Database, Vol. 2014, Article ID bau026, doi:10.1093/database/bau026

based on the profiles. 16 out of 29 related family asso-
ciations, involves closely related domain sequences that
were grouped as part of the same family in the earlier
versions of PFAM. The functional relevance of such sub-
family grouping in the current version needs to be tested
further.

When compared to PFAM, domain assignment by
3PFDB+ was functionally relevant (FR) for 10 sequences
whereas PFAM search did not result in any assignment for
seven sequences and different assignments were given for
the rest. We consulted UNIPROT (18) sequence annotation
and GO (19) molecular function to determine whether the
domain assigned in relevant in the context of protein func-
tion. PFAM profile-based assignments were FR for six
sequences but 3PFDB+ failed to give any assignment for
three cases and different for the rest. For the other five
sequences, functional relevance of domain assignments
could not be established due to incomplete or no annota-
tion. Figure 5 provides a summary of the assignment com-
parison and the list of assignments and associated remarks
are given as Supplementary Table S2.

Separately, a more specific dataset of 39 human biologic-
ally important proteins, implicated in tumor-associated
pathways, were used to study domain assignments. The
domain architecture assigned for 7 out of 39 sequences
were different between PFAM and 3PFDB+. In three
cases, 3PFDB+ profiles were helpful in discriminating insig-
nificant PFAM domain assignments (as per the
Gathering threshold (GA) scores, Supplementary Table
S3). Insignificant matches could be due to dilution of
family HMMs, owing to high sequence divergence in
entire family alignments. For two sequences, 3PFDB+ as-
signs more domains which are relevant in the functional
context of the protein and the architectures are found in
other proteins in PFAM database. For two sequences,
3PFDB+ and PFAM assigns different but related domain
families with same function.

Discussion

The revised protocol for search for best representatives
relies on an initial sequence search, starting from a set of
family members selected at a 25% identity cut-off, for
homologs using mere three iterations of PSI-BLAST. This
search is carried out against a dataset obtained by a
rather stringent filter of redundant entries at a 50% cut-
off of sequence identity. This revised protocol ensures suf-
ficient sampling of the sequence space, using multiple start
points, without compensating much on the computational
time. The best representatives identified in 3PFDB+,
retained better family coverage when compared to the rep-
resentatives identified earlier (6). Profiles weak in sequence
data were enriched with sequences from the full family
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® FR domain - 3PFDB+ only
FR additional domain by 3PFDB+

® Ditferent (insufficient annotation)
Related: Additional domains by 3PFDB+

B R domain - PEAM only
FR additional domain by PFAM
" Related: Additional domains by PFAM

Related: Similar number of domains

Figure 5. Comparison of domain assignments by PFAM and 3PFDB+ on 50 reviewed human proteins from UNIPROT. The distri-
bution of sequences under different categories based on clear functional relevance of domain assignments is presented.
Functionally relevant is abbreviated as FR. Domain assignments related by PFAM Clan grouping or GO annotations, are
marked as ‘Related’. Sequences for which domain assignments were given only by 3PFDB+ or PFAM are indicated as ‘3PFDB+
only’ or ‘PFAM only’. Additional FR domains assigned by 3PFDB+ or PFAM are marked as ‘FR additional domain by 3PFDB+’ or ‘FR
additional domain by PFAM'. Assignments with a combination of related and additional domains are subgrouped under
‘Related’ depending on additional assignments by PFAM or 3PFDB+. Related assignments with same number of domains are
indicated as ‘Related: Similar number of domains’. The domain assignments which needed further assessments due to insufficient
or no annotation (UNIPROT or GO), are grouped under ‘Different (insufficient annotation)’.

sets. This improved the quality of many of low coverage
representatives.

Partial domains and fragments

For 153 families, where the best representatives had cover-
age <90%, it is expected that these family members may
form multiple subgroups and a single representative is not
able to associate all these subgroups. In such cases, the use
of more than one representative may be essential in
providing a better family coverage.

However, before assessing the possibility of multiple
representatives, the reasons for non-identification of any
of the family member by its representative profile, were
analysed in detail. Sequences belonging to different
PFAM families that fail to recognize the BRPs identified
using both methods were gathered. This accounts to 2986
sequences spanning 910 families. 38% of these sequences
had length <60% of the average family length (Figure 6A).
Hence, they could be considered as ‘partial domains’
or without complete domain sequence information.
Figure 6B,C highlights two cases where certain family
members are short fragments and have no clear associ-
ation with the other family sequences. These short
sequences falsely associate with parts of the family

profile and do not hold any family-specific signatures or
motifs.

The partial domains were mainly identified in the P-loop
containing nucleoside triphosphate hydrolase superfamily
(PFAM clan: CL0023), Actin-like ATPase superfamily (PFAM
clan: CL0108), Ribonuclease H-like superfamily (PFAM clan:
CL0219), RNA dependant RNA polymerase (PFAM
clan: CL0027), Thiamine diphosphate-binding superfamily
(PFAM clan: CL0254), Glycosyl transferase GT-A (PFAM
clan: CLO110), Drug/Metabolite transporter superfamily
(PFAM clan: CL0184) and Thioredoxin-like family (PFAM
clan: CL0172).

Biased amino acid composition

For the other sequences not recognized as family members,
we checked whether they have biased amino acid compos-
itions. 205 of these non-fragment sequences have more
than 30% of the residues in the regions of low complexity
(Supplementary Table S4). Figure 7A presents one example
from SIT4 phosphatase-associated protein family, where a
poly-glutamate stretch is falsely associated with the family,
whereas other members are not essentially glutamate-rich.
251 sequences exhibit compositional bias with 223 having
transmembrane regions and 28 are rich in polar residues
(more than 75%).
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Figure 6. Sequences which do not recognize their family representatives. (A) Distribution of ratio of length of the sequence not
identified by BRPs and average family length. (B, C) Alignment of the sequence not identified by BRP with the sequence of best
representative. The PFAM family names are indicated in red and the BRS for these families are highlighted in green.

Family outliers

A total of 1383 (46.3%) sequences do not belong to any of
the above categories. These sequences are expected to be
distant from the rest of the family members. They also lack
one or more motifs that characterize the family, since
FASSM was not able to recognize these sequences as part
of the family. Ninety-nine per cent of these sequences are
associated with families having representatives with cover-
age more than 90%.

A total of 71.5% of these sequences are diverged
with respect to other family members (Figure 7B). The
ratio of average sequence identity obtained while compar-
ing these sequences with other family members and the
average family sequence identity is <1. 443 sequences
have this ratio below 0.8 and they can be considered sig-
nificantly far from the rest of the family. Many of these
sequences are observed to be clear outliers in the family
and secondary structure predictions suggest that the sec-
ondary structure topology of these sequences is quite

different from other members (data not shown). Figure 8
shows two examples where a member is found to be an
outlier and has been falsely or weakly associated with the
family.

Sequences for which the above reasons could not be
attributed for not being recognized as part of the family,
comprise 31.4% of the sequences (Figure 9) and they span
270 families. The family properties of these sequences were
analysed. 244 sequences have average family sequence
length <50 residues and 442 sequences have family size
>10000. Below the 50% sequence identity level, the aver-
age family sequence identity is <15% for 97% of the se-
quences as they belong to highly diverse PFAM families.
The clans covering maximum number of these sequences
include C2H2/C2HC zinc fingers, Tetratricopeptide repeats,
OB fold, Ankyrin repeats and P-loop NTPases. Most of these
clans are known for short and diverse sequences. The reli-
ability of family association for these sequences need to be
verified further and the representative profiles need to be
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Figure 7. Sequences which do not recognize their family representatives and could not be categorized as partial domains or with
multiple family associations. (A) Alignment of a low complexity sequence (identifier: B4JWU8_DROGR/1583-1849) with its family
HMM. The family name is indicated in red. (B) Distribution of ratio of average sequence identity of the sequences not recogniz-
ing their BRPs (1383 in number) with other family members to the average family sequence identity calculated on the 50% non-

redundant dataset.

enriched with more sequences for genuine cases of family
memberships. The list of sequences for which we could
associate reasons for not recognizing the family BRP can
be downloaded from the database and Supplementary
Table S5 lists the number of sequences and the reasons
attributed for weak family association.

Conclusions

BRSs were identified for 13666 families in PFAM v 26
and corresponding representative profiles were also
generated. New profile generation approach is adopted,

which results in significant improvement in family cover-
age of the representatives. These representative sequences
and profiles are presented in the 3PFDB+ database.
Users can also search new sequences against the repre-
sentative profiles using two efficient and sensitive se-
quence homology detection methods, HMMER (7) and
FASSM (8).

Only 153 representatives have family coverage <90%.
The low coverage is mainly associated with small families
or short sequences. In-depth analysis of sequences that do
not recognize their family BRPs helped to identify the rea-
sons for weak family association. Nearly 40% of such
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Figure 9. Sequences not recognized by representatives. The
distribution of partial domains, low complexity sequences,
compositionally biased sequences and diverged family mem-
bers among those sequences not recognized as family mem-
bers by the representatives. The family properties of those
sequences not belonging to these categories are also
highlighted.

sequences are partial domains or fragments that weakly or
falsely associate with the family. Another major part cor-
responds to members that are either highly diverged from
the family or are clear outliers that are falsely grouped into
the family. A few sequences having low complexity regions
were also found to have wrong family associations.
Recognition of BRSs can reduce computational time for
large-scale function annotation of gene products without
compromising on coverage.

Supplementary Data

Supplementary data are available at Database online.
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