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Abstract

Platinum drugs and PARP inhibitors (‘‘PARPis’’) are considered to be effective in BRCA-associated cancers with impaired DNA
repair. These agents cause stalled and collapsed replication forks and create double-strand breaks effectively in the absence
of repair mechanisms, resulting in arrest of the cell cycle and induction of cell death. However, recent studies have shown
failure of these chemotherapeutic agents due to emerging drug resistance. In this study, we developed a stochastic model
of BRCA-associated cancer progression in which there are four cancer populations: those with (i) functional BRCA, (ii)
dysfunctional BRCA, (iii) functional BRCA and a growth advantage, and (iv) dysfunctional BRCA and a growth advantage.
These four cancer populations expand from one cancer cell with normal repair function until the total cell number reaches a
detectable amount. We derived formulas for the probability and expected numbers of each population at the time of
detection. Furthermore, we extended the model to consider the tumor dynamics during treatment. Results from the model
were validated and showed good agreement with clinical and experimental evidence in BRCA-associated cancers. Based on
the model, we investigated conditions in which drug resistance during the treatment course originated from either a pre-
existing drug-resistant population or a de novo population, due to secondary mutations. Finally, we found that platinum
drugs and PARPis were effective if (i) BRCA inactivation is present, (ii) the cancer was diagnosed early, and (iii) tumor growth
is rapid. Our results indicate that different types of cancers have a preferential way of acquiring resistance to platinum drugs
and PARPis according to their growth and mutational characteristics.
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Introduction

The inactivation of BRCA1 or BRCA2 (BRCA1/2) is

considered to be an important step in the tumorigenesis of breast

and ovarian cancers [1]. BRCA1/2 mutations are also found in a

small proportion of prostate, pancreatic, and uterine serous

cancers [2–4]. Loss of functional BRCA is strongly associated

with the incidence of BRCA-associated cancers, such as basal-like

breast cancer [5,6]. Moreover, mutations in BRCA1/2 genes due

to several mechanisms, such as germline mutations, somatic

mutations, and epigenetic silencing, are present in 33% of ovarian

carcinoma samples [7]. However, it has also become evident that

biallelic loss of wild-type BRCA is not required for tumorigenesis

in some types of BRCA-associated breast cancers [8–10].

Consistently, loss of wild-type BRCA1 is not the initiating step

in tumorigenesis in BRCA-associated breast tumors [11]. Addi-

tionally, a high level of heterogeneity in loss of heterozygosity

(LOH) was observed in breast cancer with BRCA1/2 heterozy-

gotes [12]. These lines of evidence indicate that BRCA-associated

cancers undergo two different types of evolutionary trajectories:

tumorigenesis with loss of both BRCA alleles and tumorigenesis

with BRCA heterozygosity. Other genes, such as TP53 and

PIK3CA, are also mutated in BRCA-associated cancers [5]. These

mutations confer growth advantages on cancer cells and drive

tumorigenesis [13,14].

The BRCA1/2 proteins have essential functions in preserving

chromosomal integrity during cell division. DNA replication forks

frequently stall even during normal cell proliferation and may

generate DNA double-strand breaks (DSBs). These DSBs are

repaired by BRCA1/2 via homologous recombination (HR) in an

error-free fashion [15]. Without functional BRCA1/2, error-prone

repair pathways are selectively stimulated, provoking genetic

instability [16,17]. Such genetic instability does not confer growth

advantages to cells but accelerates the process of genetic variation

that drives carcinogenesis by inducing additional mutational
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events [18]. Moreover, statistical analyses have shown that there is

a correlation between high mutation frequency and DNA repair

pathway genes, such as BRCA1/2 [19].

Currently, platinum-based therapy is a major option for

BRCA1/2-mutated tumors, such as ovarian cancer [20]. Platinum

drugs, such as cisplatin and carboplatin, induce interstrand cross-

links (ICLs), inhibiting cellular replication and transcription.

BRCA1/2-deficient cells are particularly sensitive to ICL-inducing

agents because ICLs are repaired through a Fanconi anemia/

BRCA pathway [21]. Several studies indicate that ovarian cancer

patients with BRCA-germline mutations show favorable responses

to platinum drugs [7,22,23]. Moreover, poly ADP-ribose poly-

merase (PARP) inhibitors (PARPis) have gained attention as

effective drugs for BRCA-mutated cancers [24]. PARPis leave

single-strand breaks (SSBs) unrepaired and induce DSBs. Cancer

cells deficient in BRCA1/2 are unable to maintain genomic

integrity in the presence of a large number of DSBs, resulting in

cell death via a synthetic lethal effect. Cells carrying BRCA

mutations are up to 1,000-fold more sensitive to PARPis than

wild-type cells [25]. Finally, multiple PARPis are currently in

clinical development for cancers deficient in the Fanconi anemia/

BRCA pathway [24].

However, chemotherapy using platinum drugs or PARPis often

fails because of the emergence of resistance; indeed, most patients

will ultimately have refractory disease [20,24]. Several mecha-

nisms of resistance to platinum drugs have been identified: (i)

mutations in cell-membrane transport proteins decrease drug

uptake, resulting in reduced intracellular platinum concentrations,

(ii) mutations in apoptotic signaling pathways prevent a cell from

inducing cell death, and (iii) back mutations to wild-type BRCA1/

2 result in the restored ability to repair DNA damage generated by

platinum drugs [26,27]. Clinical studies have also identified a

major mechanism of resistance to PARPis, in which secondary

mutations restore BRCA function [28–30].

Resistant mutations can arise either prior to or during

chemotherapy. On the one hand, resistant cells may pre-exist in

a tumor before treatment and expand under selective pressure

after treatment initiation. Indeed, it has been shown that platinum-

sensitive and -resistant cells shared a common ancestor during the

early stages of tumor development [31]. On the other hand,

resistant cells may emerge as a result of novel mutations during

treatment and expand under the selective pressure of treatment.

The acquisition of secondary mutations has been observed with

platinum drug and PARPi treatment [27,28]. Because the

emergence of such resistance leads to treatment failure, it is

important to investigate conditions in which resistant cells exist

before treatment and appear after treatment.

Mathematical investigations have provided insights into how

tumor cells drive progression and acquire drug resistance by

accumulating mutations. Recently, the emergence of drug-

resistant cancer cells from one specific mutation during clonal

expansion prior to treatment was considered [32]. Moreover, the

evolutionary dynamics of BRCA1-mutated breast cancer initiation

were also considered, with the assumption that the number of cells

is constant [33]. Breast cancer development caused by inactivation

of two tumor suppressor genes has also been investigated [34]. In

the case of ovarian cancer progression, a branching process model,

accounting for primary, peritoneal, and metastatic cancer

populations, was evaluated [35]. Furthermore, the evolution of

resistance in cancer cells during continuous and pulsed adminis-

tration strategies was suggested [36]. The risk of harboring

multiple types of resistance at the start of chemotherapy due to

various point mutations was studied in chronic myeloid leukemia

[37]. In addition, the expected number of mutations conferring

drug resistance in colorectal cancer was estimated using a

branching process model [38]. Our study is based on a foundation

of many previous theoretical studies regarding the accumulation of

mutations in cancer cells [39–43].

In this study, we investigated tumor progression mathematically

and the evolution of resistance to platinum drugs and PARPis in

BRCA1/2-mutated cancers before and during treatment. We

focused on the specific effects caused by loss of BRCA1/2

function, which confers (epi)genetic instability in cancer cells.

Cancer cells with dysfunctional BRCA1/2 acquire increased

mutation rates and become sensitive to platinum drugs and

PARPis due to a deficiency in error-free repair mechanisms.

First, we developed a mathematical model of BRCA-associated

cancer progression, in which two types of mutations were

included: (i) those conferring functional BRCA1/2 inactivation

and (ii) those accelerating cell growth by inactivation of cell cycle

regulation. Second, we developed analytical formulas for the

probability and expected number of cancer cells with (epi)genetic

instability and/or a cell growth advantage at the time of diagnosis

and validated good agreement between these formulas and exact

stochastic computer simulations. Third, we extended the model to

consider tumor dynamics during treatment. Fourth, we confirmed

that our models strongly represented clinical/experimental find-

ings in BRCA-associated cancers. Finally, we investigated the

evolutionary pathways for acquiring drug resistance during

tumorigenesis before and during treatment.

We discuss the conditions for effective treatment using platinum

drugs and PARPis. This study provides important implications for

the evolutionary trajectories of BRCA-associated cancer progres-

sion before and during chemotherapy, depending on the growth

rate, mutation rate, detection size, and treatment effects.

Models

Clonal expansion of two different types of mutations
before diagnosis

We first describe a mathematical model of BRCA-associated

cancer progression before diagnosis, considering an exponentially

growing population of cancer cells derived from a single tumor-

initiating cell (Fig. 1A). In this study, we assume two different types

of mutations: one facilitates (epi)genetic mutations due to

inactivation of BRCA function, and the other accelerates tumor

growth by deregulation of the cell cycle. In BRCA-associated

cancer, alterations in genes such as TP53 and PIK3CA are

candidates for the latter [5].

Cancer cells with functional BRCA and an intact target for

accelerating growth rate are referred to as type-0 cells. During

clonal expansion, they give rise to cells harboring either of the two

mutations (Fig. 1A). Cells with inactivated BRCA are type-1 cells,

which have higher mutation rates than those of type-0 cells due to

their error-prone DNA repair mechanisms and (epi)genetic

instability. Cells carrying a mutation that accelerates uncontrol-

lable tumor growth are type-2 cells, which grow faster than type-0

or -1 cells. Type-1 and -2 cells may give rise to cells harboring both

types of mutations, referred to as type-3 cells. The term ‘mutation’

here is used collectively to include point mutations, insertions,

deletions, inversions, translocations, loss of heterozygosity, and

other genetic aberrations that can occur during one cell division.

Each type of population follows a continuous-time branching

process. The numbers of type-0, -1, -2, and -3 cells are denoted as

w, x, y, and z, respectively. We assume that the growth and death

rates of type-0 are the same as those of type-1, r and d,

respectively, and those of type-2 are the same as those of type-3, a
and b. This assumption is based on experimental observations that
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inactivation of BRCA function does not have much effect on

tumor growth [44]. We assume that type-2 and -3 cells have

higher net growth rates than type-0 and -1 cells (a–b.r–d) since

they have an additional mutation that accelerates tumor growth.

The rates of mutation (i) from type-0 to -1 cells and from type-2 to

-3 cells, (ii) from type-0 to -2 cells, and (iii) from type-1 to -3 cells

are denoted by u1, u2, and u3, respectively.

Tumor growth begins from a single type-0 cell, w = 1, x = 0,

y = 0, z = 0. In a short time period, one of the following events

occurs: (i) cell division without mutation, (ii) cell division with

mutation, (iii) cell death, or (iv) no transition. Tumor cells may

become extinct because of stochastic fluctuations or may

eventually be detected, once the total population size – the sum

number of type-0, -1, -2, and -3 cells – reaches a certain size (see

Materials S1 for details of the computer simulations).

Analytical approximations
Let P1, P2, and P3 be the probabilities that type-1, -2, and -3

cells, respectively, exist when the total number of cells reaches M.

In a previous study [32], formulas for P1, and P2 were given as

P1~1{e
{Mu1

r
d

ln r
r{d : ð1Þ

P2~1{e{Mu2F=(1{d=r): ð2Þ

Here, F~
Ð 1

0
(1{b=a)=(1{(b=a)ya)dy and a~(a{b)=(r{d).

In our model, there are two paths to the emergence of type-3

cells: through either type-1 or type-2 cells. By considering both

cases independently, we derived a formula for P3 (see Materials S1

for the detailed derivation). Moreover, we consider the expected

numbers of type-1, -2, and -3 cells when the total number reaches

M to be E1, E2, and E3, respectively (see Materials S1 for the

detailed derivations of these quantities).

Emergence of resistance to platinum drugs and PARP
inhibitors during treatment

Next, we considered the tumor dynamics during treatment after

diagnosis. Type-0 and -2 cells are originally resistant to platinum

drugs and PARPis because they can repair ICLs and DNA DSBs

created by the drugs through an intact Fanconi anemia/BRCA

pathway. In contrast, type-1 and -3 cells are sensitive to the drugs

because of the lack of such repair mechanisms. Based on the

experimental and clinical observations that secondary mutations in

BRCA confer drug resistance to BRCA-deficient cells [26–30], we

added two resistant populations, referred to as type-4 and -5 cells

(Fig. 1B). Type-4 and -5 populations derive from BRCA-deficient

cells (i.e., type-1 and -3 cells, respectively). We did not consider the

secondary mutations from type-0 or -2 cells because they have

already been defined as resistant cells. We then added two

parameters as drug effects: one reduces growth rates in sensitive

populations by c, and the other reduces growth rates in resistant

populations by g. In this study, we assumed that the suppression of

tumor growth by drugs is achieved by a decrease in the growth

rate and not by an increase in the death rate. We also assumed

that treatment could decrease the growth rates of resistant cells,

but at least one resistant type can increase in number even during

treatment.

Based on the model described above, we investigated the cell

population composition at relapse and the recurrence time

intervals during treatment. We examined various combinations

of treatment effects on sensitive and resistant cells, since treatment

effects in situ have not been identified clearly and are modulated

by pharmacokinetics, the tumor micro-environment, and other

factors [20]. Once each parameter value is determined, the

expected numbers of each population at the start of treatment can

be calculated using analytical equations (Eq. (S12), Eq. (S13), and

Eq. (S22)). Neither type-4 nor -5 cells exist at the time of the initial

treatment. Simulations are stopped when the total number of cells

exceeds 110% of the detection size, M, during treatment, which

represents recurrence (see Materials S1 for a detailed description

of the computer simulations).

Results

Existence probabilities and expected numbers of each
cell population at diagnosis

In this section, we investigated the accuracy of the formulas for

the existence probabilities as well as the expected numbers of each

population at diagnosis and their dependence on each parameter.

We evaluated the fit among the predictions using the formulas and

the results from the stochastic computer simulations, described in

Materials S1.

First, the accuracy of the existence probability formulas and the

expected numbers of type-1, -2, and -3 cells at diagnosis (Figs. 2, 3,

S1-S4) were evaluated. The Eq. (1), Eq. (2), Eq. (S11), Eq. (S12),

Eq. (S13), and Eq. (S22) formulas accurately predicted the results

of the stochastic computer simulations. Next, we tested the

accuracy of the formulas with large u1 and u2 (Figs. S5, S6). The

Eq. (1), Eq. (2) and Eq. (S11) formulas accurately predicted the

results of the stochastic computer simulations, with the exceptions

of P2 with large u1 and P1 with large u2 (Figs. S5B, S6A). These

discrepancies arose because we ignored the effects of u1 and u2 in

the derivation of P2 and P1, respectively. However, when u1 or u2

is large, type-2 or -1 cells, respectively, become minor represen-

Figure 1. Mathematical model of BRCA-associated cancer progression (A) until diagnosis and (B) during treatment. (A) We consider
an exponentially growing population of cancer cells starting from a single cell that has potential mutation targets within two genomic regions. There
are two types of mutations: one facilitates (epi)genetic mutations at rate u1 and the other accelerates tumor growth at rates u2 and u3. Cancer cells
with functional BRCA and an intact mutation target site for accelerated growth rates are called type-0. Cells with dysfunctional BRCA and an intact
mutation target site for accelerated growth rates are called type-1. Cells carrying a mutation that accelerates uncontrollable tumor growth are called
type-2 cells. Type-1 and -2 cells emerge from type-0 cells at mutation rates u1 and u2, respectively. Cells harboring both types of mutations are called
type-3 cells. Type-3 cells emerge from either type-1 or -2 cells at mutation rates u3 and u1, respectively. The growth and death rates of type-0 and -1
cells are r and d, and those of type-2 and -3 cells are a and b, respectively. Once the total cell number reaches a certain size, M, the cancer is
diagnosed. (B) To consider the situation during treatment, two populations (type-4 and -5 cells) are added to the model. Type-4 and -5 cells newly
arise from type-1 and -3 cells, respectively, at rate u4 and are resistant to platinum drugs and PARPis after treatment. The growth and death rates of
type-4 cells are r and d, and those of type-5 cells are a and b, respectively. The initial numbers within each type of population at diagnosis are
calculated by the analytical equations derived in Eq. (S12), Eq. (S13), and Eq. (S22). We assume that neither type-4 nor -5 cells exist at the time of initial
treatment. The reduced growth rates of drug-sensitive and -resistant cells caused by drug treatments are given by c and g, respectively. Once the
total cell number reaches a certain size (1.1 M), the cancer is considered to have relapsed.
doi:10.1371/journal.pone.0105724.g001
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Figure 2. Probability of type-3 cells at diagnosis. The dependence of the probability of type-3 cell existence at diagnosis on various parameters
is shown. The curves indicate the predictions of the analytical approximation, Eq. (S11), while the circles indicate the results of the direct computer
simulations (system S1). Standard parameter values used in the figure are u1 = u2 = 5.0?1027, u3 = 0.01, M = 106, r = 0.2, a = 0.3, and d = b = 0.1.
doi:10.1371/journal.pone.0105724.g002

Figure 3. Expected numbers of type-3 cells at diagnosis. The dependence of the expected number of type-3 cells at diagnosis on various
parameters is shown. The curves indicate the predictions of the analytical approximation, Eq. (S22), while the circles indicate the results of the direct
computer simulations (system S1). Standard parameter values used in the figure are u1 = u2 = 5.0?1027, u3 = 0.01, M = 106, r = 0.2, a = 0.3, and
d = b = 0.1.
doi:10.1371/journal.pone.0105724.g003
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tations of the total population. Thus, this inconsistency has little

effect on the expected numbers of each cell type at diagnosis (Figs.

S5, S6).

We next investigated the dependence of the formulas on each

parameter. The probability that type-1 cells existed at diagnosis

increased as u1, M, and d increased, whereas the probability

decreased as r increased. It was not changed by u2, u3, a, or b (Fig.

S1). The probability that type-2 cells existed at diagnosis increased

as u2, M, d, and a increased, whereas it decreased as r and b
increased. It was not changed by u1 or u3 (Fig. S2). These results

are consistent with those reported previously [32]. The probability

that type-3 cells exist at diagnosis increased as u1, u3, M, and d
increased, whereas it decreased as r increased. It was little changed

by u2, a, or b (Fig. 2). The expected number of type-1 cells under

the condition that type-1 cells existed at diagnosis increased as u1

and M increased, whereas it decreased as u3 increased. It was not

changed greatly by u2, r, d, a, or b (Fig. S3). The expected number

of type-2 cells under the condition that type-2 cells existed at

diagnosis increased as u2, M, d, and a increased, whereas it

decreased as r and b increased. It was not changed by u1 or u3

(Fig. S4). The expected number of type-3 cells under the condition

that type-3 cells existed at diagnosis increased as u1, u3, M, d, and

a increased, whereas it decreased as r and b increased. It was not

changed greatly by u2 (Fig. 3).

The proportions of the clinically significant populations
at diagnosis

In this section, we investigated the following three quantities at

diagnosis: (i) the proportion of cell types with high growth rates, (ii)

the proportion of drug-sensitive populations, and (iii) the

proportion of type-3 cells that arose from type-1 cells. The

outcome of anti-tumor therapy is largely affected by the

composition of a tumor at the time of therapy. For example, the

proportion of cell populations with high growth rates at diagnosis

reflects tumor malignancy and thus affects the control of disease by

the treatment. Moreover, the proportion of drug-sensitive

populations can determine the response to treatment, because

platinum drugs and PARPis are effective only in BRCA-deficient

cell types. Furthermore, if we specify the evolutionary pathway

leading to malignant cells, it would implicate the drug-targeted

cells in the prevention of tumor progression.

First, we investigated the proportion of cell populations with

high growth rates (i.e., type-2 and -3 cells) among the total

population at diagnosis (Figs. 4A–C, S7A–B). This was calculated

by dividing the sum of the expected numbers of type-2 and -3 cells

Figure 4. Proportion of clinically significant populations at diagnosis. (A–C) The proportion of type-2 and -3 cells with a growth advantage
among the total population at diagnosis is shown over a wide range of u1, u2, and the relative growth rate of type-2 and -3 cells to that of type-0 and
-1 cells is (a–b)/(r–d). (D–F) The proportion of type-1 and -3 cells (drug-sensitive cells) among the total population is shown. (G–I) The proportion of
type-3 cells arising from type-1 cells among the total type-3 population is shown. Each population at diagnosis was calculated by the formulas, Eq.
(S12), Eq. (S13), and Eq. (S22). Parameter values used in the figure are u2 = 1027, u3 = 0.01, M = 106, r = 0.2, a = 0.3, d = b = 0.1 (panel A, D, and G),
u1 = 1022 (panel B, E, and H), and u1 = 1027 (panel C, F, and I).
doi:10.1371/journal.pone.0105724.g004
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by the total number, M. The relative growth rates of type-2 and -3

cells, compared with type-0 and -1 cells, is given by (a–b)/(r–d).

The proportions of type-2 and -3 cells increased as the relative

growth rate and the mutation rates (u1 and u2) increased

(Figs. 4A–C, S7A–B). Second, we calculated the proportion of

drug-sensitive cell populations (i.e., type-1 and -3 cells; Figs. 4D–F,

S7C–D) by dividing the sum of the expected numbers of type-1

and -3 cells by the total number, M. The proportion increased as

the relative growth rate and u1 increased (Figs. 4D, S7C–D) and,

interestingly, was greatly affected by the relative growth rate and

u1, but not by u2 (Figs. 4D–F, S7C–D). Third, we calculated the

proportion of type-3 cells that arose from type-1 cells in a total

type-3 population (Figs. 4G–I, S7E–F) by dividing the expected

numbers of type-3 cells derived from type-1 cells by the expected

number of type-3 cells at diagnosis. Type-3 cells emerge from type-

1 cells over a wide range of parameter values except in cases where

the relative growth rate is low and u2 is large (Figs. 4G–I, S7E–F).

Finally, we investigated those three quantities in cases of small u3.

The proportions of cell populations with high growth rates and

drug sensitivity decreased in the region of large u1, and the

proportion of type-3 cells that arose from type-1 cells decreased in

the region of large u2 (Figs. S8, S9). The dependencies of these

quantities on the relative growth rate and the mutation rates were

similar to the cases of large u3 (Figs. 4, S7–S9).

Proportion of each cell population at relapse and
recurrence time intervals

In this section, we investigated the composition of each cell

population in a relapsed tumor and recurrence time intervals. Two

scenarios can be considered for the development of resistant

populations: (i) a de novo resistant population arises from type-1 or

-3 cells through secondary mutations during treatment and then

expands, or (ii) a resistant population pre-exists in a tumor

population before treatment and becomes dominant under

selective pressure from the drug. The origin of the resistant

population is of great importance because the treatment schedule

that will best prolong the time until recurrence would be expected

to differ between the two scenarios. Thus, we considered which of

the two scenarios occurred preferentially over a wide range of

parameter values during treatment.

First, we performed stochastic computer simulations of the

model after diagnosis, as described in the MODELS section

(Fig. 1B). We determined the composition of each cell population

within a tumor at the initial time of treatment with 10 parameter

combinations from the formulas Eq. (S12), Eq. (S13), and Eq.

(S22) (Table 1). When u1 is large, type-3 cells become dominant

(Table 1A–D). The proportion of type-3 cells becomes large as M
increases (Table 1A–D). When u1 is small, type-0 cells become

dominant (Table 1E–I), and when u2 is large, type-2 cells become

dominant (Table 1J). Based on the initial tumor composition,

calculated above, hundreds of stochastic simulation runs using the

same initial conditions were implemented. For each parameter set

listed in Table 1, we examined various drug effects on sensitive

and resistant cells, c and g (Fig. 5). The numbers of each cell type

at relapse (the time when the total number reached 1.1 M) and the

time until relapse were recorded for each run, and the averaged

results are shown in Figure 5. Considering that (epi)genetic

instability induced by repair pathway deficiency has a major

effect on the ability to induce mutations [19], we assumed that the

secondary mutation rate from type-1 and -3 cells to type-4 and -5

cells u4 was the same as u3.

We then investigated the proportion of each cell population at

the time of recurrence with large u1 (Fig. 5). The proportion of

type-3 cells in a tumor population at relapse is large when gis zero

but decreases as g becomes large (Fig. 5A–D). In the former case,

resistant cells grow too rapidly for type-3 cells to disappear until

tumor relapse; however, in the latter case, slow growth of resistant

cells facilitates mutational events from type-3 to -5 cells and also

confers a time of elimination by negative selection on type-3 cells.

Type-5 cells have more chance of being present at the time of

relapse in the latter condition (Fig. 5A–D). The proportion of type-

2 cells increases as M, c, and gincrease (Fig. 5A–D). When the

tumor size at diagnosis, M, is large, a large proportion of type-2

cells is likely to be present (Table 1), resulting in a large proportion

of type-2 cells at relapse. Type-1 and -4 cells are hardly detected at

relapse because they are rarely present at the time of initial

treatment and grow slower than type-3 and -5 cells.

Furthermore, we investigated the proportion of each cell

population at the time of recurrence with small u1 (Fig. 5). With

all treatment effect combinations, type-0 or -2 cells became

dominant (Fig. 5E–I), because they were likely to be present in

large proportions at diagnosis (Table 1E–J) and are resistant to the

drugs. The proportion of type-2 cells at relapse became large when

g and u2 were large (Fig. 5E–J).

Finally, we investigated the length of time between diagnosis

and recurrence to find the cases in which platinum drugs and

PARPis effectively prolong the time until recurrence. The time

until recurrence increased as g increased, whereas it was not

changed greatly by c (Fig. 5). Interestingly, in the case of large u1

( = 1022) and small g ( = 0), the time until recurrence became

longer than that with small u1 ( = 1027) or small g ( = 0; Fig. 5),

because the proportion of drug-sensitive cells becomes dominant

at the time of initial treatment when u1 is large (Table 1A–D).

Additionally, we confirmed the robustness of the results over a

wide range of u1 and u2 (Table S1, Fig. S10).

Agreement between the results and clinical evidence
Next, we investigated whether our models described clinical and

experimental observations in BRCA-associated cancers (Table 2).

We categorized BRCA-associated cancers into two types in terms

of different inactivation rates of BRCA, u1. BRCA inactivation is

induced by LOH in ovarian cancer [7,12] and basal-like breast

cancer [5,6], indicating high mutation rates of u1. We assume that

in this case, u1 is 1022 at maximum. This value is based on the

observation of an inactivated second allele in cells with (epi)genetic

instability [45]. In contrast, particularly in breast cancer, biallelic

loss of BRCA is not commonly observed at diagnosis, suggesting

LOH is not involved in the mutational event [9]. We assume that

in this case, u1 is 1027. The rate of mutation without LOH has

been determined experimentally by investigating DNA replication

fidelity [46]. Here, the mutation rate from type-1 to type-3 cells,

u3, is assumed to be as high as the mutation rate induced by LOH,

because we took into account the additive (epi)genetic instability

effect caused by BRCA inactivation [45]. Additionally, when we

considered the agreement between our results and the clinical

evidence, we focused on the small treatment effects in resistant

populations. This assumption seems reasonable because recur-

rence during treatment does, in fact, occur in the clinic, and the

small effects of platinum drugs and PARPis on resistant cells have

been confirmed experimentally [27,29,30,47].

First, we considered the high mutation rate cases, u1 = 1022,

such as ovarian cancer and basal-like breast cancer, in which

BRCA inactivation is frequently observed during tumorigenesis

(Table 2). In most computer simulation cases, mixed populations

coexisted at both diagnosis and relapse, indicating heterogeneity in

the tumor (Figs. 4, 5, S7, S8, S9, S10, and Tables 1 and S1).

These results are consistent with clinical observations of intra-

tumoral genetic heterogeneity in ovarian and breast cancers

Evolution of Drug Resistance in BRCA-Associated Cancers

PLOS ONE | www.plosone.org 7 August 2014 | Volume 9 | Issue 8 | e105724



T
a

b
le

1
.

P
ar

am
e

te
r

se
ts

u
se

d
fo

r
th

e
an

al
ys

is
in

Fi
g

u
re

5
an

d
th

e
e

xp
e

ct
e

d
n

u
m

b
e

rs
o

f
ce

lls
at

d
ia

g
n

o
si

s.

(1
)

u
1

=
0

.0
1

P
a

ra
m

e
te

r
v

a
lu

e
s

E
x

p
e

ct
e

d
N

u
m

b
e

r
(P

ro
p

o
rt

io
n

)
o

f
C

e
ll

s
a

t
D

ia
g

n
o

si
s

a
u

2
u

3
M

T
y

p
e

-0
T

y
p

e
-1

T
y

p
e

-2
T

y
p

e
-3

A
0

.4
1

0
2

7
1

0
2

2
1

0
5

5
2

8
4

3
(0

.5
3

)
3

8
8

5
(0

.0
3

)
3

1
(0

.0
0

)
4

3
2

4
9

(0
.4

3
)

B
1

0
6

2
4

5
5

0
0

(0
.2

5
)

3
7

1
0

2
(0

.0
4

)
1

4
4

6
(0

.0
0

)
7

1
5

9
5

0
(0

.7
2

)

C
1

0
7

7
5

0
9

2
5

(0
.0

8
)

3
5

4
3

2
4

(0
.0

4
)

6
6

7
2

4
(0

.0
1

)
8

8
2

8
0

2
6

(0
.8

8
)

D
1

0
8

0
(0

.0
0

)
3

3
8

3
7

7
5

(0
.0

3
)

3
0

1
4

5
6

3
(0

.0
3

)
9

3
7

8
9

3
3

3
(0

.9
4

)

(2
)

u
1

=
1

0
2

7
P

a
ra

m
e

te
r

v
a

lu
e

s
E

x
p

e
ct

e
d

N
u

m
b

e
r

(P
ro

p
o

rt
io

n
)

o
f

C
e

ll
s

a
t

D
ia

g
n

o
si

s

a
u

2
u

3
M

T
y

p
e

-0
T

y
p

e
-1

T
y

p
e

-2
T

y
p

e
-3

E
0

.4
1

0
2

7
1

0
2

2
1

0
5

9
9

9
6

7
(1

.0
0

)
0

(0
.0

0
)

3
1

(0
.0

0
)

2
(0

.0
0

)

F
1

0
6

9
9

8
4

6
8

(1
.0

0
)

2
(0

.0
0

)
1

4
4

6
(0

.0
0

)
8

2
(0

.0
0

)

G
1

0
7

9
9

2
9

4
3

0
(0

.9
9

)
1

7
(0

.0
0

)
6

6
7

3
8

(0
.0

1
)

3
8

1
3

(0
.0

0
)

H
1

0
8

9
6

8
0

9
3

3
3

(0
.9

7
)

1
6

6
(0

.0
0

)
3

0
1

4
5

6
3

(0
.0

3
)

1
7

5
9

3
6

(0
.0

0
)

I
1

0
2

4
1

0
6

9
9

8
5

4
9

(1
.0

0
)

2
(0

.0
0

)
1

4
4

6
(0

.0
0

)
2

(0
.0

0
)

J
1

0
2

2
1

0
2

2
1

0
6

6
1

4
9

(0
.0

1
)

2
(0

.0
0

)
9

9
3

7
6

5
(0

.9
9

)
8

3
(0

.0
0

)

T
h

e
e

xp
e

ct
e

d
n

u
m

b
e

rs
o

f
ty

p
e

-1
,-

2
,a

n
d

-3
ce

lls
at

d
ia

g
n

o
si

s
w

e
re

ca
lc

u
la

te
d

u
si

n
g

Eq
.(

S1
2

),
Eq

.(
S1

3
),

an
d

Eq
.(

S2
2

).
T

h
e

re
m

ai
n

d
e

r
o

f
th

e
to

ta
ln

u
m

b
e

r
is

co
n

si
d

e
re

d
to

co
m

p
ri

se
th

e
n

u
m

b
e

r
o

f
ty

p
e

-0
ce

lls
.T

h
e

p
ro

p
o

rt
io

n
o

f
e

ac
h

ty
p

e
is

sh
o

w
n

in
p

ar
e

n
th

e
se

s.
P

ar
am

e
te

r
va

lu
e

s
u

se
d

in
Fi

g
u

re
5

ar
e

r=
0

.2
an

d
d

=
b

=
0

.1
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

5
7

2
4

.t
0

0
1

Evolution of Drug Resistance in BRCA-Associated Cancers

PLOS ONE | www.plosone.org 8 August 2014 | Volume 9 | Issue 8 | e105724



Figure 5. Population composition at relapse and recurrence time intervals. The population compositions at diagnosis (the time of initial
treatment) and at the time of recurrence after treatment with 60 parameter sets are shown in the pie charts. The time periods until recurrence after
treatment are shown as numbers under the pie charts. The time of recurrence is defined as the time point when the total number has exceeded 10%
of the number at diagnosis. Each result is obtained by averaging many trials by stochastic simulations of the model under treatment (system S23).
Parameter values used in the simulations, except the treatment effects, c and g, are listed in Table 1. The letters in Table 1 correspond to those in
Figure 5. Treatment effects are shown at the top of the pie charts as the reduction effects on growth rates of sensitive populations (c) and those on
resistant populations (g). We show the results separately by different values of u1; u1 is 0.01 in Figure 5(1), and 1027 in Figure 5(2). The parameter
values used in the figure, but not shown in Table 1 are u4 = 0.01, and d = b = 0.1.
doi:10.1371/journal.pone.0105724.g005
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[48,49]. When we focused on the aggressiveness of the tumor, the

majority of tumor cells at diagnosis had a high proliferation rate

under large u1 conditions (Figs. 4A, 4B, S7A, S7B). The results are

consistent with recent reports that TP53 mutations are observed in

more than 90% of ovarian cancers [5,7,50] and 80% of basal-like

breast cancers [5]. BRCA function is inactivated in a large

proportion of tumors at diagnosis with large u1 (Figs. 4D, 4E, S7C,

S7D). Thus, the tumor cells are expected to show (epi)genetic

instability and sensitivity to platinum drugs and PARPis while

exhibiting a high proliferation rate over a wide range of parameter

values (Fig. 4B, 4E). These results fit with the reports of high

(epi)genetic instability frequency in high-grade serous ovarian

cancer [51,52,53].

Moreover, our results indicate that when there is no treatment

effect on resistant cancer cells, platinum drugs and PARPis have a

,10-fold survival benefit for cancers with large u1 compared with

the cases with small u1 (Fig. 5A(i)–D(i), (i)–H(i)). This observation

may explain why clinical cases of ovarian cancer with BRCA

mutations show a better prognosis than those with wild-type

BRCA during chemotherapy [7,22,23]. Our results support the

conventional first-line regimen of platinum-based chemotherapy

in BRCA-associated ovarian cancer.

Furthermore, in the case of no treatment effect in resistant

cancer cells, drug-sensitive type-3 cells still exist in a large

proportion of tumors at relapse (Figs. 5A(i)–D(i), 5A(iv)–D(iv),

S10(i), S10(iv)). The results indicate that retreatment with platinum

drugs and PARPis after recurrence may still be worthy of

consideration. Indeed, this is supported by a recent report in

which re-treatment with cisplatin was effective in patients who

exhibited good sensitivity to platinum drugs with prior treatment

[54], and that PARPis were effective in platinum-sensitive relapsed

tumors [55]. Notably, tumors also contain resistant cells in such a

situation, and recurrence is inevitable if we simply continue the

same strategy as before (Figs. 5A(i)–D(i), A(iv)–D(iv), S10(i),

S10(iv)).

Finally, we observed that the proportion of type-2 cells at

relapse increased as the total cell number at diagnosis increased

(Fig. 5A–D, Table 1). This causes early treatment failure due to

the pre-existence of resistant cells. This result is consistent with the

clinical evidence that early-stage and smaller residual tumor

volumes were favorable characteristics for overall survival in

ovarian cancer [56]. Taken together, the model could reproduce

the clinical evidence in cases of frequent BRCA inactivation

during tumorigenesis, such as in ovarian cancer or basal-like breast

cancer.

We also considered the case of a low mutation rate, u1 = 1027.

This represents tumorigenesis in non-basal-like breast cancer with

BRCA heterozygotes [10]. Regarding the aggressiveness of the

tumor, the results with small u1 were similar to clinical

observations in luminal breast cancer, in which a wide range of

aggressiveness occurs (Figs. 4A, 4C, S7A, S7B). Indeed, the

prediction may explain the report that TP53 mutations are

observed in 12–29% of luminal breast cancers, much lower than

that in ovarian or basal-like breast cancers [5]. In marked contrast

to the situation with a high mutation rate, u1 = 1022, the

proportion of cells sensitive to platinum drugs and PARPis is very

small (,0.002) at diagnosis over the global range of parameter

values (Figs. 4D, 4F, S7C, S7D). These results agree well with the

finding that TP53 mutations occur first, instead of BRCA1

inactivation, in evolutionary pathways of BRCA1-associated

luminal breast tumors [11]. Tumors dominated by resistant

populations at diagnosis result in early treatment failure when

there is no treatment effect on resistant cells (Figs. 5E–J, S10(i),

S10(iv)). These results are consistent with current therapeutic

Table 2. Agreements between the results and the clinical and molecular evidence.

Results Figures and Tables Clinical and molecular evidence References

(1)Cases of high mutation rate (u1 = 0.01)

Coexistence of multiple populations at diagnosis
and relapse

Figs. 4, 5, S7, S9, S10, Table 1 Intra-tumor genetic heterogeneity in ovarian and
breast cancer

48,49

High frequency of cells with a growth advantage
at diagnosis

Figs. 4, S7 Observation of TP53 mutation in more than 90% of
ovarian cancers

5,7,50

Observation of TP53 mutation in more than 80% of
basal-like breast cancers

5

High frequency of BRCA-inactivated (drug-sensitive)
cells at diagnosis

Figs. 4D, 4E, S7C, S7D High frequency of (epi)genetic instability in high grade
serous ovarian cancer

51,52,53

Ten-fold survival benefit in treatment with
platinum drugs and PARPis

Fig. 5A(i)–D(i), E(i)–H(i) Good prognosis by the platinum-based and PARPis
chemotherapy in patients with BRCA mutation.

7,22,23,62

High frequency of drug-sensitive type-3 cells at
relapse

Figs. 5A(i)–D(i), A(iv)–D(iv),
S10(i), S10(iv)

Some patients can be re-treated with the same drugs
which previously showed good sensitivity

54

Good responses by PARPis to platinum-sensitive
relapsed tumors

55

Proportion of type-2 cells increases as tumor
detection size increases

Fig. 5A–D, Table 1 Detection in early stage is favorable for overall
survival in ovarian cancer

56

(2) Cases of low mutation rate (u1 = 1027)

Wide range of aggressiveness at diagnosis Figs. 4A, 4C, S7A, S7B Observation of TP53 mutation in 12% to 29% in
luminal breast cancers

5

Low frequency of BRCA-inactivated (drug-sensitive)
cells at diagnosis

Figs. 4D, 4F, S7C, S7D Late BRCA1 inactivation in BRCA1-associated breast
tumors

11

Early treatment failure due to pre-existing drug-
resistant cells

Figs. 5E–J, S10 (i), S10(iv) Small effects by DNA damaging drugs in BRCA-
associated breast cancers

57

doi:10.1371/journal.pone.0105724.t002

Evolution of Drug Resistance in BRCA-Associated Cancers

PLOS ONE | www.plosone.org 10 August 2014 | Volume 9 | Issue 8 | e105724



outcomes for BRCA-associated breast cancers, in which DNA-

damaging drugs did not show substantial effects with a single agent

[57]. These results may also explain why clinical trials on PARPis

treatment in patients with triple-negative breast cancer failed, with

patients showing no response, in contrast to substantial responses

of BRCA-associated ovarian cancers in the same trial [58],

because the patient populations with triple-negative breast cancer

contained not only basal-like but also non-basal breast cancers

[59]. In summary, we have been able to reproduce BRCA-

associated cancer types, such as non basal-like breast cancer, in

which BRCA inactivation is not frequently observed during

tumorigenesis.

Discussion

In this study, we developed mathematical models of BRCA-

associated cancer progression before and during treatment with

platinum drugs or PARPis. Next, we investigated the frequency of

each cell population at diagnosis and the evolution of drug

resistance during treatment. We derived analytical approximations

for the proportions of drug-sensitive and -resistant cells at

diagnosis and explored evolutionary pathways involved in

acquiring drug resistance. Recurrence-free intervals were also

investigated over a wide parameter range. Moreover, we

reproduced clinical/experimental observations successfully. In

the parameter settings for ovarian or basal-like breast cancer, in

which BRCA inactivation is commonly observed during tumor-

igenesis, the models succeeded in capturing the following clinical

evidence: (i) high tumor heterogeneity and high prevalence of

aggressive tumor cells, (ii) high frequency of (epi)genetic instability

and sensitivity to platinum drugs and PARPis, (iii) long recurrence-

free intervals due to a high frequency of BRCA-mutated cell

populations, (iv) possibility of re-treatment with platinum drugs

and PARPis, and (v) early treatment failure in the case of large

detection size. Moreover, we have reproduced the clinical

evidence that a therapy reliant on DNA repair deficiency would

not be a promising approach in the case of non-basal-like breast

cancer, in which BRCA heterozygosity is sometimes retained

during tumorigenesis.

It is clinically important to reveal the trajectory of drug

resistance development during the treatment of ovarian carcinoma

[60]. In this study, we investigated two possibilities for the

evolution of drug resistance in a large u1 condition: (i) expansion of

a pre-existing intrinsic sub-population and (ii) acquisition of drug

resistance due to secondary mutations during treatment. When

there are 90% growth reducing effects on sensitive cells and no

effect on resistant cells, the majority of resistant cells are pre-

existing resistant tumor cells, such as type-0 or -2 cells, in a

relapsed tumor (Fig. 5A(i)–D(i)). However, when treatment effects

on resistant cells are not small, resistant cells may emerge due to

secondary mutations in BRCA during treatment (Fig. 5A(iii)–

D(iii)). In this case, it takes a long time for de novo resistant cells in

a relapsed tumor to emerge and become dominant (Fig. 5A(ii),

5A(iii), 5B(ii), 5B(iii), 5C(iii)). Given that large treatment effects on

resistant cells in the clinic are less plausible, we suggest that drug

resistance acquired by novel mutations during treatment occurs in

only a small proportion of patients after long-term exposure to

chemotherapy. Indeed, only 6.3% (4/64 patients) of ovarian

cancer patients showed de novo resistance to treatment [29], and

the secondary mutations did not become detectable until more

than a decade after chemotherapy for ovarian and breast cancers

[29,30]. When there was more than 99% tumor growth reduction

on sensitive cells, most of the cells in a relapsed tumor were

originally present at the start of therapy (Fig. 5A–D). Collectively,

these results indicate that the origin of resistant cells in a relapsed

tumor can vary according to the tumor characteristics and

treatment effects on both sensitive and resistant cells.

Based on the results from the models, our hypothesis on the

evolutionary trajectories of BRCA-associated cancers is illustrated

in Figure 6. The frequency of BRCA inactivation is a major

determinant in the future sensitivity to platinum drugs and

PARPis. If it is high, the drug-sensitive tumor population appears

at diagnosis. In this situation, drug-sensitive and -resistant cells

may coexist at relapse after treatment, and effective retreatment is

conceivable (Fig. 6B). Populations with secondary mutations may

emerge after long-term treatment if the drugs effectively suppress

the growth of resistant cells as well as sensitive cells (Fig. 6A). If a

sufficient growth advantage is not obtained by the mutation to

accelerate tumor growth or the tumor is diagnosed at a late phase,

the tumor tends to contain drug-resistant cells at the start of

therapy (Fig. 6C). If BRCA inactivation does not occur frequently

during tumorigenesis, the tumor will be resistant to platinum drugs

and PARPis at the start of therapy (Fig. 6D). Taken together,

platinum drugs and PARPis should be effective if (i) BRCA

inactivation occurs, (ii) treatment is started early, and (iii) tumor

growth is rapid. Our results may help determine individualized

treatment options for patients with BRCA-associated cancers in

the clinic.

This research provides theoretical insights into the therapeutic

approaches for different types of cancers that share major

mutations in tumorigenesis. Our results suggest that platinum

drug and PARPi treatment strategies dependent on the underlying

defects in DNA repair mechanisms should be commonly effective

in cancers in which BRCA inactivation occurs frequently, such as

basal-like breast and ovarian cancers (Fig. 5A–D), as reported [60–

62]. In fact, basal-like breast cancer shares molecular features with

serous ovarian cancer, but not with other breast cancers [5]. In

ovarian cancer, the time interval from completion of platinum-

based chemotherapy to disease progression has been convention-

ally used as an indicator to predict the response to subsequent

treatment with platinum-containing regimens [63]. However, our

results indicate that the cell population profiles in BRCA-

associated cancers at relapse vary largely in accordance with the

treatment effects in sensitive and resistant populations (Fig. 5).

Thus, assessment of whether the relapsed tumor cells restore HR

function, for example, using DNA sequencing and Rad51 foci

formation assays, could be key to determining the sequential

treatment strategies.

Another important result is the identification of the evolutionary

paths leading to tumor cells with malignant characteristics.

Interestingly, type-3 cells, which have high mutation and growth

rates, emerged exclusively from type-1, and not type-2, cells with

high mutation rates regardless of u1, u2, or the relative growth

rate, (a–b)/(r–d) (Figs. 4G–I, S7E, S7F). These results suggest that

even though mutation rates enhanced by dysfunction in DNA

repair mechanisms itself do not confer a growth advantage to cells,

they subsequently induce additional mutations, some of which

may accelerate tumor growth. In this case, the pervasive

characteristics of tumor cells regarding dysfunctional BRCA

provide a therapeutic opportunity, as seen with platinum drugs

and PARPis.

In this study, we considered that tumor cells grow independently

during tumorigenesis. In the initial progression of a carcinoma,

exponential growth without tumor competition is often assumed.

Thus, we adopted the simple growth mode without density effects

in the first study regarding the evolution of drug resistance to

platinum drugs and PARPis in BRCA-associated cancers. We also

considered a simple but feasible dosing strategy of continuous drug

Evolution of Drug Resistance in BRCA-Associated Cancers
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Figure 6. Schematic illustration of evolutionary trajectories of BRCA-associated cancers. The hypothesis on the evolutionary trajectories
of BRCA-associated cancers is illustrated. Treatment outcomes are determined by the following four conditions: (i) the frequency of BRCA inactivation,
(ii) growth advantage of type-2 and -3 cells, (iii) the detection size, and (iv) drug effects on resistant cells. (A) Drug resistance by secondary mutations
emerges after long-term treatment in the case of (i) as high, (ii) as large, (iii) as large, and (iv) as large. (B) Drug-sensitive and -resistant cells coexist at
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administration and assumed the secondary mutation rate u4 to be

the same as u3. This assumption is based on evidence that

(epi)genetic instability induced by deficiency in the repair pathway

has a major effect on determining the ability to induce mutations

[19]. Moreover, we did not distinguish the treatment effects on

several types of resistant cells. Instead, we examined possible

situations during treatment over a wide range by considering

various parameter combinations of treatment effects on both

sensitive and resistant cells. Furthermore, we assumed that

secondary mutations before treatment were very rare and that

type-4 and -5 populations were introduced only after treatment.

This is supported by the evidence that secondary mutations are

observed experimentally only when platinum drugs and PARPis

are administered to cells [27,28]. Because the effects of inactiva-

tion on DNA repair mechanisms vary between BRCA1 and

BRCA2, the mutation rate from type-1 to -3 cells, u3, can be low

[10]. We then investigated the proportions of cell populations at

diagnosis with a small u3 (Figs. S8, S9). Although parameter

dependence shows a similar pattern to that with a large u3 (Figs. 4,

S7, S8, S9), the populations with high growth rates and drug

sensitivity (type-3) are less prevalent under these conditions. This

result agrees in part with those of clinical cases, in which platinum-

resistant cancer recurs in ,25% of ovarian patients within 6

months [7]. These results indicate that, in general, u3 may not be

small [45].

Even though we have focused on BRCA1/2 inactivation in

impaired HR function, the frequency of BRCA1/2 mutations does

not explain all cases of HR impairment in BRCA-associated

cancers. Indeed, 10–20% of ovarian cancers [7] and ,20% of

breast cancers show inactivation of BRCA1/2 [5]. However, The

Cancer Genome Atlas analysis of serous ovarian cancer docu-

mented that ,50% of serous ovarian cases [64] and 20% of triple-

negative breast cancers [65] might have disrupted HR repair

mechanism(s). Recently, many molecular mutations have been

identified that confer BRCA-like characteristics to tumors, such as

the Fanconi anemia protein family [66] and PTEN [67]. Thus,

there is broad recognition of HR dysfunction in tumorigenesis.

Our models can be interpreted as type-1 populations include cells

not only with inactivated BRCA1/2 but also with ‘BRCAness’,

that is, HR defects without mutations in BRCA1/2.

Collectively, we considered the evolutionary dynamics of BRCA-

associated cancer before and during treatment and identified

effective treatment conditions using platinum drugs and PARPis in

agreement with clinical and experimental observations. These

results may be applied to other BRCA-associated cancers, such as

prostate, pancreatic, and uterine serous. The frequency of patients

with BRCA mutations is small in these cancers. However, our

results indicate that treatment with platinum drugs and PARPis in

specific patients with HR impairment due to BRCA mutations

might be an effective option essentially as a tailor-made therapy.

Furthermore, our method in which we considered different types of

cancers (ovarian and breast) in the same model according to the

representative mutational status can be applied to other cancers if

the major milestones during tumorigenesis are shared among these

cancers. This approach will provide novel insights into therapeutic

strategies from the viewpoint of pathway-targeted therapy against

multiple cancers.

Supporting Information

Figure S1 The probability of type-1 cells at diagnosis.
The figure shows the dependence of the probability of the

existence of type-1 cells at diagnosis on various parameters. The

curves indicate the predictions of the analytical approximation,

Eq. (1), while the circles indicate the results of the direct computer

simulation (system S1). Standard parameter values used in the

figure are u1 = u2 = 5.0?1027, u3 = 0.01, M = 106, r = 0.2, a = 0.3,

d = b = 0.1.

(TIF)

Figure S2 The probability of type-2 cells at diagnosis.
The figure shows the dependence of the probability of the

existence of type-2 cells at diagnosis on various parameters. The

curves indicate the predictions of the analytical approximation,

Eq. (2), while the circles indicate the results of the direct computer

simulation (system S1). Standard parameter values used in the

figure are u1 = u2 = 5.0?1027, u3 = 0.01, M = 106, r = 0.2, a = 0.3,

d = b = 0.1.

(TIF)

Figure S3 The expected number of type-1 cells at
diagnosis. The figure shows the dependence of the expected

number of type-1 cells at diagnosis on various parameters. The

curves indicate the predictions of the analytical approximation,

Eq. (S12), while the circles indicate the results of the direct

computer simulation (system S1). Standard parameter values used

in the figure are u1 = u2 = 5.0?1027, u3 = 0.01, M = 106, r = 0.2,

a = 0.3, d = b = 0.1.

(TIF)

Figure S4 The expected number of type-2 cells at
diagnosis. The figure shows the dependence of the expected

number of type-2 cells at diagnosis on various parameters. The

curves indicate the predictions of the analytical approximation,

Eq. (S13), while the circles indicate the results of the direct

computer simulation (system S1). Standard parameter values used

in the figure are u1 = u2 = 5.0?1027, u3 = 0.01, M = 106, r = 0.2,

a = 0.3, d = b = 0.1.

(TIF)

Figure S5 The probabilities and the expected numbers
of each population at diagnosis with large u1. The figure

shows the probabilities of the existence of type-1, -2, and -3 cells

and the expected numbers of type-1, -2, and -3 cells at diagnosis in

a region of large u1. The curves indicate the predictions of the

analytical approximations, Eq. (1), Eq. (2), Eq. (S11), Eq. (S12),

Eq. (S13), and Eq. (S22), while the circles indicate the results of the

direct computer simulations (system S1). Parameter values used in

the figure are u2 = 5.0?1027, u3 = 0.01, M = 106, r = 0.2, a = 0.3,

d = b = 0.1.

(TIF)

Figure S6 The probabilities and the expected numbers
of each population at diagnosis with large u2. The figure

shows the probabilities of the existence of type-1, -2, and -3 cells

and the expected numbers of type-1, -2, and -3 cells at diagnosis in

a region of large u2. The curves indicate the predictions of the

analytical approximations, Eq. (1), Eq. (2), Eq. (S11), Eq. (S12),

Eq. (S13), and Eq. (S22), while the circles indicate the results of the

direct computer simulations (system S1). Parameter values used in

relapse and retreatment with the same drugs is conceivable in the case of (i) as high, (ii) as large, (iii) as not large, and (iv) as small. (C and D) Drug
resistance due to pre-existing resistant cells emerges in the case of (i) as high, (ii) as small, (iii) as large and (iv) as any, or in the case of (i) as small. The
reference numbers indicate clinical observations, each of which corresponds to each outcome in the evolutionary trajectories.
doi:10.1371/journal.pone.0105724.g006
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the figure are u1 = 5.0?1027, u3 = 0.01, M = 106, r = 0.2, a = 0.3,

d = b = 0.1.

(TIF)

Figure S7 Proportion of clinically significant popula-
tions at diagnosis. (A–B) The proportion of type-2 and -3 cells

with a growth advantage in the total population at diagnosis is

shown in a wide region of u1, u2. (C-D) The proportion of type-1

and -3 cells (drug-sensitive cells) in the total population is shown.

(E–F) The proportion of type-3 cells arising from type-1 cells in a

total type-3 population is shown. Each population at diagnosis is

calculated by the formulas, Eq. (S12), Eq. (S13), and Eq. (S22).

Parameter values used in the figure are u3 = 1022, M = 106,

r = 0.2, a = 0.3, d = b = 0.1 (panel A, C, and E); and a = 0.6 (panel

B, D, and F).

(TIF)

Figure S8 Proportion of clinically significant popula-
tions at diagnosis with a low mutation rate, u3. (A–C) The

proportion of type-2 and -3 cells with a growth advantage in the

total population at diagnosis is shown in a wide region of u1, u2

and the relative growth rate of type-2 and -3 cells to that of type-0

and -1 cells, (a–b)/(r–d). (D–F) The proportion of type-1 and -3

cells (drug-sensitive cells) in the total population is shown. (G–I)

The proportion of type-3 cells arising from type-1 cells in a total

type-3 population is shown. Each population at diagnosis is

calculated by the formulas, Eq. (S12), Eq. (S13), and Eq. (S22).

Parameter values used in the figure are u2 = 1027, u3 = 1024,

M = 106, r = 0.2, a = 0.3, d = b = 0.1 (panel A, D, and G);

u1 = 1022 (panel B, E, and H); and u1 = 1027 (panel C, F, and I).

(TIF)

Figure S9 Proportion of clinically significant popula-
tions at diagnosis with a low mutation rate, u3. (A–B) The

proportion of type-2 and -3 cells with a growth advantage in the

total population at diagnosis is shown in a wide region of u1, u2.

(C–D) The proportion of type-1 and -3 cells (drug-sensitive cells) in

the total population is shown. (E–F) The proportion of type-3 cells

arising from type-1 cells in a total type-3 population is shown.

Each population at diagnosis is calculated by the formulas, Eq.

(S12), Eq. (S13), and Eq. (S22). Parameter values used in the figure

are u3 = 1024, M = 106, r = 0.2, a = 0.3, d = b = 0.1 (panel A, C,

and E); and a = 0.6 (panel B, D, and F).

(TIF)

Figure S10 The population composition at relapse and
recurrence time intervals in a wide region of u1 and u2.
The population compositions at diagnosis (the initial time of

treatment) and at the time of recurrence after treatment in a wide

region of u1 and u2 are shown in pie charts. The time periods until

the time of recurrence after treatment are shown as numbers

under the pie charts. The time of recurrence is defined as the time

point when the total number reaches 10% larger than the number

at diagnosis. Each result is obtained by averaging a lot of trials by

stochastic simulations of the model under treatment (system S23).

The parameter values used in the figure except u1 and u2 are

u3 = u4 = 0.01, M = 106, a = 0.4, and d = b = 0.1. Treatment effects

are shown at the top of pie charts as the reduction effects on

growth rates of sensitive populations (c) and those on resistant

populations (g).

(TIF)

Materials S1 Supplementary material.

(DOCX)

Table S1 Parameter sets used for the analysis in
Supplementary Figure S10 and expected numbers of
cells at diagnosis. The expected numbers of type-1, -2, and -3

cells at diagnosis are calculated by Eq. (S12), Eq. (S13), and Eq.

(S22). The number of type-0 cells is considered as the rest of the

total number. The proportion of each type is shown in

parentheses. The cases where the sum of type-0, type-1, type-2,

and type-3 cells exceeded M were excluded. Parameter values used

in the figure are u3 = 0.01, M = 106, r = 0.2, a = 0.4, d = b = 0.1.

(EPS)
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