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Abstract: The paper presents a procedure for the determination of uncertainties in the modeling of
surface roughness in the turning of NiTi alloys. The presented procedure is applicable both to the
analysis of the measurement values of the two main roughness factors, as well as to research related
to the prediction and optimization of the machining process. Type A and B, total, and expanded
uncertainties were considered herein, and the obtained uncertainty values were assessed. A procedure
for optimizing machining by applying the Monte Carlo (MC) method is also presented. The solutions
presented in this paper are important from the point of view of practical solutions related to the
prediction and optimization of the machining process. The considered procedure for determining
and assessing uncertainty can be useful for the optimal selection of both machining parameters and
measuring tools.
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1. Introduction

The dynamic development of science in the modern world is strongly correlated with the demand
for more and more new construction materials with properties adapted to new technologies [1–5].
However, it should be remembered that the practical use of these materials is inextricably corresponded
to the methods of their production and treatment. In order to manufacture new products from
difficult-to-machine materials, such as shape memory alloys, titanium alloys, nickel alloys, and special
ceramics, there is a need to search for more and more effective treatment methods that exceed
technological barriers [6–9].

Modern machining processes, especially of difficult-to-cut materials, which are widely used in
industry, should ensure the best possible quality, efficiency, economy, reliability, and environmental
friendliness of products [1,3,10].

Shape memory TiNi alloys are materials with unique functional properties, but at the same time
have very favorable parameters in terms of mechanical strength, fatigue strength, specific weight,
resistance to corrosion and aggressive environments, etc. For this reason, there is a great interest in
these materials in the industry of modern instruments or mechanical systems used in technology
and medicine [11–15]. However, in order to maintain their high position as construction materials,
the costs of their treatment should be reduced. The problems associated with the machining of these
alloys do not allow for higher cutting parameters to be achieved, and thus impede an increase in the
machining efficiency while maintaining the appropriate quality of the surface layer. The main problems
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in the machining of TiNi alloys are related to high cutting temperatures and rapid tool wear, poor
surface quality and cutting process efficiency, burr formation, and continuous chip, which is difficult
to control [8,13,15–23].

Thus far, the priority in the industry has been to obtain the high-quality parameters of products
made of NiTi alloys. The second in the hierarchy is the cost of their production. It can be expected that,
in the future, due to the need to reduce and optimize production costs, research efforts will be directed
toward the processes of shaping NiTi alloy elements using methods that ensure maximum efficiency
while maintaining a good quality of the machined surface [6,11–13].

Due to the high requirements for elements made of NiTi alloys and the simultaneous need for
effective machining of materials, the need to optimize the processes of such machining is evident.
Despite the great advancement of research in the field of forecasting and optimization of the various
machinability indices (surface roughness, tool wear, etc.) in relation to the processing of various
construction materials, the literature lacks or highlights difficulties in finding items for which a detailed
assessment of the issues related to prediction and optimization of surface roughness in the process of
turning shape memory alloys has been carried out [7].

The guidelines for NiTi alloy machining presented in the scientific literature, which are based on
the results of fragmentary experimental studies, are usually insufficient. In industry, cutting parameters
are very often selected based on the experience of machine operators and programmers and
on the recommendations of tool manufacturers in order to obtain an appropriate quality of the
machined surface.

The machining process is characterized by a large number of parameters that affect it, which
means that achieving optimal process efficiency while maintaining the required product quality is
impossible, even for a highly qualified employee. The most unfavorable effects of this approach are
the deterioration of product quality, an increase in operating costs and treatment time, a decrease in
productivity, etc. [1–3,6,24].

Surface roughness is a measure of the technological quality of a product and a factor that has
a large impact on the cost of production. Achieving the desired roughness value is a repetitive and
empirical process that can be very time consuming. The mechanism of surface roughness formation is
also very complicated and process-dependent; therefore, it is very difficult to calculate its value by
using an analytical formula. The various theoretical models proposed in the relevant literature are not
sufficiently accurate and are only applicable to a limited range of processes and cutting conditions,
or must be used in connection with complicated diagrams or statistical tables. Therefore, an appropriate
procedure is needed that can allow the surface roughness value to be assessed prior to the machining
of the material, while being easy to use in industry and helping to minimize the time and cost of
treatment. Moreover, such a procedure could be used to determine the appropriate cutting conditions
to obtain the specific surface roughness [3,24–31].

The ability to predict surface roughness before machining has attracted great interest from
many scientists, being the main goals of many research studies. The prediction of surface roughness is
currently determined by using various techniques such as theoretical models [3,32–35], response surface
methodology (RSM) [3,6,9,36–38], the Taguchi procedure [3,6,28,38–43], multiple linear regression
equations [44], the Monte Carlo (MC) method [7,24,33,43–52], artificial intelligence through the use of
the artificial neural networks (ANNs) [1,3,26,29,30,53–56], genetic algorithms (GAs) [3,57], fuzzy logic
(FL) [3,36,54,58–61], the decision tree (DT) method [62], and expert systems (ES) [3]. Many research
works show the use of these methods in the forecasting and optimization of surface roughness [3].
Researchers usually do not use only one modeling approach in their works, but look for a mutual
compilation of the above strategies [3,6,36–39,54,59]. The benefits of using surface roughness prediction
methods include an increase in the productivity and competitiveness of the production process and a
simultaneous reduction in the need to re-machine a material to meet technical requirements [3,9,10,24].

Analyzing the relevant literature regarding the prediction and optimization of machining processes,
it can be easily noticed that the current trend is the use of ANNs, GAs, RSM, and the Taguchi procedure
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for these purposes. The authors of this study note that despite the many application possibilities of the
MC method [46–52], its application for solving the problems related to the prediction and optimization
of machining has not been given much attention in the literature. This comment also applies to the
analysis and assessment of the uncertainties [63] related to the above-mentioned prediction and
optimization procedures. The developed model of surface roughness prediction together with the
uncertainty determination procedure can significantly reduce the cost of machining of shape memory
alloys while maintaining the optimal quality of the machined surface.

Taking into account the above literature review, this paper presents a procedure for determining the
uncertainties, together with their analysis, in the modeling of surface roughness in the turning of NiTi
alloys by employing the MC method. For the purposes of applying the MC method, the pseudorandom
number generator with a uniform distribution was used [64]. The procedure presented here makes it
possible to easily evaluate the suitability of the obtained results in the field of machining and, therefore,
to choose other solutions in the event of obtaining unsatisfactory uncertainty values.

2. General Assumptions

Experimental tests for the purpose of determining a mathematical model were carried out for the
operation of precision turning of a 6.38 mm shaft, made of the shape memory alloy β-NiTi (nitinol) with
the following chemical composition: 52.85 at.% Ni and 47.15 at.% Ti. Machining was carried out dry in
an air atmosphere. A CCMT 060202 polycrystalline diamond (PCD) plate (Iscar, Tel Aviv-Yafo, Israel)
was used for the treatment. The research plan to determine the impact of three independent factors,
namely, feed ( f (mm/rev)), depth of cut (ap (mm)), and cutting speed (vc (m/min)), on the values
of the selected factors Sa and Sz (i.e., 3D areal surface texture parameters) of the surface roughness
was developed according to the Taguchi experiment design guidelines (DOE) [6]. The factors Sa
(i.e., the arithmetical mean height of the surface) and Sz (i.e., the maximum height of the surface—sum
of the maximum peak height value and the maximum pit height value within a definition area) were
defined in accordance with the standard ISO25178 [62].

Generally, Sa is represented by the equation [27]:

Sa =
1

LB

∫ L

0

∫ B

0

∣∣∣η(x, y)
∣∣∣dxdy (1)

where η(x, y) is the deviation of the surface irregularities from the base plane, and L and B are the
length and the width of the given section of surface corresponding to the baseline for the given type of
surface irregularities, respectively.

The research plan is represented in the form of the so-called orthogonal table L9, which describes
the individual research trials for the three factors with three different values, which are called the
levels. The parameter values for the machining were selected on the basis of the generally available
NiTi alloy tests. These values are: f = 0.038, 0.058, 0.077 mm/rev; ap = 0.03, 0.08, 0.13 mm; vc = 30,
40, 50 m/min [6]. The 3D roughness measurements of the NiTi-treated surface were performed by
using the Taylor Hobson measurement system. To perform the surface roughness measurements,
a measuring tip with a rounding radius of 2 µm was used, and the measurements were repeated ten
times. The periodic nature of the surface was included for analysis, and as a result, the calculation of
the selected parameters of topography was obtained. The cut-off value λc of the filter was selected
based on the values recommended for periodic profiles. The value λc = 0.8 mm was selected [6] based
on the obtained ranges of surface roughness.

The mathematical relationships between the input data ( f , ap, and vc) and the output factors (Sa and
Sz) for the Taguchi experiment were obtained here. The experimental basis for these relationships can
be found in previous work [6], while the model for determining the factors Sa and Sz was appointed
using RSM.

The analysis with the Taguchi method mentioned above is only for the main factors Sa and Sz
without any consideration of the correlation between them. Therefore, herein, RSM-based regression
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was used for the analysis of the correlation between such factors, which revealed that the contour
plots of Sa were represented by corresponding curves. Therefore, the mathematical model used for
predicting the suitable value was the quadratics model:

y = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b11x1
2 + b22x2

2 + b33x3
2 + b44x4

2 + b12x1x2

+b13x1x3 + b14x1x4 + b23x2x3 + b24x2x4 + b34x3x4
(2)

where b0, b1, b2, b3, b4, b11, b22, b33, b44, b12, b13, b14, b23, b24, and b34 are constant values, while x1, x2, x3,
and x4 are model parameters (i.e., input parameters).

Model (1) can be obtained by considering the full quadratics model represented by the
mathematical models:

Samod = 2.046− 2.436· f − 2.038·ap + 0.08588·vc + 43.2· f 2 + 14.47·ap
2+ 0.001022·vc

2 (3)

and
Szmod = 37.49− 161.9· f − 34.25·ap − 1.353·vc + 1382· f 2 + 184.7·ap

2+ 0.01612·vc
2 (4)

where
vc =

πdn
1000

(5)

while d and n are the diameter of the machined surface and the number of rotations, respectively.
The factors Samod and Szmod represent the arithmetical mean height and the maximum height of the

surface (sum of the maximum peak height value and the maximum pit height value within a definition
area), respectively. These factors describe the height or height distribution of the surface irregularities.

3. Results of the Measurements and Associated Uncertainties Obtained Experimentally

The predetermined values of parameters f , ap and n, for which the factors Sa and Sz were
determined with a constant value of diameter d equal to 6.380 mm, are tabulated in Table 1 (rows 1, 2,
. . . , 9).

Table 1. Values of the parameters, ap, and n.

no. f
[mm/rev]

ap
[mm]

vc
[m/min]

n
[rev/min]

1
0.038

0.030 20 1498
2 0.080 30 1997
3 0.130 50 2496

4
0.058

0.030 20 1997
5 0.080 30 2496
6 0.130 50 1498

7
0.077

0.030 20 2496
8 0.080 30 1498
9 0.130 50 1997

Table 2 (columns Ms = 1, 2, . . . , 9) summarizes the series of measurements of the factors Sa and Sz,
which were determined for particular rows from Table 1. Each series contains N = 10 measurements,
while the rows described by Sa and Sz are the mean values of Sa and Sz determined on the basis of
a particular n measurement. The mean Sa and Sz were adopted below as the value of the factors Sa
and Sz.

The uncertainty of type A associated with the measurement of factors Sa and Sz is presented by
the equation:

uA(x) =

√√√
1

N − 1

N∑
n=1

(xn − x)2 (6)
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where

x =
1
N

N∑
n=1

xn (7)

corresponds to the mean Sa and Sz [47,63].
The uncertainty of type B associated with the measurement of factors Sa and Sz is:

uB(x) = ∆ (8)

where ∆ = 0.001 µm is the reading resolution of the above parameters.
The total and expanded uncertainties are determined based on the following formulas:

u(x) =
√

uA
2(x) + uB

2(x) (9)

and
U(x) = kpu(x) (10)

respectively, where kp is the coverage factor and for a distribution with a confidence level of 0.95 equal
to 2 [47,63].

Table 2. Measurement series Ms of the factors and Sa and Sz.

n
Ms 1 2 3 4 5 6 7 8 9

Factor Sa [µm]

1 0.454 0.179 0.288 0.244 0.333 0.427 0.261 0.430 0.407
2 0.404 0.159 0.278 0.194 0.363 0.377 0.351 0.380 0.387
3 0.304 0.039 0.148 0.094 0.383 0.277 0.231 0.280 0.287
4 0.284 0.049 0.128 0.074 0.223 0.257 0.231 0.260 0.307
5 0.424 0.169 0.288 0.214 0.323 0.397 0.351 0.400 0.407
6 0.414 0.159 0.258 0.204 0.313 0.387 0.361 0.390 0.387
7 0.344 0.089 0.188 0.134 0.293 0.317 0.271 0.320 0.307
8 0.444 0.189 0.288 0.234 0.313 0.417 0.371 0.420 0.427
9 0.314 0.059 0.138 0.104 0.273 0.287 0.261 0.290 0.317

10 0.354 0.099 0.178 0.144 0.213 0.327 0.321 0.330 0.337
Sa 0.374 0.119 0.218 0.164 0.303 0.347 0.301 0.350 0.357

Factor Sz [µm]

1 6.921 3.390 4.267 3.183 4.390 5.338 4.940 5.203 4.087
2 6.845 3.312 4.186 3.105 4.341 5.197 4.861 5.081 4.005
3 6.950 3.419 4.313 3.212 4.432 5.296 4.979 5.261 4.119
4 6.864 3.346 4.214 3.129 4.327 5.219 4.882 5.140 4.036
5 6.936 3.371 4.276 3.197 4.301 5.321 5.021 5.212 4.105
6 6.831 3.340 4.209 3.083 4.305 5.181 4.856 5.114 4.004
7 6.915 3.387 4.261 3.171 4.360 5.348 4.937 5.223 4.042
8 6.963 3.392 4.312 3.226 4.412 5.189 4.867 5.243 4.137
9 6.970 3.402 4.321 3.225 4.392 5.317 5.005 5.260 4.148

10 6.833 3.275 4.184 3.112 4.261 5.158 4.894 5.081 4.024
Sz 6.903 3.363 4.254 3.164 4.352 5.256 4.924 5.179 4.071

The combined uncertainties associated with the factors Samod i Szmod, which are determined
based on Equations (3) and (4), are defined by the formulas:

uc
(
Samod

)
=

√[
∂Sam

∂ f
uB( f )

]2

+

[
∂Sam

∂ap
uB

(
ap

)]2

+

[
∂Sam

∂vc
uc(vc)

]2

(11)
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and

uc
(
Szmod

)
=

√[
∂Szm

∂ f
uB( f )

]2

+

[
∂Szm

∂ap
uB

(
ap

)]2

+

[
∂Szm

∂vc
uc(vc)

]2

(12)

where uB( f ) and uB

(
ap

)
are the uncertainties of type B associated with the parameters f and ap, while

uc(vc) is the combined uncertainty associated with the parameter vc and is determined based of the
following formula:

uc(vc) =

√[
∂vc

∂d
uB(d)

]2

+

[
∂vc

∂n
uB(n)

]2

(13)

where uB(d) and uB(n) [63] are the uncertainties of type B related to determination of the diameter
d and the number of rotations n, respectively. The uncertainties uB( f ), uB

(
ap

)
, uB(d), and uB(n) are

equal to 0.001 mm/rev, 0.01 mm, 0.01 mm, and 1 rev, respectively. These uncertainties result from the
resolution of the measurement devices used.

The expanded uncertainties are determined based on the following formula:

U(y) = kpuc(y) (14)

where y corresponds to the values Sa and Sz, while kp = 2.
The mean values Sa and Sz of the measured factors Sa and Sz as well as the uncertainty determined

on the basis of the Equation (10) are tabulated in Table 3. The uncertainties: uA
(
Sa

)
and u

(
Sa

)
are

omitted in this Table because they are equal to each other and are exactly half of the value of the
uncertainty U

(
Sa

)
for all rows. The situation is analogical in the case of uncertainties uA

(
Sz

)
and u

(
Sz

)
.

Hence, only the uncertainty U
(
Sz

)
is included in Table 3.

Table 3. Mean Sa and Sz and the associated uncertainties.

no.

Mean
Sa and Sz

Uncertainties Based on the
Measurement Data

Sa Sz U(Sa) U(Sz)

[µm]

1 0.374 6.903 0.008 0.006
2 0.119 3.363 0.006 0.004
3 0.218 4.254 0.010 0.006
4 0.164 3.164 0.008 0.006
5 0.303 4.352 0.006 0.006
6 0.347 5.256 0.008 0.012
7 0.301 4.924 0.008 0.008
8 0.350 5.179 0.008 0.012
9 0.357 4.071 0.006 0.006

The values of each row from Table 3 correspond to the parameters from the particular rows
(i.e., the different combinations of the parameters f , ap, and n) of Table 1.

The uncertainties related to the parameters Sa and Sz refer only to their last significant numbers
(zeros at the beginning are not taking into account as significant numbers; hence, only the last number
greater than zero is included as a significant one), while the uncertainties related to the factor Samod

refer to one or two of the last significant number/s. The uncertainties related to the factor Szmod refer to
the last two or three significant number. For each case under consideration, the uncertainties associated
with the factors obtained on the basis of the mathematical models are from several to several times
higher than the uncertainties determined for the values of the parameters obtained on the basis of the
measurement data. In order to reduce the uncertainty value associated with the mathematical models,
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it is necessary to increase the resolution value of the measuring devices applied and to use a more
precise method for determining these models.

4. Modeling of Surface Roughness

Below, the modeling procedure of surface roughness based on the mathematical models given by
Equations (3) and (4) and by employing the MC method, respectively, are presented in the Sections 4.1
and 4.2 . The values of parameters Sa and Sz and associated uncertainties are determined there.

4.1. Calculations Based on the Mathematical Models

The values of the functions Samod and Szmod determined based on Equations (3) and (4), as well as
the associated uncertainties determined on the basis of the Equations (11)–(14) are tabulated in Table 4.

Table 4. Values of the functions Samod and Szmod and the associated uncertainties.

no.

Values of the Functions
Samod and Szmod Uncertainties Based on the Mathematical Models

Samod Szmod uc(Samod) U(Samod) uc(Szmod) U(Szmod)

[µm]

1 0.311 6.381 0.018 0.036 0.239 0.478
2 0.145 3.446 0.003 0.006 0.074 0.148
3 0.257 4.660 0.017 0.034 0.150 0.300
4 0.202 3.558 0.012 0.024 0.232 0.464
5 0.241 3.848 0.004 0.008 0.051 0.102
6 0.373 5.326 0.018 0.036 0.139 0.278
7 0.328 5.04 0.013 0.026 0.238 0.476
8 0.387 5.568 0.005 0.010 0.072 0.144
9 0.294 3.557 0.018 0.036 0.147 0.294

Table 4 shows that for rows 1, 5, and 9, the values of the factors Samod and Szmod obtained on the
basis of mathematical models (3) and (4) have lower values than the values of Sa and Sz obtained from
the measurements. These differences are equal to a maximum of 20% and are related to the inaccuracy
of determining models (3) and (4).

4.2. Modeling Based on the Monte Carlo Method

The applied MC method uses a pseudo-random number generator with the uniform distribution
U(0, 1) according to the Wichmann–Hill algorithm with a period equal to 2121. The pseudo-random
number generation procedure is performed using the following six main steps [47,49,64]:

1. Create four vectors that include the integer numbers:

A = [11600 47003 23000 33000],
B = [185127 45688 93368 65075],
C = [10379 10479 19423 8123],

D = [P + 456 P + 420 P + 300 P]

(15)

where P = 247,483,123.
2. Set the four-element initial vector W from the range of 0 to 231

− 1.
3. Calculate:

Wi = Ai[Wi·mod(Bi)] −Ci· f loor(Wi/Bi), for i = 0, . . . , 3 (16)

where Ai, Bi, Ci, and Wi denote the particular elements of the vectors A, B, C, and W, while the
functions mod(x) and f loor(x) denote the modulo from x and the largest integer digit no greater
than x, respectively.
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4. If Wi < 0, replace Wi with Wi + Di.
5. Calculate:

S =
∑3

i=1
Wi/Bi (17)

6. Finally, return:
U = S− f loor(S) (18)

For 64-bit computers, Equation (16) can be replaced by the following simple formula:

Wi = AiWi·mod(Di) (19)

Figure 1 shows a block diagram of the applied MC method for determining the optimal (minimum)
values of the factors (functions) Sa and Sz.
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The four cases with the number M of MC trials equal to 103, 104, 105, and 106 are checked below.
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Uncertainties associated with the parameters Sa and Sz are determined based on the formula [49]:

u(z) =

√√√
1

M− 1

M−1∑
m=0

(zm − z)2 (20)

where

z =
1
M

M−1∑
m=0

zm (21)

and z corresponds to the parameters Sa and Sz.
Table 5 summarizes the results of the calculations of the minimum values (rows 2 and 9) of the

functions described by Equations (3) and (4) and defined by SaMC
min and SzMC

min for the case of five
different numbers of MC draws (the first row): 103, 104, 105, 106, and 107. For the values of the functions
SaMC

min and SzMC
min for all Monte Carlo trials, the corresponding drawing number m (rows 3 and 10),

the values of parameters f , ap, and n (rows 4–6 and 11–13), the mean values of Sa
MC

and Sz
MC

(rows 7
and 14), and the associated uncertainties (rows 8 and 15) are determined.

Table 5. Calculation results of the minimum value of Equations (3) and (4) by using the MC method.

no. Parameters/Factors Results

1 MC [no.] 103 104 105 106

2 SaMC
min [µm] 0.141 0.141 0.140 0.140

3 m [no.] 294 8144 60915 692749
4 f [mm/rev] 0.039 0.039 0.038 0.038
5 ap [mm] 0.070 0.075 0.071 0.070
6 n [rev/min] 2063 2123 2102 2101
7 Sa

MC
[µm] 0.230 0.230 0.230 0.230

8 u
(
Sa

MC
)
[µm] 0.002 0.003 0.003 0.003

9 SzMC
min [µm] 2.780 2.777 2.770 2.770

10 m [no.] 966 6276 87578 179181
11 f [mm/rev] 0.057 0.060 0.059 0.059
12 ap [mm] 0.092 0.092 0.092 0.093
13 n [rev/min] 2061 2065 2098 2095
14 Sz

MC
[µm] 3.712 3.725 3.733 3.730

15 u
(
Sz

MC
)
[µm] 0.425 0.417 0.425 0.426

The analogous minimum values of factors SaMC
min and SzMC

min and the analogous uncertainty

values of u
(
Sa

MC
)

and u
(
Sz

MC
)

for the number of MC draws are equal to 105 and 106. The values

SaMC
min = 0.140 µm and SzMC

min = 2.770 µm are assumed to be the optimal solutions for the
MC method.

In comparison with Tables 3 and 4, Table 5 includes the following parameters: f , ap and n for
which the lowest (optimal) values of the parameters Sa and Sz are obtained.

Tables 3 and 4 includes the values Sa, Sz, Samod and Szmod as well as the associated extended
uncertainties: U

(
Sa

)
, U

(
Sz

)
, U

(
Samod

)
and U

(
Szmod

)
which are determined based on the measurement

data and mathematical models (index: mod) for nine cases of parameters: f , ap, and n which are
included in Table 1. The parameters, ap and n were selected based on the Taguchi procedure. However,
the results obtained for them are not optimal parameters for machining process. Only the parameters
f , ap and n, determined on the basis of the MC method and summarized in Table 5, provide the

minimum (optimal) values of the parameters Sa and Sz. By extending the uncertainty u
(
Sa

MC
)

from

Table 5 according to Equation (10) and for MC equal to 105 or 106, we obtain U
(
Sa

MC
)

= 0.006.
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Both uncertainties u
(
Sa

MC
)

and U
(
Sa

MC
)

are close (referring to the last significant number) to the nine

cases tabulated in Table 4. The case is quite different for uncertainty u
(
Sz

MC
)

contained in Table 5,

where after expansion the values of uncertainty U
(
Sz

MC
)

are equal to 0.850 and 0.852, respectively for

MC = 105 or MC = 106 Both uncertainties u
(
Sz

MC
)

and U
(
Sz

MC
)

have 2–8 times higher values than

those summarized in Table 4. This means that for the parameter Sz, higher uncertainties are obtained
than for those listed in Table 4. On the other hand, the values of the parameters: f, ap and n which are
related to these uncertainties are the optimal solution for prediction of the machining process.

Figure 2a,b show the values of factors SaMC and SzMC for the particular Monte Carlo trials m and
for the total MC draw equal to 103 and 104, respectively. There are no figures for the number of MC
draws equal to 105 and 106 due to their lack of legibility (i.e., their high concentration of random points).
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The above figures show a higher concentration of random points corresponding to the values of
the functions SaMC and SzMC toward their minimum values. An analogous distribution of points was
obtained for MC draws equal to 105 and 106. The reason is the syntax of the functions SaMC and SzMC,
which, for a generator with a uniform distribution, provides values for these points that are close to
the minimum.

5. Conclusions

The procedure for determining the uncertainties related to the roughness parameters presented
in this paper allow for easy and quick evaluation of the obtained results related to prediction and
optimization (by using the MC method) in the machining process. The results show that the uncertainties,
in comparison to the measured values, have values a dozen times higher for models (3) and (4) that
were determined in previous works. The reason for this is the fact that the accuracy (uncertainties) of
these models was not tested in these works.

Increasing the accuracy of such models can be achieved by using RSM based on, e.g., the radial basis
functions (RBFs) determined by using an ANN. In a simpler case, it is possible to use approximation
polynomials with an appropriately selected order, controlled by the determination of the associated
uncertainty of such modeling. For such accurate models, it is possible to use the MC method for the
optimization and prediction of the machining process, as shown in this paper.

The results obtained in this paper highlight the need for a more precise determination of the
factors Sa and Sz in future works. Thanks to such precise models, the value of type A uncertainty and
the corresponding value of expanded uncertainty can be reduced in the optimization and prediction
process of machining. An additional reduction of the expanded uncertainty is possible by reducing
the value of the type B uncertainty, which can be fulfilled by increasing the resolution of the tools
dedicated to machining or the resolution of the measurement devices used.
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