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Abstract

Background: Spinal cord injuries incite varying degrees of symptoms in patients, ranging from weakness and incoordination 
to paralysis. Common amongst spinal cord injury (SCI) patients, neuropathic pain (NP) is a debilitating medical condition. 
Unfortunately, there remain many clinical impediments in treating NP because there is a lack of understanding regarding the 
mechanisms behind SCI-induced NP (SCINP). Given that more than 450,000 people in the United States alone suffer from 
SCI, it is unsatisfactory that current treatments yield poor results in alleviating and treating NP. 
Summary: In this review, we briefly discussed the models of SCINP along with the mechanisms of NP progression. 
Further, current treatment modalities are herein explored for SCINP involving pharmacological interventions targeting 
glia cells and astrocytes. 
Key message: The studies presented in this review provide insight for new directions regarding SCINP alleviation. Given 
the severity and incapacitating effects of SCINP, it is imperative to study the pathways involved and find new therapeutic 
targets in coordination with stem cell research, and to develop a new gold-standard in SCINP treatment.
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Introduction

The nature and extent of a spinal cord injury (SCI) is diverse 
and complicated. There are many symptoms, including, but 
not limited to, paralysis, myelopathy, and damage to white 
matter and grey matter. The complexity of injury is increased 
manifold as nerve fiber damage compromises sensation and 
motor signal transmittance to and from the brain, while grey 
matter damage results in segmental losses of interneurons. 
The utilization of corticosteroid (methylprednisolone sodium 
succinate), surgical interventions, and physiotherapy are the 
only methods for treatment in current health care, and these 
methods display limited success.1 Yet, recent advances in the 
fields of stem cell biology have revolutionized neuroprotective 
and regenerative interventions. 

Neuropathic pain (NP), because of its relatively unexplored 
molecular mechanism and widespread clinical morbidity, is 
extremely debilitating for SCI patients. In addition, NP is 
extremely resistant to treatment with current analgesic drugs, 

Review Article

1 Department of Neurological Surgery, University of Wisconsin, School of 
Medicine and Public Health, Madison, Wisconsin, United States
2 Department of Biological Sciences, Indian Institute of Science Education & 
Research Mohali, India
3 Neuroscience research lab, Department of Neurology, Postgraduate 
Institute of Medical Education and Research (PGIMER), Chandigarh, India
4 Department of Biotechnology, Panjab University, Chandigarh, India
5 CCRYN- Collaborative Centre for Mind Body Intervention through Yoga
6 Centre of Phenomenology and Cognitive Sciences, Panjab University, 
Chandigarh, India

solidifying the necessity to find efficacious treatment options. 
Acknowledged in the current research are the emerging role 
of WNK1; cation-dependent chloride transporters (NKCC1) 
activation and inhibition by bumetanide2,3; cannabinoid 
receptor (CB2) and anti-hyperalgesia effect of WIN 
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55,212-24; bradykinin (B1) and vanilloid-1 (TRPV1) receptor 
antagonists5,6; and PPAR-gamma agonists in preventing 
neuropathic pain.7 Time-specific changes in expression of 
matrix metalloproteinase-2 (MMP-2) in SCI-induced NP 
(SCINP)8 and improved functional recovery with folic acid 
therapy has been found.9 Likewise, bone marrow stromal 
cells (BMSCs) following lumbar puncture have shown some 
promising results in alleviating NP, including allodynia and 
hyperalgesia in chronic constriction injury (CCI) and spared 
nerve injury mice models.10 

Delving further into NP research, glia-mediated 
inflammatory reactions have been found to play a pivotal role 
in the introduction and development of NP. Microglia plays a 
fundamental role in proliferation, differentiation, and synaptic 
hemichannel growth in neurons. They are also known to be 
involved in the regulation of infection in brain tissue through 
innate and adaptive immune responses and maintaining 
homeostasis, respectively. Because of its major role in the 
neuroinflammatory process for neurodegenerative diseases, 
the study and utilization of microglia awakened from its 
relative dormancy.11 A noteworthy discussion on microglial 
cells history12 reveals their origin, differentiation, homeostasis, 
and implication in health and disease. For example, microglia 
have been recognized to have a critical role in Alzheimer’s, 
Parkinson’s, and Adrenoleukodystrophy.13 

Another glial cell type involved in providing 
neuroprotection is spinal cord astrocytes that release astrocytic 
mediators, for example, cytokines, chemokines, and growth 
factors for this purpose.14  Unfortunately, the mechanism 
behind how astrocytes release astrocytic mediators is unclear, 
due in part to the lack of research on astrocytes because of 
their complexity in differentiation and seeding. Although 
astrocytic connexin-43 is implicated in gap junctions and 
communication of cytosolic contents via glial syncytia and to 
the extracellular space, the mechanism for this contribution 
remains unclear. Despite this, many studies have implicated 
astrocytes in facilitating or maintaining NP. 

Studying molecular mechanisms,15 discovered in the 
murine nerve injury model, MMPs activate and sustain NP. 
MMP-9 induces NP through interleukin-1beta cleavage and 
microglia activation at the acute stage. Similarly, latent stage 
MMP-2 maintained NP through the continuation of 
interleukin-1beta cleavage, though instead activating 
astrocytes.16 Tissue inhibitors of MMPs (TIMPs) inhibit the 
activity of MMPs by regulating tissue proteolysis. As 
discussed, earlier, microglia and astrocytes help in tissue 
repair and breakdown in CNS. Therefore, studying the role of 
these glial cells in relation to NP may provide new insights 
into NP treatments.17

Role of Glial Cells in Neuropathic Pain

Earlier pain induced after SCI was thought to be a result of 
anatomical, neurochemical, and excitotoxic alterations with 
changes in ion channels.18–23 However, the current treatment 

modalities targeting neuronal activity by modifying the ion 
channels proved to be inadequate.24 The focus was then 
shifted to neuron dysfunction, which until recently was 
thought to arise from neuroimmune modulation. Recent 
studies have made it evident that NP development involves 
complex mechanisms involving not only neuronal cells but 
also glial cells. These modulations are mainly contributed by 
the resident glial cells of the spinal cord. Astroglia and 
microglia are main cells attributing to inflammatory response 
and have been implicated in pain induction after injury.25 SCI 
is followed by extensive neuroinflammation because of 
activation of these glial cells releasing chemokines and 
cytokines.26 Thus, targeting neuroinflammation may open 
new treatment avenues for management of NP.27

Implication of Microglia in Spinal Cord Injury-
Induced Neuropathic Pain

Microglia play an important role in the maintenance and 
health of the CNS and are known to aide in neuronal 
differentiation and in the production of synaptic bonds. 
Microglia develop early in the embryonic yolk sac, contribute 
to brain development, and continue their work much into 
adulthood. The role of microglia in peripheral pain is well 
studied, and activation of these cells after partial sciatic nerve 
ligation,28 spinal nerve ligation,29 and sciatic nerve 
inflammation30 have been found. Fractalkine, a microglial 
activator, induces allodynia and hyperalgesia shown by 
behavioral parameters.31 Like peripheral injury, microglial 
activation has been reported in SCI 32–35,23 and showed that 
the microglia shift from resting to an activated state in rats 
undergone T9 spinal cord contusion injury. These activated 
microglia contribute to chronic pain induction and 
maintenance after SCI. Microglial response at different 
timepoints determined that activation plateaued between two 
and four weeks after injury. In spinal nerve injury models, 
hyperactive microglia were found to increase the levels of 
P2X4 receptors. The expression was specific to microglia 
cells, while neuron and astrocytes remained unaffected.36 
P2X4 are purinergic receptors, and ATP is a known mediator 
of NP; therefore, it was suggested that upregulation of these 
receptors is linked to NP induction. However, the mechanism 
was not fully understood. Later, it was demonstrated that 
these receptors on stimulation lead to Brain-derived 
Neurotropic Factor (BDNF) secretion from activated 
microglia.37 It was further found to affect NMDA receptors’ 
NR1 subunit in spinal cord dorsal horn neurons, which results 
in pain. This was supported by the studies in P2X4-deficient 
mice that, after peripheral nerve injury induction, display 
impaired BDNF signaling and lack hyperalgesia.38 Another 
molecule, CCL21, was shown to rapidly express in injured 
sensory neurons. Further investigations in CCL21-deficit 
mice established the link between CCL21 and microglial 
P2X4. It was found that these deficit mice lack allodynia and 
reported with lower P2X4 expression.39 Later it was 
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has also been implicated in establishment of NP. Animals 
with spinal nerve ligation (SNL) have elevated levels of 
chemokines. CXCL13 has been shown to activate spinal 
astrocyte via another chemokine CXCR5. CXCR5-/-mice 
demonstrated lack of NP following SNL as CXCR5 was 
essential for activation of glial cells. Thus, neuron-astrocyte 
interaction lead to CXCL13 production by neuron cells that 
further activates astrocytes through CXCR5, inducing NP.48 
c-Jun N-terminal kinase (JNK)/monocyte chemoattractant 
protein-1 (MCP-1) pathway in astrocytes is also found to 
involved in NP development.49 A separate study50 bridges the 
role of both JNK1/2 and MMPs in NP where inhibition of 
astrocyte activation in the spinal cord by tetramethylpyrazine 
(TMP) prevented CCI-induced neuroinflammation. These 
findings demonstrate implication of JNK-MMP-2/9 in 
attenuating NP. In a mouse CPIP model, phosphorylated c-jun 
N-terminal kinase 1/2 (pJNK1/2) is downstream of spinal 
MMP-2. The MMP-2 inhibitor reversed the increase of glial 
fibrillary acidic protein (GFAP), the astrocyte biomarker, and 
pJNK1/2 on day three post injury.51 The findings in this study 
include (a) increase in GFAP, but no significant effect on 
ionized calcium binding adaptor molecule 1, IBA1, a reactive 
microglial biomarker; (b) inhibition of astrocytes with 
fluorocitrate, but no inhibition of microglia with minocycline 
results in attenuation of allodynia in injured mice correlated 
with enhanced spinal levels pJNK1/2; (c) pJNK1/2 inhibitor, 
SP600125, showed decline in allodynia in injured mice; (d) 
increased expression levels of spinal MMP2, mainly NeuN a 
neuron biomarker; and (e) intrathecal administration of 
MMP-2 inhibitor, APR 100, resulting in delayed allodynia 
and decreased spinal levels of GFAP and pJNK1/2. Recent 
studies have also indicated that neuroinflammation plays a 
vital role in the occurrence and promotion of NP and that anti-
inflammatory therapy has the potential to relieve the pain.14 
Thus, both microglia and astrocytes are linked to NP 
induction. In the next section, we will review studies that 
targeted these cells to ameliorate NP. 

Glial Cells as Therapeutic Targets

Microglial Targets for Alleviating NP

Regulating microglia activity is thought to be a possible 
approach in impeding chronic pain progression. As discussed, 
activated microglia through production of various immuno-
inflammatory molecules contributes to a state of chronic pain. 
These molecules lead to the activation of intracellular cascades 
in microglia cells generating and sustaining chronic pain.11 
Earlier studies with the goal of managing pain have explored 
the neuropathic roles of microglia and pharmacological 
interventions targeting activation of these cells. 

Inhibiting p38 MAPK 

Decades earlier, the glia cell-modifying functions of drugs 
like fluorocitrate and propentofylline had been shown to 

demonstrated that a wide range of purinergic receptors were 
activated by ATP in response to nerve injury that led to 
microglial activation and subsequently NP (Multiple PY2). 
Molecular mechanism, such as those involving MAPK, ERK, 
and p38, have been implicated in signal transduction from 
microglial activation. For example, ROCK activation in 
spinal microglia has been shown with p38 MAPK activation 
and induction of NP.40 Thus, it can be suggested that spinal 
microglia play a role in NP induction and may be explored for 
their use as potential targets for chronic pain treatment.

Long-term pain sensation is maintained by neuronal-glia 
interactions. Early phase and chronic phase are separately 
maintained by different mechanisms. Mice with nerve injury 
had persistent microglia activation for more than three months 
in the spinal cord. It was seen that microglia involvement is 
far beyond the cytokine and chemokine signaling that last for 
a limited period. Chronic inflammation by microglia, when 
targeted with immunotoxin Mac1-saporin, helps in pain 
reversal.41 Evidently, microglia are strongly tied to inducing 
NP through MMP-9 activation in the spinal cord. The 
activation and deactivation of microglia through MMP-9 
injection and inhibition has been demonstrated.15 As an 
example, NAC attenuated remifentanil-induced postoperative 
hyperalgesia via inhibiting the cleavage of IL-1β, a substrate 
of MMP-9 in DRG, significantly inhibiting glial activation 
and neuron excitability in the spinal dorsal horn.42

Implication of Astrocytes in Spinal Cord Injury-
Induced Neuropathic Pain

Astrocytes are cells lining the neurons and are involved in 
neuroinflammation by activating astrogliosis. Like microglia, 
long-lasting changes in astrocytes have been observed in 
in-vivo models of SCI. Astrogliosis is associated with 
development and NP persistence. Various mechanisms have 
been proposed through which astroglia contribute in NP. 
Astrocyte-related markers such as glial fibrillary acidic 
protein (GFAP) and aquaporin 4 are elevated in SCI rats.34 
Upregulated levels of GFAP and -p38 MAPK were also 
reported below and at level of injury, further supporting 
astrogliosis role in pain (Carlton et al. 2009).43 Elevation of 
Connexin-43 (CX-43), a gap junction protein, points toward 
increased connectivity between adjacent astrocytes.44 Wang 
and Xu45  discussed the role and association of Cx-43 and 
pannexin channels in SCINP, and they concluded that CX-43 
is an emerging therapeutic target for NP. Studies have also 
shown that these effects are a result of upregulation of 
Tropomyosin-related kinase B.T1 (TrkB.T1)-driven 
astrocytes (Figure1). TrkB.T1 is an isoform of TrkB receptors 
that are expressed on astrocytes and an increased number of 
TrkB.T1+  cells after injury were reported that sustained 
through eight weeks.46 In concordance with this, TrkB.T1 
deletion in astrocytes led to reduced astrocyte proliferation in 
thoracic contusion SCI and improved hind limb withdrawal 
threshold.47 Role of chemokines in activation of astrocytes 
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blockade using N-(adamantan-1-ylmethyl)-5-[(3R-amino- 
pyrrolidin-1-yl) methyl]-2-chloro-benzamide64 or A-83997765 
has shown promising results. Likewise, Perez-Medrano et al., 
2009 found positive effects of various cyanoguanidine 
antagonists of receptor for pain reduction. P2X7 receptor 
effects are mediated through the convergence to p38 MAPK 
signaling. However, while in P2X4 receptor-signaling, BDNF 
is a key molecule, P2X7 receptor signaling is regulated by the 
release of interleukin-1β and cathepsin S from microglia.66 
Apart from P2X receptors, microglia are known to have a 
wide range of P2Y receptors such as P2Y1, P2Y2, P2Y4, 
P2Y6, and P2Y12.67–70 P2Y12 receptor is involved in eliciting 
pain sensitization.57 Administration of 2Me-SADP, P2Y12 
receptor agonist, mimics similar pain behavior in rats as 
nerve-injured animals.58 Moreover, genetic manipulation of 
P2ry12 gene or suppression of expression through antisense 
oligonucleotides prevents mechanical allodynia.58,71 Thus, it 
can be implicated that purinergic receptor mediated pain 
induction is an upstream process that converges to p38 MAPK 
signaling cascade.

Inhibition of Expression of Matrix Metalloproteinase/Induction of 
TIMPs Through Microglia 

In peripheral nerve injury, Chattopadhyay72 reported a 
dramatic increase of MMP-9. It was found that this 
upregulation of MMP-9 was linked with proinflammatory 
cytokines: TNF-α and IL-1β. Deletion of MMP-9 gene leads 
to significant reduction in NP, which further suggests the role 
of MMP in pain induction.72 This opens a new avenue for NP 
management by MMP targeting. Mice with chronic 
constrictive injury (CCI)-induced NP, when treated with 
N-acetyl-cysteine (NAC), showed reduction in NP via a 
mechanism of MMP inhibition.16 Both in vitro and in vivo 
experiments showed suppression of the activity of MMP9 
and MMP2. NAC blocked the maturation of interleukin-1β, a 
substrate of MMPs, inhibiting the phosphorylation of protein 
kinase Cγ, NMDAR1, and mitogen-activated protein kinases. 
In this mechanism, NAC inhibited microglia activation but 
with no effect on astrocytes, thus demonstrating a safe and 
effective approach via strong inhibition of MMPS. TIMPs are 
endogenous inhibitors of MMPs73 comprising of four 
inhibitors: TIMP1, TIMP2, TIMP3, and TIMP4.74 Of these, 
TIMP1 and TIMP2 have specifically reported to alleviate the 
pain behavior by inhibiting MMP 2 and MMP 9.15,75 Evidence 
of other small molecule inhibitors of MMPs that are employed 
to reduce the NP are reviewed.76

Other Microglial Targets in Alleviation of NP

Although proliferation of microglia is correlated with NP, 
candidate molecules for this activation of spinal microglia 
remain elusive. A recent study reported that peripheral nerve 
injury induces microglial proliferation and pain through de 
novo expression of colony-stimulating factor 1 (CSF1) 
sensory neurons.77 It was discovered that CSF1 binds to CSF1 

reduce pain sensitivity.52,53 These drugs however did not 
distinguish glial cell types and which cells are responsible for 
pain sensitivity. Mounting evidence demonstrates the 
activation of microglia cells as exhibited by elevated levels of 
markers such as CD 11b and Iba 1. Phosphorylated p38 MAP 
kinase expression was also another characteristic feature of 
SCI and is believed to be another key regulator of NP. It was 
reported that p38MAPK was activated only in microglia after 
SCI. With the activation of p38, microglia produce proNGF 
via the p38MAPK-mediated pathway. When Minocycline 
was administered, it showed significant reduction in proNGF 
levels. The reduction was mediated by the inhibition of the 
p38 MAPK phosphorylation by the drug. Maintaining its 
levels using inhibitors has been shown to ameliorate NP.54 
Inhibitors of p38 have shown remarkable efficacy in reducing 
pain. SB203580, p38 inhibitor, has shown promising results 
in SNL-induced allodynia29,36 while FR167653 or CNI-1493 
has been reported to prevent NP in different neuropathy 
modes.55,31 FR167653, another inhibitor of p38, reverses 
allodynia in SNL model for almost 6 h after single injection 
of 50 mg/kg, i.p. (Intra-peritoneal). Multiple injections of 
FR167653 maintained pain reception for two days after the 
last injection. Propentofylline given in nerve injury showed 
NP reversal by microglial response inhibition.56 Likewise, 
efficacy of p38 inhibitor, SB203580 given intrathecally was 
seen only when provided before seven days of injury.57

Altering Expression of Microglia Through Purinergic Receptors 

ATP modulates microglial activity and is a ligand of the 
P2-purinoceptor family. Various P2 receptor subtypes such as 
P2X4, P2X7, and P2Y12 are expressed on microglia and are 
known to play a role in NP development. It has been shown 
that P2Y12, metabotropic purinergic receptor is linked to 
activated microglia and decreased expression of P2Y12, 
decreasing progression of NP.58 Administration of P2X1-4 
receptor antagonist, 2′,3′-O-(2,4,6-trinitrophenyl) adenosine 
5′-triphosphate (TNP-ATP) reverses tactile allodynia, while 
pyridoxal phosphate6-azophenyl-2′,4′-disulphonoic acid 
(PPAD), which inhibits P2X1–3, 5, 7 receptors without 
affecting P2X4 receptors, does not respond to tactile 
allodynia. This suggests that P2X4 receptor activation is 
required in pain stimulation. Antisense oligonucleotide 
against P2X4 receptors showed attenuated pain in nerve 
injury (Tsuda et al., 2003). Similar results were seen in genetic 
models with deleted P2rx4 gene.38 These receptors are 
believed to stimulate pain induction through calcium influx 
and BDNF release59, further supported by experiments on 
P2X4 receptor-deficient mice showing impaired microglial 
BDNF expression.38 Furthermore, mice deficient in P2X4 
receptor that had undergone peripheral nerve injury showed 
no sign of mechanical allodynia strengthening BDNF and 
P2X4 association with NP.60–62

Pain sensitivity reduction in P2X7 receptor-deficient mice 
indicates a role of these receptors in NP.63 Pharmacological 
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receptors in microglia, which then activates and increases 
proliferation of microglia. Furthermore, they found that 
microglial membrane adapter protein, DAP12, is downstream 
of CSF1, which induces pain.76 Likewise, recombinant 
Macrophage-CSF injection in rats induced microglial 
proliferation and development of mechanical allodynia, 
suggesting the role of M-CSF as a candidate molecule for 
induction of microglia proliferation.78 Furthermore, Platelet-
activating factor (PAF)/PAFr signaling has been implicated in 
peripheral nerve injury in spinal cord signaling. Autocrine or 
paracrine effects of PAF among the activated microglia and 
neurons have been shown in NP induction.79 A recent study 
demonstrated that partial sciatic nerve ligation-induced pain 
can be attenuated by deficiency of lysophosphatidyl choline 
acyl transferase 2 (LPCAT2), a PAF biosynthetic enzyme.80 
Explored mechanisms exhibited LPCAT2 in wild-type spinal 
cord microglia, with no expression of LPCAT2 in LPCAT2-KO 
mice reduced spinal PAF expression. Also, pretreatment with 
PAF receptor antagonist ABT-491 showed a decline in ATP-
stimulated PAF biosynthesis in macrophages designated as 
PAF–pain loop, thus demonstrating a novel therapeutic target 
that may lead to alleviation of NP.80

Astrocytes Targets for Alleviating NP 

Microglia have long been implicated in NP, unlike astrocyte 
involvement, which is still a new concept. Astrocyte activation 
is dependent on interaction between these cells and neurons, 
as well as release of factors from both cell types. In CPIP 
animal model, fluorocitrate inhibited activation of  astrocyte 
in mice and attenuated the development of allodynia in them, 
while minocycline (microglia inhibitor) could not show the 
same effects. Thus, drugs targeting astrocytes are being 
explored for NP regulation rather than microglial pathway.51 

Astrocytic Glutamine-Signaling

Glutamate transporters are involved in pathological pain 
induction, and spinal astrocyte glutamate transporters are 
downregulated in pain. This aspect is also explored for 
possible therapy in chronic pain. In vivo imaging in rodent 
models has reported the role of metabotropic glutamate 
receptor five (mGluR5) signaling in S1 astroglia (Figure 1). 
Activation of this pathway induces allodynia, which is 
reversed by blocking the signaling.81 Adenoviral infusion of 
GLT1 gene results in overexpression in astrocytes. Spinal 
GLT-1 gene transfer prevented the induction of partial sciatic 
nerve ligation–induced allodynia.69 Consistent with these 
findings, riluzole inhibited NP by reducing extracellular 
glutamate by EAATs.82 Moreover, ceftriaxone also prevented 
allodynia by selectively upregulating GLT-1 expression.83 
Taken together, it can be implicated that decreased astrocytic 
excitatory amino acid transporter in the spinal cord led to 
activation of glutamatergic synaptic pathway related to 
pathological pain. Propentofylline increases GLT-1 and 
GLAST expression and suppresses pain symptoms.84 The 
roles of GLT-1 and GLAST are further supported by the use 

of amitriptyline, a first-line drug for the NP treatment, which 
is shown to reverse the GLT-1 and GLAST downregulation.85

Blocking JNK Signaling in Astrocytes:

The studies related to translocator protein (TSPO) linked the 
activation of JNK signaling with chronic pain. Mouse model 
of spinal nerve ligation showed that Ro5-4864, TSPO agonist, 
reported reduced NP and that this was attributed to inhibition 
of astrocyte and p-JNK1 activation. Along with this, p-ERK 
was also reduced, suggesting the involvement of both JNK 
and ERK signaling.86 Another JNK inhibitor, D-JNKI-1, 
ameliorated NP in SNL model of induced allodynia.87 Later, 
MCP-1 was identified as main downstream molecule in JNK 
induced pain sensitization.88 The association of JNK/MCP 
pathway was evident with the usage of drugs such as 
Tanshinone IIA (TIIAS) that targets this signaling and showed 
protection against NPin SNL animal models. Animals treated 
with TIIAS had elevated paw withdrawal threshold and 
reduction in astrocytic activation. Pathway analysis reported 
reduced JNK phosphorylation and MCP1 release in treated 
mice.49 Fluorocitrate, an astrocyte inhibitor, provided 
protection in development of allodynia in CPIP-injured mice. 
This effect was suggested to be achieved through increased 
spinal levels of p-JNK.51 SP600125 (JNK inhibitor) prevents 
the development of allodynia in the same mice model, and 
double immuno- staining showed colocalization of pJNK1/2 
with GFAP, suggesting astrocytic involvement. Further 
studies revealed the involvement of matrix metalloproteinase-2 
(MMP2) as they were upregulated. Intrathecal APR 100 
(MMP-2 inhibitor) showed delayed development of allodynia 
with decreased levels of GFAP and pJNK1/2. This suggests 
the crosstalk between MMP2/JNK1/2 and MCP in astrocyte 
activation and pathogenesis of pain hypersensitivity.51 
Effectiveness of SP600125 in prevention of SNI and ddC-
induced nociceptive behavior was also shown in another 
study where amitriptyline alone could not attenuate pain; 
however, when SP600125 was co-administered with 
amitriptyline, an antinociceptive effect was reported.89 It was 
found that p-JNK was upregulated in SNI and ddC-exposed 
mice and that amitriptyline treatment further increased its 
expression. Additionally, it promoted astrocyte activation 
reported by elevated glial fibrillary acidic protein (GFAP) 
levels. Both JNK and glial activation was attenuated by 
co-administration of JNK inhibitor. Thus, it can be suggested 
that inhibiting astrocyte JNK activation exacerbates the 
amitriptyline analgesic response.89 Modulating spinal 
astrocytes by targeting the JNK/MCP1 pathway can be an 
efficient approach against NP.

Other Astrocytes Targets for NP

Besides JNK and glutamate inhibitors, various other 
compounds have been tested for regulating astrogliosis in 
NP. One such compound is a well-known antioxidant, 
lycopene. Analgesic effects of lycopene were exhibited 
through prevention of Cx-43 protein downregulation.90 
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Lycopene treatment increased the expression of Cx-43 
protein in spinal astrocyte cultures in a TNF-dependent 
manner, which was found to be reduced in the NP model. 
Similarly, when mice with a partial sciatic nerve ligation 
were treated with repeated doses of lycopene, it resulted in 
inhibition of down regulation of Cx-43 expression in the 
spinal cord dorsal horn (SCDH) along with reduction in 
mechanical hypersensitivity.90  Pioglitazone, a PPAR𝛄
agonist, was shown to impart analgesic effects by reducing 
astrocyte activation, while administration of PPAR𝛄
antagonist GW9662 abolished these effects, suggesting 
involvement of PPAR𝛄 mechanisms.91 Similarly, the 
analgesic activity of docosahexaenoic acid (DHA, 22:6 n-3) 
was confirmed in a rat model of a chronic constriction injury 
(CCI) where treatment with DHA showed reduced GFAP-
positive astrocyte in the SCDH and ameliorated NP.92 

Future Directions

Although contemporary methods do not yield many results 
in the treatment of SCINP, glial cell-based therapies in SCI 
bring hope for the alleviation of symptoms and the 
development of a cure for NP. Because of the expansive 
research conducted for SCINP, there are many pathways 
that are available for targeting by current FDA-approved 
drugs and by other drugs that may still be in development. 
In a review,93 it  has been discussed that MMPs and TIMPs 
should be the primary focus of clinical studies because of 
their extensive studies and high implication of their function 
in NP. In addition to MMP-2/9, JNK-1/2, astrocytes, and 
microglia have been found to have a critical role in NP. 
Many studies have shown the specific roles these tissue 
types play in NP, and thus it is paramount to create a 
treatment of NP through targeting astrocytes and microglia. 
Studies have shown the effects of targeting each cell type 
independently, but there were no studies that demonstrated 
the treatment of both types of cells simultaneously. This 
raises the possibility of a dual treatment resulting in an 
additive effect, thus increasing the effectiveness and 
efficiency of the elimination of NP. Further studies should 
assess the effectiveness of a dual approach of treatment of 
astrocytes and microglia. Coupled with that, there are 
efficient methods to produce specific cell types such as 
astrocytes and microglia from stem cells to be utilized in 
both study and treatment. Thus, it may be time for this 
method to be utilized in a clinical setting as relevant human 
in-vitro studies and animal model have demonstrated 
exceptional promise. Furthermore, because of the lack of 
clinical relevance of translational animal models, it is 
advised that labs should consider the exploration of other 
models, such as the WMSTM model–relevant as a model for 
human spinal cord pathology and practical use as a platform 
for developing therapeutic delivery technologies.94
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