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5 Département d’études cognitives, Ecole Normale Supérieure, Paris, France

6 Laboratory of Neuroimaging, IRCCS Santa Lucia, Roma, Italy

*These authors contributed equally to this work.

Correspondence to: Stefan Klöppel, MD,
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Sir, Many thanks for letting us respond to the interesting letter

concerning our recent paper. We are grateful for the chance to

clarify the points raised, which suggest our conclusions were

too optimistic. In our paper (Kloppel et al., 2008), we used MRI

scans from pathologically proven cases of Alzheimer’s disease and

frontotemporal lobar degeneration (FTLD) to validate trained sets

for a machine learning-based support vector machine (SVM)

approach to the categorization of structural scans from normal

and each other.

This rigorous approach substantially limited the number of

available subjects, which we made perfectly clear in our article,

but which was unavoidable given our novel approach. Frost and

colleagues are right to point out that such low numbers result

in larger confidence intervals than if we were able to include

more scans. This is an object of our further empirical studies—

what is the improvement in classification gained using this tech-

nique with greater numbers of scans in the trained set? The

graph below (Fig. 1) illustrates diagnostic accuracy when the

whole brain grey matter segment is used to separate probable

Alzheimer’s disease patients from all clinical stages (MMSE range

of 3 to 30; defined clinically in the same way as group III, in our

original paper) from controls. Classification is performed repeat-

edly and after removing one Alzheimer’s disease patient and one

Figure 1 Alzheimer’s disease patients from all clinical stages

(including all subjects from group III) and an equal number of

age and sex matched cognitively normal controls are separated

repeatedly. Before each classification, one patient and one

control are removed to illustrate the robustness of classification

with shrinking group size.
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control each time. Results are fairly stable but accuracy becomes

more variable until a steep decline occurs when less than around

20 subjects per group are included. Suffice it to say we were

surprised how well Alzheimer’s disease was distinguished from

FTLD given the even smaller numbers of validated scans we had

available for that classification. To clarify these issues, we provide

a table that supplements our data with CIs. Further, we found

very similar results using two completely independent datasets

and the CIs become relatively small when data from the first

two datasets are combined. So, although we agree with the ques-

tion posed theoretically, practically the results stand as proof of

principle.

We also agree that some statements found on the BBC’s web-

site (BBC, 2008) are misleading. Specifically, we show that SVMs

provide a much faster classification than full clinical workup.

Where the website misleads is in implying that they detect early

degeneration faster, which is clearly beyond the scope of the

current article and again a subject of ongoing study.

It is important to emphasize that such multivariate methods

generalize to new data. Figure 1 in our original paper illustrates

that during training, samples from those individual subjects (i.e.

normalized grey matter segments from either the whole brain

or the hippocampus area), which best separate the two groups

define the decision boundary. The figure is an example with two

dimensions but in reality, the number of dimensions equals the

number of voxels used. If a classifier generalizes well, a new scan

will be assigned to the same side of the decision boundary as the

rest of a diagnostic group. It is a critical part of our results that

Table 1 Demographic information on groups I, II and IV with post-mortem confirmation of Alzheimer’s disease obtained
at different centres

Group (n) Group I Group II Group III Group IV

Alzheimer’s
disease (20)

Controls
(20)

Alzheimer’s
disease (14)

Controls
(14)

Alzheimer’s
disease (33)

Controls
(57)

Alzheimer’s
disease (18)

FTLD
(19)

Sex (F/M) 11/9 10/10 5/9 5/9 10/23 16/41 6/12 8/11

Age (mean, range)
at MRI-scan

81.0 (51–102) 79.5 (55–91) 65.0 (53–85) 63.0 (51–81) 73.1 (61–80) 71.9 (61–80) 66.0�� (53–85) 61.7�� (46–73)

MMSE-score
(mean, range)

16.7 (7–29) 29.0 (27–30) 16.1� (10–20) 29.2 (28–30) 23.5 (20–28) 29.1 (27–30) 16.2� (5–29) 18.0 (0–26)

Years from MRI-scan
to death
(mean, range)

1.7 (0.2–3.4) NA 3.6 (0.3–7.2) NA NA NA 3.5 (0.3–7.2) 5.8 (1.3–11.0)

�MMSE scores obtained around the time of scanning only available from 12 subjects; ��groups are age matched (P = 0.1). The first and third image sets are from
a largely community-based sample, whereas subjects from sample II tended to be younger. No strong family history was present in any of the subjects.
FTLD = frontotemporal lobar degeneration; MMSE = Folstein Mini Mental State Examination.
(Source: Kloppel et al., 2008).

Table 2 Results of SVM classification using grey matter from the whole brain for image analysis

Group Correct (%) (95% CI) Sensitivity (%)a (95% CI) Specificity (%)a (95% CI)

Alzheimer’s disease and controls group I 95.0 (81.8–99.1) 95.0 (73.1–99.7) 95.0 (73.1–99.7)

Alzheimer’s disease and controls group II 92.9 (75.1–98.8) 100 (73.2–100) 85.7 (56.2–97.5)

Alzheimer’s disease and controls group III 81.1 (71.2–88.3) 60.6 (42.2–76.6) 93.0 (82.2–97.7)

Dataset I for training, set II for testing 96.4 (79.8–99.8) 100 (73.2–100) 92.9 (64.2–99.6)

Dataset II for training, set I for testing 87.5 (72.4–95.3) 95.0 (73.1–99.7) 80.0 (55.7–93.3)

Group I + II 95.6 (86.8–98.9) 97.1 (82.9–99.8) 94.1 (78.9–99.0)

Alzheimer’s disease from Dataset II and FTLD group IV 89.2 (73.6–96.5) 83.3 (57.7–95.6) 94.7 (71.9–99.7)

aConsidering a correctly identified Alzheimer’s disease case as a true positive.
95% CIs are calculated according to the efficient-score method (Newcombe, 1998; http://faculty.vassar.edu/lowry/clin1.html).

Table 3 Results of SVM classification using only grey matter of antero-medial temporal lobe structures for analysis

Group Correct (%) (95% CI) Sensitivity (%)a (95% CI) Specificity (%)a (95% CI)

Alzheimer’s disease and controls group I 90.0 (81.8–99.1) 85.0 (61.1–96.0) 95.0 (73.1–99.7)

Alzheimer’s disease and controls group II 92.9 (75.1–98.8) 92.9 (64.2–99.6) 92.9 (64.2–99.6)

Alzheimer’s disease and controls group III 85.6 (76.2–91.8) 75.8 (57.4–88.3) 91.2 (80.0–96.7)

Dataset I for training, set II for testing 71.4 (51.1–86.1) 50 (24.0–76.9) 92.9 (64.2–99.6)

Dataset II for training, set I for testing 70.0 (53.3–82.9) 95.0 (73.1–99.7) 45.0 (23.8–68.0)

Group I + II 94.1 (80.5–99.1) 97.1 (82.9–99.8) 91.2 (75.2–97.7)

aConsidering a correctly identified Alzheimer’s disease case as a true positive.
95% CIs computed as above.

e102 | Brain 2009: 132; 1–3 Letter to the Editor

http://faculty.vassar.edu/lowry/clin1.html


the decision boundary defined by data from one imaging centre

using different hardware and sequences is sufficiently general

to separate data accurately from other imaging centres. This ability

is of great practical relevance as a library of well-defined cases

can be made available to referral centres as a general trained

set to diagnose scans collected there. While our results are promis-

ing, as we pointed out in our article, ‘a formal comparison with

modern conventional clinical assessment is required’. It should

be kept in mind that we used very strict inclusion criteria and

the extension to relatively poorly defined data from primary

referral centres needs to be addressed in a separate study. It is

likely that libraries from very early stages of the disease need to

be produced, which are then validated longitudinally or patho-

logically. The issue now is to optimize the variables to maximize

sensitivity and accuracy. One lesson we learned is that proper

validation of scans included in the trained set is likely to be critical.
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