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Neutrophil extracellular traps (NETs) are produced in large quantities at the site

of inflammation, and they locally capture and eliminate various pathogens.

Thus, NETs quickly control the infection of pathogens in the body and play vital

roles in immunity and antibacterial effects. However, evidence is accumulating

that NET formation can exacerbate pancreatic tissue damage during acute

pancreatitis (AP). In this review, we describe the research progress on NETs in

AP and discuss the possibility of NETs as potential therapeutic targets. In

addition, since the current detection and visualization methods of NET

formation are not uniform and the selection of markers is still controversial, a

synopsis of these issues is provided in this review.
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Introduction

Acute pancreatitis (AP) begins with cellular injury and endoplasmic reticulum stress

due to premature activation of digestive enzymes in acinar cells (1–5). The associated

processes include converting trypsinogen to trypsin by lysosomal hydrolase cathepsin B

(3, 6) and then degrading trypsin by cathepsin L (6–8). Subsequently, protease activation

cascade induces cell death, releasing danger molecules known as damage-associated

molecular patterns (DAMPs), and eventually activating the immune system (3, 7). In this

process, the intensity of the immune response determines the possibility of systemic

complications and disease severity (9–11). After the onset of AP, neutrophils are the first

set of leukocytes that infiltrate the pancreatic tissue, directly inducing the activation of
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intracellular proteases, promoting necrotic cell death, and

occluding the acinar lumen leading to pancreatic damage (9,

12–15). An avalanche of research reports indicates that the

aggregation of neutrophils in pancreatic tissues is a key factor

in the development of AP. Mechanistically, this is because

neutrophils infiltrating the pancreatic tissue can aggravate

tissue damage by releasing reactive oxygen species (ROS) (13),

enzymes (such as elastase and matrix metalloproteinase-9) (16,

17) and tumor necrosis factor-a (TNFa) (12, 18).
There is growing evidence that the web-like structures

released by neutrophils, the neutrophil extracellular traps

(NETs), can promote pancreatic tissue damage in AP (19–21).

However, presently, the available detection and visualization

methods of NET formation are not uniform. Due to the different

stimulation of neutrophils, histone H3 may not be citrullinated

during the NET formation, so the use of citrullinated histone H3

(citH3) or peptidylarginine deiminase 4 (PAD4) as a marker for

NETs remains controversial (22, 23). In addition, given the

diversity of AP models, the effect of different stimuli on markers

may also be one of the controversial factors. Therefore, in this

article, we review the research progress between NETs and AP

along with the detection and visualization methods, and

selection of markers underlying NET formation.
Mechanisms of NET formation

NETs are web-like structures with decondensed

chromatin fragments as the skeleton and wrapped in

histones, proteases, granules, and cytoplasmic proteins (24).

Based on recommendations published by experts in this field,

the term “NET formation” is used to describe the process by

which neutrophils produce and release NETs (25).Currently,

there are two known pathways for NET formation. The first is

the cell death pathway known as lytic NET formation, which

begins with nuclear delobulation and the disassembly of the

nuclear envelope and continues until the loss of cell

polarization, chromatin decondensation, and plasma

membrane rupture. The second is non-lytic NET formation,

which can occur independently of cell death and involves the

secretory excretion of nuclear chromatin that is accompanied

by the release of granular proteins through degranulation

(26). According to the literature, non-lytic NET formation

occurs within minutes of exposure to Staphylococcus aureus,

during which there is no cell death (27, 28). In addition to

this, P-selectin/P-selectin glycoprotein ligand-1 mediates

neutrophil-platelet interaction (29, 30) and activated

platelets can promote non-lytic NET formation through

high mobility group protein B1 (HMGB1)/receptor for

advanced glycat ion end products (31) . In view of

the peculiarity of the non-lytic NET formation, most

of the current studies are conducted in lytic NET

formation background.
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In the NET formation pathway, the process from ROS

generation to chromatin decondensation is the core

mechanism. However, it is noteworthy that the inhibition of

leukocyte signal inhibitory receptor 1 prevented NET

formation without affecting ROS (32). Due to various

stimuli, calcium ions are released from the endoplasmic

reticulum into the cytoplasm, resulting in an increase in the

production of ROS through the NADPH oxidase complex,

which in turn activates the protein kinase C or RAF-MEK-

MAPK pathway, resulting in NET formation (23, 33, 34). In

the aforementioned process, one of the most important ways

is to stimulate myeloperoxidase (MPO) through the generated

ROS to activate neutrophil elastase (NE) and facilitate the

transfer of NE from the azurophilic granules to the nucleus.

NE transferred to the nucleus can destroy chromatin

packaging by hydrolyzing histones, and then MPO binds to

chromatin and synergizes with NE to cause chromatin

decondensation (35). However, one study found that

inhibiting the enzymatic activity of MPO only delayed NET

formation, but did not prevent NET formation (36). NE plays

a more important role in this process because NE needs to

bind to F-actin filaments in the cytoplasm and degrade them

be fo r e en t e r ing the nuc l eu s to dr i v e chromat in

decondensation (37). In addition, the results of the in vitro

studies showed that NE is sufficient to disintegrate the nucleus

(35). Therefore, in the MPO-NE pathway, compared with

MPO, the effect of NE activity on NET formation may be more

important. In addition to the MPO-NE pathway, another

well-studied pathway related to chromatin decondensation

is PAD4-driven histone citrullination (38, 39). It has been

found that the activation of PAD4 requires a reducing

environment (40), but the inhibition of NADPH oxidase

still reduces the occurrence of PAD4-driven histone

citrullination (24, 26). This is because hydrogen peroxide

and ROS generated by NADPH oxidase activation are

sufficient to activate PAD4 (41–43). However, ROS

production was not eliminated by the inhibition of NADPH

oxidase, possibly due to increased mitochondrial ROS

production (44). In addition, NADPH oxidase is negatively

regulated by active PAD4 (45).
Role of NETs in acute pancreatitis

Many recent studies have shown that NETs may play a

pivotal role in the development of AP (19–21). Elimination of

NET formation by injecting DNase I into mice effectively

reduced CXCL2 production and neutrophil recruitment in

inflamed pancreatic tissue (19). The results showed that NETs

themselves may play a role as chemotactic signals, or NETs

stimulated the release of related chemokines. In addition, the

results of the in vitro studies showed that histones (histones 2A,

2B, 3, and 4) in NETs can regulate STAT3 activity and trypsin
frontiersin.org

https://doi.org/10.3389/fimmu.2022.974821
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.974821
activation in acinar cells, and their effects on acinar cells are

similar to cerulein (19). Emphatically, the formation of NETs is

partially dependent on the ROS production. For instance, a

study found that c-Abl kinase can promote ROS production and

NET formation. This process is accompanied by the increased

expression of citH3. Concurrently, inhibition of c-Abl kinase can

reduce inflammation and tissue damage in AP (46). ROS can

induce autophagy (47) and NET formation is dependent on

autophagy (48). Researchers have found that when specific

inhibitors for autophagy were injected into mice that NET

formation was also inhibited, and this was due to the

expression of PAD4, and consequently the severity and

survival rates for AP were improved (21). Citrullination of

histones is usually driven by PAD4, as described previously.

Therefore, a study demonstrated the role of PAD4 in reducing

NET formation in pancreatic tissue of severe acute pancreatitis

(SAP) by the oral administration of Cl-amidine, a specific

inhibitor of PAD4, and the construction of PAD4 knockout

(PAD4−/−) mice (21), respectively. In addition, the inhibition of

PAD4 expression reduces pathological inflammation and tissue

damage in the inflamed pancreas (20). In fact, a recent study also

found that the injection of protectin D1 into mice can effectively

inhibit the expression of PAD4, thereby reducing NET

formation and improving AP (49). Furthermore, the premise

of NET formation is the accumulation of neutrophils in

pancreatic tissues, where the release of DAMPs plays an

important role. The results of the studies found that

extracellular cold-inducible RNA-binding protein (eCIRP) and

complement C3 can act as DAMPs to promote neutrophil

accumulation in pancreatic tissues, which, in turn, leads to

NET formation and pancreatic tissue injuries (50, 51).

Concurrently, eCIRP is also a component of NETs and can

induce acinar cells to secrete amylase by binding to the TLR4

complex in the acinar cell membrane (50). This result suggests

that NETs themselves may function as DAMPs or chemotactic

signals to some extent. NETs can also be formed by responding

to extracellular HMGB1 and histones in a TLR4- and TLR9-

dependent manner (26). The results show that HMGB1 can

cause pancreatic tissue injury by activating NET formation, but

the specific mechanism of activation is not clear (52). To date,

the most comprehensive research has shown that IL-17A

promotes the accumulation of neutrophils in the pancreatic

duct, and bicarbonate ions and calcium carbonate crystals in

the pancreatic juice stimulate the accumulated neutrophils to

form aggregated NETs (aggNETs), which can then occlude the

pancreatic duct, inducing pancreatitis. Notably, the study also

found that no intraductal aggNETs were found in cerulein-

induced AP, and disease progression in this experimental animal

model was independent of PAD4 (53). Based on the above

results, further studies found that both low pH and high carbon

dioxide/bicarbonate ratio reduced the ability of neutrophils to

release NETs (54). Usually, bicarbonate can effectively increase

pH, which can then increase the calcium influx, mitochondrial
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ROS generation, PAD4 activity, and histone 4 cleavage, thereby

promoting NET formation (55, 56). Therefore, the alkaline

environment provided by pancreatic juice might provide better

mechanistic insight into the etiology of AP. In addition, studies

have found that platelet particles in plasma samples from

patients with AP can significantly promote NET formation,

and the level of platelet particles is positively correlated with

the severity of AP (57). In summary, reducing NET formation is

an effective strategy to improve pancreatic tissue injury in AP,

but the relevant mechanisms need to be further explored.

Figure 1 summarizes the potential mechanisms of NET

formation in AP.
Detection and visualization of NETs
in pancreatic tissues of AP

Numerous studies have reported using immunofluorescence

staining is often used as a method to detect NET formation in

tissue samples (58–60). This is because NET formation is

characterized by the co-localization of extracellular DNA,

nuclear proteins and granular (or cytoplasmic) proteins,

which are significantly separated and relatively fixed from the

nucleus in resting neutrophils (61). One study tested diverse

antigen retrieval methods and various combinations of

commercially available antibodies, and it was found that

NETs in the tissue could be best detected when using a mild

antigen retrieval protocol and a combination of the NE and

histone H3 antibodies (62). In existing studies, the available

detection and visualization methods of NET formation in

pancreatic tissues of AP are not consistent. In some studies,

researchers used scanning and transmission electron

microscopies combined with immuno-double-gold labeling

technique to detect NET formation, using citH3 or histone2B

as the marker of NETs and elastase as a marker of neutrophils

(19, 20, 50, 51). Because it is difficult to identify neutrophils

from cell morphology by scanning electron microscopy,

transmission electron microscopy combined with immuno-

double-gold labeling technique can make up for the

deficiency of the former. The advantage of this technique is

that the pretreatment steps have little effect on the

microstructure, and the gold particles have high electron

density, which make them clearly distinguishable from other

immune products under the electron microscope. In addition,

some researchers use immunofluorescence staining to detect

NET formation. In this process, they chose citH3 as the marker

of NETs, MPO or Ly-6G as the marker of neutrophils (21, 49),

or directly chose SYTOX Green dye-labeled extracellular DNA

as the marker of NET formation (52). In view of the fact that

most of the aforementioned studies focused on the histone

citrullination in chromatin driven by PAD4, which

depolymerizes the chromatin and promotes NET formation,

it is reliable to use citH3 as a marker in the detection of NET
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formation. However, considering the different stimuli in the

construction of AP mouse model, we cannot rule out the

possibility that NETs are produced by other ways or histone

citrullination driven by PAD4 is not the main pathway; thus, if

citH3 is used as the sole marker, it may lead to a potential
Frontiers in Immunology 04
deviation. Therefore, further studies may be needed to discuss

the selection of NETs-related markers and the relationship

between NETs and AP. A summary of the advantages and

disadvantages of each technique based on the corresponding

AP mouse model is provided in Table 1.
FIGURE 1

Roles of NETs in AP. NETs may inherently function as chemotactic signals to induce the recruitment of neutrophils, or they may stimulate the
release of related chemokines (CXCL1 and CXCL2). c-Abl kinase, eCIRP, HMGB1, protectin D1, and complement C3 promote NET formation
through the PAD4-driven histone citrullination pathway. Autophagy is also thought to play a role in the NET formation in AP. IL-17A promotes
the accumulation of neutrophils in the pancreatic duct, and the bicarbonate ions and calcium carbonate crystals in the pancreatic juice will then
stimulate the accumulated neutrophils to generate aggregated NETs and these can occlude the pancreatic duct, inducing pancreatitis. In
addition, platelet microparticles can significantly promote NET formation. NETs, neutrophil extracellular traps; AP, acute pancreatitis; CXCL1, C-
X-C motif chemokine ligand 1; CXCL2, C-X-C motif chemokine ligand 2; eCIRP, extracellular cold-inducible RNA-binding protein; HMGB1, high
mobility group protein 1; PAD4, peptidylarginine deiminase 4.
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Discussion

An overwhelming number of studies have found that NETs

can contribute to inflammation and injury of organs in mice with

AP, and thus may be used as a target to reduce pancreatic tissue

injuries and inflammation in patients with AP. However, there are

a few issues that deserve further discussion, as outlined below. First,

are there any other pathways, aside from PAD4-driven histone

citrullination pathway, that are involved in the occurrence and

development of AP? If so, which one is the main pathway? For

now, this issue remains open for exploration in future studies.

Second, most studies, including AP, used citH3 as the sole marker

of NETs (59, 63), but the use of citH3 or PAD4 as a marker of

NETs is controversial (22, 23). Although the detection of citH3 is

considered a minimum requirement for the identification of NET

formation, quantification biases caused by citH3-independent

pathways should also be considered. To address this, co-staining

analysis of multiple pathway-related markers should be conducted

to visualize NET formation in pancreatic tissues. The components

of NETs include MPO and NE: in the resting neutrophils, they do

coexist in granules, and their localization with the nucleus is

relatively fixed. However, after NET formation, due to chromatin

depolymerization and nuclear membrane rupture, the positions of

MPO, NE and nuclear DNA become unclear, and the original

relatively fixed positions are dismantled, resulting in residual

mixing of nucleus, cytoplasm, and granules, which provides

conditions for the co-localization of the three. Therefore, a

comprehensive visual qualitative analysis of co-staining of MPO,
Frontiers in Immunology 05
NE and citH3 by immunofluorescence may provide a more

comprehensive assessment of NET formation, but further

research and discussion are needed in quantitative aspects.

Furthermore, it is worth noting that while NET-enriched area

can be quite spacious, NETs can be significantly less stretched and

contain only a few neutrophils in dense tissue, as in myocarditis

(61, 64). Therefore, it is crucial to show the colocalization of

nuclear and granular components more clearly by

immunofluorescence staining. With the advent of multiple

fluorescence immunohistochemicals, this issue can be

successfully addressed. A third issue is that of generalizability.

Invasive interventions are rarely performed in the early stages of

SAP and the optimal timing of invasive interventions is still unclear

(65), making it difficult to obtain human pancreatic tissue samples.

Currently, only blood samples from patients can be tested for NET

formation, and there is still a lack of effective detection methods of

NET formation in human pancreatic tissue samples. This

limitation is difficult to overcome. Finally, as a fourth issue, we

want to remark on an interesting outlook. The premise of NET

formation in AP is the accumulation of neutrophils in pancreatic

tissues, it is also possible that there are neutrophil subsets with

different molecular signatures during pancreatitis. Furthermore,

these subsets may respond differently to environmental challenges

that subsequently affect their polarization and activation. With the

advent of single-cell sequencing technology, combined with

analyses based on the technology of cytometry by time-of-flight

(CyTOF) mass spectrometry (66, 67), the heterogeneity of

neutrophils can be better elucidated. At the same time, this could
TABLE 1 Detection and visualization of NETs in pancreatic tissues.

AP
models

Detection method Marker
selection

Advantages Possible problems

Taurocholate
(19, 20, 50,
51)

Transmission electron
microscopy + Immuno-double-
gold labeling

NET-marker:
citH3 or
Histone 2B
Neutrophils-
marker:
Elastase

The preprocessing steps have less effect on the microstructure;
The gold particles have a high electron density, which are clearly
distinguishable from other immune products under the electron
microscope.

citH3 independent pathways
are not detected.

Taurocholate
(46);
Careulein
(52)

Western Blot NET-marker:
citH3 or PAD4

Do not provide the required
subcellular resolution;
Do not readily allow
simultaneous localization of
two antigens.

Taurocholate
(52);
L-arginine
(19)

SYTOX Green staining NET-marker:
Extracellular
DNA

Poor stability and toxicity;
Cannot differentiate between
necrotic and NET-cells.

Careulein
(49);
Pancreatic
duct ligation
(49);
L-arginine
(21)

Immunofluorescence staining NET-marker:
citH3
Neutrophils-
marker:
MPO or Ly-6G

Provide the required subcellular resolution;
Allow simultaneous localization of two antigens.

citH3 independent pathways
are not detected.
NETs, neutrophil extracellular traps; AP, acute pancreatitis; citH3, citrullinated histone H3; PAD4, peptidylarginine deiminase 4; MPO, myeloperoxidase; Ly-6G, lymphocyte antigen 6
complex locus G6D.
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also provide more directions for follow-up studies on neutrophils

that produce NETs with different phenotypes and functions. Taken

together, the related research progress is still limited, although

these data suggest that NETs have a therapeutic potential in AP.
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