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Abstract: A subgroup among people living with HIV (PLHIV) experience viral suppression, some-
times to an undetectable level in the blood and/or are able to maintain a healthy CD4+ T-cell count
without the influence of antiretroviral (ARV) therapy. One out of three hundred PLHIV fall into
this category, and a large sample of this group can be found in areas with a high prevalence of
HIV infection such as Nigeria and South Africa. Understanding the mechanism underpinning the
nonprogressive phenotype in this subgroup may provide insights into the control of the global
HIV epidemic. This work provides mechanisms of the elite control and nonprogressive phenotype
among PLHIV in Nigeria and South Africa and identifies research gaps that will contribute to a better
understanding on HIV controllers among PLHIV.
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1. Background

Over 38 million people are living with HIV/AIDS globally, while an estimated 2.6 mil-
lion are added annually [1,2]. There were 1.5 million new HIV infection cases in 2020 with
over sixty percent recorded in sub-Saharan Africa [1]. Nigeria and South Africa harbor an
immense health burden of HIV infection in Africa and are among the countries of utmost
concern in the context of the world’s HIV challenges [3,4].

Before the recent clinical recommendation [5] that requires all detected HIV-infected
individuals to initiate antiretroviral therapy (ART), variation occurred among people living
with HIV (PLHIV) regarding the progression of HIV infection or replication of viral RNA,
on the basis of which some were recommended for antiretroviral therapy (ART), while some
who were able to control viral replication and/or disease progression would not initiate
ART [6–8]. Patients who without ART treatment were able to sustain a stable CD4+ T-cell
counts within a healthy range (above 450 cells/µL blood) and remain asymptomatic for a
long period of time were generally referred to as long-term nonprogressors (LTNPs) [7,9],
but a subgroup among the LTNPs, known as slow progressors (SPs), exhibited a high viral
load despite manifesting a long-term nonprogressive phenotype [10]. Viraemic controllers
(VCs) were able to contain a viral load at a level below 2000 HIV-RNA copies/mL of plasma
and maintain a healthy CD4+ T-cell count for a prolonged length of time without ART ther-
apy [8,11]. Some, however, had the ability to suppress viral replication to an undetectable
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level (<50 HIV-RNA copies/mL plasma) without ART intervention and were referred to as
elite controllers (ECs) [7,12,13]. This HIV-control phenomenon can be influenced by factors
of host genetics and immunity as well as viral features that may contribute to HIV suppres-
sion [7,13]. The general mechanism of this phenomenon is illustrated in Figure 1. Adequate
investigation into this subgroup may channel a route for better therapeutic interventions
and provide bases for efficacious HIV vaccine development [8,13–15].
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Figure 1. Understanding the mechanism of viral suppression and favorable disease outcomes
among HIV elite controllers and other HIV controllers. (A) Without the influence of barriers, such as
antiretroviral drugs, or unique features that contribute to viral suppression among the elite controllers,
viraemic controllers, or long-term nonprogressors, HIV replicates successfully and infects new CD4+

T cells. This eventually causes a high viral load in the host system. (B) In HIV controllers, such as
elite controllers and viraemic controllers, one or more of the stages of HIV’s life cycle is inhibited or
interrupted by (i) host unique features such as potent immune responses that are capable of effectively
neutralizing, engulfing, or lysing HIV-infected cells; favorable genetic variants that do not support
HIV replication; viral restriction factors that are host-acting proteins that provide first-line protection
against infection of new host cells; (ii) viral factor, specifically, deleterious mutations in the HIV
genome that may cause loss of fitness during viral replication. The mechanism of the nonprogressive
phenotype in HIV infection can therefore be explicitly delineated when specific features that favor
positive disease outcomes among the HIV controllers are identified.
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One of the factors that contributes to virological suppression among ECs and LTNPs is
the transmission of attenuated HIV particles from previous nonprogressors (who may have
also inherited such less virulent strain through vertical infection) to new individuals who
also develop similar clinical characteristics [8,16–19]. For example, Casado and colleagues
isolated HIV-1 from five elite controllers, who were all Spanish and with similar clinical
and epidemiological features, to identify viral correlates of the elite control phenotype.
Eleven amino acid mutations were identified across the isolates and were attributed to
a common feature that enhanced viral suppression among the five individuals [16]. In a
further investigation to identify the mechanism underlying the positive clinical feature
in the Spanish cohort, the HIV Env isolated from the ECs were incapable of infecting
CD4+ T cells and exhibited a loose actin/tubulin cytoskeleton configuration compared
to the properties of Env that were isolated from rapid progressors [17]. However, the
characteristic viral suppression experienced by most ECs is attributed to post-infection
development rather than the viral factor being the primary correlate of nonprogressive HIV
infection [20–25]. In this case, the hosts are infected with HIV of spontaneous replicative
capacity (fully competent virus), but the unique characteristics that the hosts possess inhibit
virological replication, and the hosts eventually develop as HIV controllers [22]. This is
evident from transmission pair studies where HIV was transmitted from a rapid progressor
to a new individual who later became an EC, or where isolated virus from two different
individuals exhibited full viral replicative competency in vitro, but one of the hosts was able
to naturally control replication in vivo using the host-related mechanisms, while the other
developed as a rapid progressor [21,26,27]. Some HIV controllers also progress later in life
to develop as rapid progressors, thereby losing virologic control of HIV infection. This
emphasizes the fact that such ECs or VCs were infected with a replication-competent virus
that was initially suppressed using the host genome and the immune response mechanism,
but when they lose the driving factor behind their virologic control, they also lose the
associated favorable disease outcomes that are attributed to HIV controllers [21,24,27,28].

Gag-specific CD4+ and CD8+ T cells have been attributed to have effective immune
responses and low viral escape characteristics, enhancing strong immune capture of HIV-
infected cells thereby inhibiting viral replication [8,29–31]. The high frequency of Gag-
restricted CD4+ and CD8+ T cells has been well linked to the elite control phenotype in HIV
infection, and this could be associated with qualitatively robust immune responses that
enhance efficient viral suppression [8,29,32]. Furthermore, helper T cells exhibited by HIV
controllers possess superior qualitative properties that enhance effective viral suppression
better than the characteristic helper functions demonstrated by the rapid progressors [32].
Some ECs and LTNPs are also able to develop broadly neutralizing antibodies for diverse
HIV strains, thereby exhibiting strong adaptive immune responses to clear HIV-infected
cells and, eventually, suppressing viral replication [33,34].

The mechanism of the host’s innate immunity toward achieving a nonprogressive
phenotype, as exhibited by HIV controllers, involves, among others, the recruitment of an
elevated number of correlating dendritic cells, macrophages, natural killer T cells, mono-
cytes, or natural killer cells [24,32,35]. The high frequency of these innate immune cells is
achieved and maintained by an interdependence signaling among the cells and through the
action of cytokines, such as IL-12, IL-15, IFN-α, and IFN-β, which partially or together play
inhibitory roles in viral replication [31,32,35–39]. Furthermore, the abundant expression
of certain viral restriction factors, which in connection with the immune system disrupts
one or more stages of the HIV life cycle, has also been identified as one of the underlying
mechanisms of viral suppression among ECs and LTNPs [8,40]. Viral restriction factors
that have been reported in relation to nonprogressive HIV infection include, among others,
the sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), tetherin, APOBEC3G,
TRIM-5α, serin incorporator 3/5 (SERINC3 and SERINC5), B-lymphocyte-induced mat-
uration protein-1 (BLIMP-1), endoplasmic reticulum class I α-mannosidase (ERManI),
translocator protein (TSPO), guanylate-binding protein 5 (GBP5), and zinc-finger antiviral
protein (ZAP) [8,40–42]. Mutations in the genetic loci of these antiviral factors may also
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play important roles in the upregulation or underexpression of the respective restriction
factors. However, they are expected to contribute to viral suppression when they are
upregulated [8,41]. In this case, the mechanism of virologic control is associated with the
host genome characteristics.

The host genome feature that has been widely and most significantly reported as a
correlate of the nonprogressive phenotype is the abundant representation of certain human
leukocyte antigen (HLA) alleles, which are mostly found especially among ECs. The most
correlating HLA alleles for elite control of HIV infection are HLA-B*57 and -B*27 [32,43–47],
although -B*58:01 has also been reported as a correlate of the nonprogressive phenotype
in HIV infection as reported in two recent reviews [48,49]. The cytoplasmic domains
of HLA-B alleles show higher resistance to Nef-enhanced immune disruption (on the
antigen-presenting cells) compared to the HLA-A alleles; therefore, HLA-B alleles enhance
better cytotoxic T-lymphocyte (CTL) recognition of HIV-infected cells, thereby enhancing
optimum destruction of infected cells and eventually suppressing viral replication in
HIV nonprogressors [29,46,49]. Although viral escape from the unique HLA-B-specific
CTLs among ECs has been reported, such escaped viruses often lose replicative vigor and,
therefore, may not contribute to effective viral multiplication [46,50,51].

The presence of a heterozygous 32-base pair deletion in the CCR5 gene (CCR5-∆32)
is another feature of host genome characteristics among ECs and other LTNPs [47]. Con-
sidering the preventive effect of the homozygous CCR5-∆32 genotype in HIV infection,
inhibiting the successful binding of HIV to CD4+ T cells [52], the presence of heterozygous
CCR5-∆32 in an HIV patient is therefore expected to reduce the rate of viral replication,
thereby enhancing positive disease outcomes similar to the clinical experience of ECs and
LTNPs [8]. Studies have reported the presence of the CCR5-∆32 allele in certain HIV
nonprogressors [47,53]; however, several others did not find that this feature correlated
with nonprogressive HIV infection [54,55]. Other gene polymorphisms, including those
of viral restriction factors, such as the Toll-like receptor-9 (TLR-9), stromal cell-derived
factor 1 (SDF-1), BST2, killer cell immunoglobulin-like receptors (KIR2), beta-defensin-I,
and the APOBEC3G gene, have also been associated with natural HIV control among ECs
and LTNPs [8,41,56–58].

Due to the large expected population of individuals with the nonprogressive pheno-
type in regions of high HIV prevalence, such as Nigeria and South Africa, correlates of
the nonprogressive phenotype among HIV controllers can be further investigated in such
localities to better delineate the mechanism underpinning the positive clinical characteris-
tics [59]. Unfortunately, with the recent clinical recommendation [5], all HIV seropositive
individuals are to initiate ART therapies irrespective of HIV viral load or CD4+ T-cell count.
Therefore, there is a need to evaluate what has been reported on this unique group and
quickly fill research gaps where possible, before the samples of nonprogressors (which may
still be presently persevered) are no longer available. This study reviewed reports on elite
controllers, viraemic controllers, and long-term nonprogressors in Nigeria and South Africa
and identified research gaps that are yet to be filled in these two countries on these subjects.

2. Method

An electronic literature search was conducted by querying articles written in English
from the PubMed database and the African Journal Online, published between January
1985 and June 2021. Search terms included HIV controller/ or elite controller/ or viraemic
controller/ or long-term non progressor/ or slow progressor/ and HIV infection/ or
prevalence/ or mechanism of control/ or immune response/ and Nigeria/ or /South
Africa. Extracted information from the retrieved articles were grouped into the following
headings: (a) low transmission risk of HIV infection from ECs; (b) mechanism delineated
from viral features that were associated with nonprogressive HIV infection among ECs
and LTNPs; (c) putative mechanism of viral control as influenced by the host genome;
(d) mechanism of viral control among ECs and LTNPs as derived from associated host
immune characteristics.
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3. Low Transmission Risk of HIV Infection from ECs

To determine the transmission risk of HIV infection from elite controllers via blood
medium, Vermeulen et al. [60] evaluated viral load count in blood samples donated by elite
controllers and by HIV-infected individuals who were at the window stage (WP; when a
patient has not developed an antibody response to the infection) at the time of donation.
Samples were obtained from the South African Blood Service (SANBS) after 3 years in
the repository. The authors identified a 50% minimum infectious dose (ID50 which is
the number of virus particles that is required to initiate infection in 50% of normal adult
humans exposed by a given route) from the evaluated viral load and utilized Poisson
statistics to determine the transmission risk of HIV infection in the two categories. Their
results revealed that a maximum viral load in EC blood donation was 5.5 copies/mL while
that from individuals at WP was up to 500,000 copies/mL. It was estimated that only
2.2% of the blood from the EC samples could successfully transmit HIV infection during
transfusion with an ID50 of 350 virions, while up to 15% could effectively transmit from
samples donated by individuals who were at the window period. However, Sykes et al. [61]
evaluated false EC samples obtained from blood donors at the South African National
Blood Service (SANBS): those who did not disclose ART use during the predonation
interview and had an undetected HIV viral load were all presumptively categorized as elite
controllers. Plasma samples for all presumed ECs between 2010 and 2016 were tested for
ART drugs using validated assays on liquid chromatography-tandem mass spectrometry.
Approximately two-thirds (66.4%, n = 150) of the presumptive EC samples tested positive
for ART drugs, indicating a high proportion of false EC status within the seven-year period.
Therefore, this suggests that elite control samples should be evaluated for ART presence
before utilizing them for studies that aim to identify correlates of the nonprogressive
phenotype in HIV infection.

Furthermore, Ferrand et al. [62] gathered existing population data including crude
birth and death rates from the Population Division of the United Nations (UNIPOP)
database with respect to before (i.e., 1980) and factored in antenatal HIV prevalence from
southern African countries (i.e., South Africa, Swaziland, and Zimbabwe). These data were
used to estimate the prevalence and mortality of fast and slow progressors among children
infected with HIV. The result of their model revealed that HIV prevalence among children
was expected to decrease in Zimbabwe but increase in South Africa. Children who were
infected after birth through breastfeeding were likely to be slow progressors compared to
children infected in the uterus before birth. However, death among untreated slow pro-
gressors was expected to increase in South Africa by over 300% by 2030. Fortunately, since
2016, all diagnosed cases of HIV infection, irrespective of the level of disease progression,
must initiate ART [5], thereby reducing the expected rise in mortality among SPs.

4. Mechanism Delineated from Viral Features That Were Associated with
Nonprogressive HIV Infection among ECs and LTNPs

The genome of the HIV-1 virus comprises nine genes that code for fifteen viral proteins.
The encoded regions when expressed develop into viral structural proteins, essential
regulatory elements, or accessory regulatory proteins [63,64]. HIV-1 structural proteins
consist of group-specific antigens (Gag), polyproteins (which make up the viral core),
viral enzymes (Pol), and the envelope (Env). The envelope gene locus encodes gp160, a
glycoprotein, which when cleaved forms two mature protein subunits (i.e., gp41 and gp120)
found on the surface of the virus and are important for the successful binding and initiation
of infection in the host cells [64–68]. Both gp120 and gp40 have glycosylated nucleotide
sites that are used to mask the viral envelope from host immune detection [65,68,69].

Considering the importance of this HIV envelope in the initiation and progression
of HIV infection, gp160 has been one of the targets of HIV vaccine development [70–72].
Archary et al. [73] investigated the differences in HIV gp160 dynamics between HIV LTNPs
and rapid progressors. Retrospective samples of eight antiretroviral-naive HIV-1 clade
C patients from the Sinikithemba cohort in Durban, South Africa, were used for this
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investigation with a follow-up history of up to 39.8 months. The CD4+ T-cell count and
viral load were used as parameters to categorize participants as LTNPs (>500 CD4+ cell
counts and less than 10,000 viral RNA copies/mL) or progressors (below 500 CD4+ cell
counts and above 10,000 viral RNA copies/mL), while single-genome amplification and
sequencing were used to study the dynamics of the gp160 protein including diversity,
divergence, length of the constant (C) and variable (V) regions, as well as the putative
N-linked glycosylation sites (PNGs). Their findings revealed that nucleotide diversity in
the constant regions, C2 and C3 as well as in the hypervariable region V3, were significantly
higher in LTNPs than in rapid progressors. Furthermore, increased amino acid length in the
variable regions (V1-V4) and fewer N-linked glycosylation sites on the gp120 locus were
observed among LTNPs, while the gp41 locus was significantly longer with fewer PNGs
when compared with rapid progressors. The regions of V1, V4, C3, C4, and gp41 mapped
positively in LTNPs, while only gp41 did for progressors. The high diversity in the C2,
C3, and, especially, in the V3 regions among LTNPs was suggested to be associated with
ART-free suppression of viral replication. The different dynamics of the HIV-1 envelope
found among the LTNPs and the rapid progressors revealed unique patterns for each of
the two subgroups, which according to the authors will support the understanding of the
viral control mechanism, harnessable for effective HIV vaccine development. Other studies
that investigated viral features as corelates of nonprogressive infection, but largely as an
effect of robust immune responses among LTNPs, are discussed in relation to their causal
response under the host immunity section.

5. Putative Mechanism of Viral Control as Influenced by the Host Genome

Chemokine receptors are essential for the progression of several human diseases and
are crucial for effective viral transmission and replication in HIV infection [74–78]. The
chemokine coreceptors that are commonly utilized for HIV infection are C-C chemokine
receptor type 5 (CCR5) and C-X-C chemokine receptor type 4 (CXCR4) [78–80], although
CXCR6 has also been reported as a coreceptor for HIV infection [81,82]. Genetic variation
in the chemokine receptor loci may have an impact on host susceptibility to HIV infection
or on the rate of progression of viral replication [80,81,83].

Pincton et al. [84] studied the genetic variation of a chemokine receptor (CXCR6)
among HIV-1-infected, ART-naive Black individuals from Soweto and Johannesburg using
rs2234358 and rs2234355 SNPs. These SNPs have previously been associated with disease
progression and viral suppression among HIV-1-infected patients [85,86]. Eleven HIV
ECs, thirty VCs (with a viral load below 2000 RNA copies/mL and a CD4 count above
500 cells/µL), eleven high viral load LTNPs (without significant CD4+ T-cell decline for
up to seven years despite having a viral load greater than 10,000 RNA copies/mL and a
CD4 count less than 500), and seventy-two rapid progressors were recruited for the study.
The CXCR6 region was sequenced from genomic DNA and analyzed for the presence of
single-nucleotide polymorphisms (SNPs) and indels using SEQUECHER software (version
4.5). The authors found that allele rs2234358-T was significantly underrepresented among
VCs compared to high viral load LTNPs and fast progressors; the homozygous rs2234358-
T allele (TT) was also underrepresented among VCs than the progressors and healthy
controllers. The genotype rs223455-GA was also found to be overrepresented in VCs
compared to healthy controllers and progressors. The authors, therefore, identified the
two CXCR6 SNPs (i.e., rs2234358 and rs2234355) as factors contributing to the viraemic
control of HIV infection in South Africa. Choge et al. [87] also investigated the use of
CXCR4 and CCR5 chemokine coreceptors by HIV-1 subtype C virus isolated from fast
progressors and LTNPs using heteroduplex mobility assays. Their study revealed that 88%
of isolates from LTNPs used CCR5 only (similar to fast progressors with 93%), 8% used
CXCR4 only, and 4% used both CCR5 and CXCR4. However, two children with the virus
that was identified for CXCR4 usage progressed to AIDS. The authors concluded that an
HIV virus that uses CCR5 is common among both progressors and slow LTNPs, while that
of CXCR4 is generally uncommon, and there was no clear distinction between LTNPs and
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rapid progressors based on chemokine receptor type that was used for infection of new
host cells.

Compared to the frequency among people living with HIV who fall into the category
of rapid progressors, higher or overexpression of certain viral restriction factors that were
previously mentioned have been associated with positive disease outcome among ECs
and LTNPs [8,40,42]. However, if the viral inhibitory mechanism is enhanced by certain
polymorphisms in the regulatory or other regions of the respective gene, the mechanism
of viral control will be attributed to the host genome features. Therefore, for this review,
the harmonized viral restriction factors that fell under the category of the host genome
characteristics are also reported in this section. Two single-nucleotide polymorphisms (i.e.,
rs2072254 and rs2072255) in the RICH2 gene have been linked to viral progression in HIV
infection among Caucasians [88]. Paximadis et al. [89] studied the association of these SNPs
with HIV control in elite controllers and LTNPs among Black South Africans. Viral RNA
was quantified, and CD4+ T cells were counted and documented for each HIV-infected
patient, while the RICH2 gene was amplified and sequenced to analyze for single-nucleotide
polymorphisms. The authors found no significant difference in the allelic and genotypic
frequencies between any category of LTNPs and rapid progressors. However, there was a
combination trend of rs2072254AA and rs2072255GA being significantly underrepresented
among ECs and VCs compared to the healthy controls. In addition, a low CD4+ T-cell count
was associated with the combined genotypes: rs2072254AA/rs2072255GA and rs2072255
(GA+AA). Following these significant allelic and genotypic combinations in HIV controllers
and the same pattern of low disequilibrium linkage of these SNPs among Black Africans in
the 1000 genome project, the authors concluded that the two SNPs may be associated with
the natural control of HIV-1 in Black sub-Saharan Africans.

The bone-marrow stromal cell antigen 2 (BST2), also known as tetherin, is a viral
restriction factor capable of preventing the release and progression of the enveloped virus
in mammalian hosts [90,91]. Some variants of the BST2 gene have also been correlated
with HIV infection and the course of disease progression [92,93]. A study investigated the
association of four BST2 SNPs (i.e., rs3217318, rs12609479, rs10415893, and rs113189798,
previously correlated with HIV-1) with viral suppression among ART naive Black South
Africans [94]. Among the BST2 variants, heterozygous rs113189798-A/G was prevalent
among ECs compared to the rapid progressors, while rs113189798-GG showed a signifi-
cant correlation with viral suppression. The combined genotype of rs3217318(i19/∆19),
rs12609479(G/G), rs10415893(G/A), and rs113189798(A/G) were also associated with high
CD4+ T-cell count among rapid progressors. However, a high rate of CD4+ T-cell decline
was associated with the heterozygous rs3217318 indel (∆19/i19), corroborating a report
from a Spanish HIV cohort [92]. The putative mechanism behind this feature was that since
the associated variant is in a promoter region, the rs3217318 indel (∆19/i19) may suppress
BST2 expression, thereby reducing the viral inhibiting factor available for attachment to
the HIV domain and, eventually, enhancing rapid viral replication among fast progressors.
The reverse mechanism would promote the nonprogressive phenotype as observed in ECs
or VCs.

Furthermore, the most significant host genome corelates of natural HIV control among
ECs and several other LTNPs is the HLA polymorphism and its respective abundance
that is required for a robust and effective immune response necessary for nonprogressive
HIV infection. However, because of their important and associated role in the mechanism
underpinning host immunity for viral suppression, this feature is described largely under
the host immunity section.

6. Mechanism of Viral Control among ECs and LTNPs as Derived from Associated
Host Immune Characteristics

The primary target of HIV infection is CD4+ T cells, resulting in the massive loss of
CD4+ T cells during the early stage of infection, especially in the lymphoid tissue that is
associated with the gut [67,95,96]. CD8+ T cells are, however, activated as a host immuno-
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logical response to elicit cytotoxic effects against HIV infection at this acute stage [97–99].
Gray et al. [100] investigated the patterns of HIV-1-specific T cells at the acute stage of
infection using the gamma interferon (IFN-gamma) enzyme-linked immunospot (ELISPOT)
assay to measure the level of responses against the HIV-1 proteome. This was aimed at
understanding the early patterns of responses to specific HIV components during the pro-
gression of HIV infection. These data were further utilized to investigate the specific paths
of responses in VCs and LTNPs recruited in a CAPRISA (Centre for the AIDS Program of
Research in South Africa) study. The authors found the viral proteins, Nef (negative factor,
which is essential for HIV replication), Gag (a group-specific antigen that develops to the
proteins of the viral core), and Pol (which develops to form the viral enzymes needed for
viral effective activities in the host), more dominant than other viral proteins. The T-cell
responses for Nef were higher than the other viral proteins but not related to the course of
viremia, although there was a nonsignificant trend of an increased breadth of response with
viral load. Rapid progressors, however, possessed a diverse epitope recognition pattern
compared to the LTNPs. This finding is similar to a report by MLotshwa et al. [101], who
also investigated the associated pattern using 53 infected individuals also from a CAPRISA
study. They found Pol, Nef, and Gag, predominantly recognized during the course of pro-
gression, and Nef responses were the fastest to evolve compared to the other viral proteins.
However, in that study, Gag was associated with viral control, and there was a 23% chance
of an increased response weekly to the Nef protein. Following a categorization of the
T-cells in three responses (i.e., persistent, lost, or new responses), rapid progressors showed
a significantly low persistent response compared to the LTNPs. The authors, therefore,
concluded that persistent T-cell responses necessary to incessantly fight HIV infection at
the acute stage are higher among LTNPs, which suggest a reason for the viral suppression
during the progression through the chronic stage of infection.

Towards identification and understanding specific T-cell responses responsible for
HIV viral suppression among slow progressors and elite controllers, Thobakgale et al. [102]
studied the characteristic responses of CD8+ T cells in 15 infants who were perinatally HIV
infected starting from the day of birth up to a period of 55 months. The study involved
seven slow progressors and eight rapid progressors recruited from two hospitals in Durban,
South Africa. Plasma viral load was quantified while T-cell interferon-gamma production
was measured using the IFN-gamma ELISPOT assay. T-cell polyfunctionality responses
were further evaluated, which defines the ability of HIV-specific CD8+ T cells to produce
multiple cytokines and chemokines in response to viral antigens. Their findings revealed no
significant difference between the two groups for specific T-cell responses. However, slow
progressors significantly expressed four CD8+ T-cell polyfunctional responses (i.e., HIV-1-
specific interferon (INF-gamma); cluster of differentiation 107a (CD107a); tumor necrosis
factor-alpha (TNF-alpha); macrophage inflammatory protein (MIP-1 beta)) when assessed
together. These polyfunctional responses were, therefore, suggested to be associated with
viral suppression or slow disease progression in HIV-infected children.

Furthermore, Laher et al. [103] studied the characteristics of CD4+ T-cell responses at
the acute stage of infection in 80 HIV-1 (clade C)-infected persons from the Zulu/Xhosa
population who were ART-naive at the time of the investigation. The authors first screened
the entire proteome of HIV-1 among infected patients from the Zulu ethnic group to identify
the most dominant peptides of the HIV-specific CD4+ T-cell epitopes, and they found the
Gag epitope was the most prevalent peptide. They further identified the dominant major
histocompatibility complex class II DRB1 alleles that were associated with the preidentified
immunodominant CD4+ T-cell epitope. The alleles were recognized as DRB1*13:01 and
DRB1*11:01. This information was used to synthesize MHC class II tetramers (specific
for the Gag peptides), which were used to investigate the frequency and function of the
specific CD4+ T-cell responses against HIV infection and progression. Subjects recruited
were grouped as HIV controllers (having a viral load < 2000 HIV viral RNA per mL for
greater than one year) and chronic progressors (with a viral load > 2000 RNA per mL).
The findings revealed that HIV controllers maintain significantly higher frequencies of the
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MHC class II tetramer associated with specific HIV-specific CD4+ T cells compared to the
acute progressors, and they expressed higher cytolytic proteins granzymes A and B by
Gag-specific CD4+ T cells. This, according to the authors, suggests that the high frequency
of Gag-specific CD4+ T cells may enhance viral suppression by providing a helper function
to CD8+ cells, which primarily produce cytolytic signals or directly kill HIV-infected cells.

Moosa et al. [59] investigated the mechanism of viral suppression in two HIV-1 con-
trollers, recruited from the CAPRISA cohort, whose HIV viral copies were undetectable
after 10 months and 6 weeks, respectively. They found that both individuals expressed
multiple human leukocyte antigen (HLA) class I and II haplotypes (including HLA-B*44:03,
-B*81:01, and -DRB1*13 for one of the ECs; HLA-A*74:01, -B*57:03, and -DRB1*13 for the
other EC), which have previously been reported to be associated with reduced disease
progression [103]. Both subjects also expressed higher p21 mRNA, which has previously
been reported to be associated with natural viral suppression and progression to AIDS [104].
The p21 gene codes for a cyclin-dependent inhibitor 1, which triggers the resistance of
hematopoietic cells to HIV infection by not allowing for the effective integration of the HIV
provirus [105]. The findings of Moosa et al. also revealed that one of the two ECs expressed
a high frequency of HIV-specific CD8+ T-cell responses that may trigger a mass cytotoxicity
activity on HIV-1-infected cells. The second person, however, had a pre-infection HIV-
specific immunity with CD4+ T-cell responses for Gag and Pol, which was identified at a
time point of pre-infection, suggested to have strengthened his adaptive immunity against
a rapid progression in HIV infection [59].

Furthermore, protective HLA alleles, such as HLA-B*57 and -B*27, which have been
reported as significant corelates of the elite control of HIV infection, enhance destruction of
HIV infected cells through the cytotoxic effect of CD8+ T-cells [32,44,46]. However, viral
suppression experienced by certain HIV controllers may also be influenced by the effect of
protective HLA on immune-escaped mutant virus, rendering HIV attenuated for replication
in the host [32,46,106]. HLA-B*57, -B*58:01, and -B*81:01 have been reported to induce
mutations within Gag epitopes, which can result in reduced viral replication [46,50,107]. A
study examined the importance of these protective HLA alleles in viral suppression and
reduced disease progression among 61 HIV-infected mother–child pairs in Durban, South
Africa [108]. The authors found that slow disease progression was associated with the child
or the mother having one of the protective HLA-B alleles, especially when the protective
alleles were not shared by both the mother and child. Importantly, the study revealed that
mothers with the protective alleles were able to transmit HIV with reduced replicative
capacity or low fitness to their children, resulting in low progression of HIV infection.
Affirmative to this finding, Prado et al. [109] studied viral characteristics associated with
progression among HIV infants from Durban in South Africa. The study’s findings revealed
that the slow progression phenotype was related to the HIV strain having mutations that
did not support active replication, transmitted from mothers to their children. The mutated
variants escaped from the protective HLA Gag-specific epitopes and, eventually, caused
the virus to lose replicative vigor [109]. This claim was further confirmed by Tzitzivacos
et al. [110], who conducted a full-length genome sequencing on isolated HIV-1 virus
from six ART-naive, slow progressor children in Johannesburg. Reports from sequencing
revealed that each isolate had at least one mutated or unusual gene or protein that may
hinder replicative capacity, resulting in low progression in the children. This low replicative
capacity was therefore suggested to be due to the presence of protective HLA-B alleles as
initially reported by Thobakgale et al. [108].

7. Discussion and Research Gaps on ECS and LTNPS in Nigeria and South Africa

Studies have been conducted and reported from several parts of the world on elite
controllers, viraemic controllers, and slow progressors or on heavy viral load long-term
nonprogressors that are informing researchers on the mechanism of HIV control and ways
to improve the clinical management of the HIV epidemic. Investigations on this subclass
of HIV patients can be effectively carried out when an adequate sample size is available
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as is the case in Nigeria [111] and South Africa [2,4]. Unfortunately, with the recent
WHO recommendation, ART must be initiated for all confirmed HIV-positive individuals
following the 2016 WHO recommendation [5]; hence, there is a need to harmonize previous
reports on this group and identify research gaps that need to be urgently considered before
people with these unique features are difficult to identify.

A substantial number of reports have been documented from South Africa on this
group of patients including associated transmission risk, protective HLA alleles in HIV
infection and other host genome features, associated viral restriction molecules, studies
on viral attenuation and its causative factor, as well as correlating immune responses in
ECs and LTNPs. The reports were consistent with findings from other parts of the world
such as reports on the presence of potent HIV-specific host response [11,112], protective
HLA alleles that enhance effective destruction of infected cells, or the release of a mutated
virus subtype with a low replicative capacity [50,51,104]. However, reports on viral load
rebound following another form of diseased condition or other exposures that may trigger
turbulence in the immune response (such as stem cell transplant) were not available
from South Africa. This has been reported by investigators in Europe, revealing that a
continual rebound of viral load may occur following disruption of body immunity in
elite controllers. Smith et al. [113] studied viral reactivation in an elite controller from
the United Kingdom (UK) who was treated for myeloma with melphalan and autologous
stem cell transplantation. The authors found that the viral load was 28,000 copies/mL
on day +13 following transplant with a calculated viral doubling time of 0.5 days or 12 h.
Afterward, there was an immune recovery that responded efficiently and suppressed
the viral load to fewer than 50 copies/mL by day +37. Furthermore, Watters et al. [114]
followed up on the patient and studied the effect of such an immune disruption for a longer
period (2.5 years/above 1000 days); they reported the second rebound of viral load on
+470 day, phylogenetically different from the first and with a doubling time of 10.5 days,
also taken care by an immune response by day +601. The last rebound occurred on day
+832. Although the two rebounds were reported to coincide with relapse of myeloma, the
kinetics of reactivation and immune recovery may provide an efficient link to developing
a successful therapeutic or prophylactic HIV vaccine [10]. This study may, however, be
difficult with the present “test and treat” era, where patients should initiate HAART once
they are confirmed to be seropositive for HIV infection. Furthermore, there is a need to
investigate other viral restriction factors, such as SERINC 3/5, ZAP, ERManI, TSPO, and
GBP5, among ECs and LTNPs in South Africa.

Contrarily, to the best of our knowledge, except for a report by Odaibo et al. [111], who
documented the prevalence of potential HIV controllers in a part of South West Nigeria,
there have been few or no reports on EC, VC, or SP from Nigeria despite its high prevalence
of HIV infection. There is a need for researchers to quickly harness suitable preserved
samples and records from this group to ensure the availability of regional information for
corroboration of studies that have been conducted in other parts of the world. The focus of
investigation should include host correlates of HIV control (this will involve favorable gene
polymorphisms that contribute to the nonprogressive or slow progressive phenotype, the
dynamics of viral restriction factors, and delineating specific innate and adaptive immune
responses against HIV progression) and viral features that may promote attenuation or
suppress replication of HIV in the host. The research gaps on this unique subject should
also be identified and appropriately investigated in the various geographical localities
across the globe, thereby enriching the information available on this unique group and
together could create a difference in the global fight against the HIV epidemic.

8. Conclusions

Various reports have been documented from different parts of South Africa on this
subclass of patients in consonance with reports from other parts of the world. Related
reports were, however, scarce for Nigeria, and those are necessary to find points of corrobo-
ration or to identify differences with reports from other global regions. In order to expand
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the scope of information globally available on ECs and other LTNPs that may provide the
link to further alleviate or totally eradicate the burden of HIV infection, there is a need
for researchers to identify related gaps and endeavor to fill the empty spaces in respective
localities across the globe.

9. What Is Known about This Topic

Sub-Saharan Africa harbors more than 60% of the global health burden due to the
presence of HIV infections, with Nigeria and South Africa contributing significantly to this
marked burden.

Both countries are expected to have a high prevalence of people with a nonprogressive
phenotype for HIV infection.

Identifying the mechanism for viral suppression among the HIV nonprogressors may
unravel the path toward control of the HIV epidemic.

10. What This Study Adds

This study aimed at harmonizing research findings on elite controllers, viremic con-
trollers, and heavy viral load long-term nonprogressors in South Africa and Nigeria to
elucidate the mechanism of the nonprogressive phenotype in the sub-Saharan population.

We harmonized related reports from South Africa, but a large research gap exists on
this subject in Nigeria.

It was envisaged that a wide research gap on this subject may also exist in several
other populations that may have the capacity to effectively delineate the mechanism
underpinning ART-free viral suppression among ECs and LTNPs. Therefore, studies that
will merge existing gaps of information are required to better elucidate the mechanism
of the nonprogressive phenotype among ECs and LTNPs across respective populations
globally. This study should be conducted as soon as possible, using preserved samples of
the HIV nonprogressors before the ability to track them and their available storage sources
are lost.

Author Contributions: Conceptualization, R.A.A. (Rahaman Ademolu Ahmed), K.O.A., C.K.O.,
B.O.O., S.S.I., R.A.A. (Rosemary Ajuma Audu) and O.C.E.; methodology, R.A.A. (Rahaman Ademolu
Ahmed), K.O.A., C.K.O., B.O.O. and A.S.O.; validation, R.A.A. (Rahaman Ademolu Ahmed), K.O.A.,
C.K.O., B.O.O., S.S.I., R.A.A. (Rosemary Ajuma Audu) and O.C.E.; data curation, R.A.A. (Rahaman
Ademolu Ahmed) and A.S.O.; writing-review and editing, R.A.A. (Rahaman Ademolu Ahmed),
K.O.A., C.K.O., B.O.O., S.S.I., A.S.O., R.A.A. (Rosemary Ajuma Audu) and O.C.E.; visualization,
R.A.A. (Rahaman Ademolu Ahmed); supervision, K.O.A., C.K.O., B.O.O., S.S.I., R.A.A. (Rosemary
Ajuma Audu) and O.C.E. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Fogarty International Center of the National Institute of
Health under award number: D43TW010934. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National Institute of Health.

Conflicts of Interest: The authors declare that they do not have any conflict of interest.

References
1. Global HIV & AIDS Statistics—Fact Sheet. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on

3 March 2022).
2. GBD 2015 Mortality and Causes of Death Collaborators: Global, regional, and national life expectancy, all-cause mortality, and

cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015.
Lancet 2016, 388, 1459–1544. [CrossRef]

3. Eluwa, G.I.; Strathdee, S.A.; Adebayo, S.B.; Ahonsi, B.; Adebajo, S.B. A profile on HIV prevalence and risk behaviors among
injecting drug users in Nigeria: Should we be alarmed? Drug Alcohol Depend. 2013, 127, 65–71. [CrossRef] [PubMed]

4. Zuma, K.; Shisana, O.; Rehle, T.M.; Simbayi, L.C.; Jooste, S.; Zungu, N.; Labadarios, D.; Onoya, D.; Evans, M.; Moyo, S.; et al. New
insights into HIV epidemic in South Africa: Key findings from the National HIV Prevalence, Incidence and Behaviour Survey,
2012. Afr. J. AIDS Res. 2016, 15, 67–75. [CrossRef] [PubMed]

5. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health
Approach; World Health Organization: Geneva, Switzerland, 2016.

https://www.unaids.org/en/resources/fact-sheet
http://doi.org/10.1016/S0140-6736(16)31012-1
http://doi.org/10.1016/j.drugalcdep.2012.06.013
http://www.ncbi.nlm.nih.gov/pubmed/22776443
http://doi.org/10.2989/16085906.2016.1153491
http://www.ncbi.nlm.nih.gov/pubmed/27002359


Viruses 2022, 14, 1270 12 of 16

6. Okulicz, J.F.; Marconi, V.C.; Landrum, M.L.; Wegner, S.; Weintrob, A.; Ganesan, A.; Hale, B.; Crum-Cianflone, N.; Delmar, J.;
Barthel, V.; et al. Clinical outcomes of elite controllers, viremic controllers, and long-term nonprogressors in the US Department
of Defense HIV natural history study. J. Infect. Dis. 2009, 200, 1714–1723. [CrossRef]

7. Olson, A.D.; Meyer, L.; Prins, M.; Thiebaut, R.; Gurdasani, D.; Guiguet, M.; Chaix, M.-L.; Amornkul, P.; Babiker, A.;
Sandhu, M.S.; et al. An Evaluation of HIV Elite Controller Definitions within a Large Seroconverter Cohort Collaboration. PLoS
ONE 2014, 9, e86719. [CrossRef]

8. Gonzalo-Gil, E.; Ikediobi, U.; Sutton, R.E. Mechanisms of Virologic Control and Clinical Characteristics of HIV+ Elite/Viremic
Controllers. Yale J. Biol. Med. 2017, 90, 245–259.

9. Westrop, S.J.; Qazi, N.A.; Pido-Lopez, J.; Nelson, M.R.; Gazzard, B.; Gotch, F.M.; Imami, N. Transient nature of long-term
nonprogression and broad virus-specific proliferative T-cell responses with sustained thymic output in HIV-1 controllers. PLoS
ONE 2009, 4, e5474. [CrossRef]

10. Mandalia, S.; Westrop, S.J.; Beck, E.J.; Nelson, M.; Gazzard, B.G.; Imami, N. Are Long-Term Non-Progressors Very Slow
Progressors? Insights from the Chelsea and Westminster HIV Cohort, 1988–2010. PLoS ONE 2012, 7, e29844. [CrossRef]

11. Tansiri, Y.; Rowland-Jones, S.L.; Ananworanich, J.; Hansasuta, P. Clinical Outcome of HIV Viraemic Controllers and Noncontrollers
with Normal CD4 Counts Is Exclusively Determined by Antigen-Specific CD8+ T-Cell-Mediated HIV Suppression. PLoS ONE
2015, 10, e0118871. [CrossRef]

12. Deeks, S.G.; Walker, B.D. Human immunodeficiency virus controllers: Mechanisms of durable virus control in the absence of
antiretroviral therapy. Immunity 2007, 27, 406–416. [CrossRef]

13. Palacios, J.A.; Pérez-Piñar, T.; Toro, C.; Sanz-Minguela, B.; Moreno, V.; Valencia, E.; Gómez-Hernando, C.; Rodés, B. Long-term
nonprogressor and elite controller patients who control viremia have a higher percentage of methylation in their HIV-1 proviral
promoters than aviremic patients receiving highly active antiretroviral therapy. J. Virol. 2012, 86, 13081–13084. [CrossRef]
[PubMed]

14. Walker, B.D. Elite control of HIV Infection: Implications for vaccines and treatment. Top HIV Med. 2007, 15, 134–136. [PubMed]
15. Turk, G.; Seiger, K.; Lian, X.; Sun, W.; Parsons, E.M.; Gao, C.; Rassadkina, Y.; Polo, M.L.; Czernikier, A.; Ghiglione, Y.; et al. A

Possible Sterilizing Cure of HIV-1 Infection Without Stem Cell Transplantation. Ann. Intern. Med. 2022, 175, 95–100. [CrossRef]
[PubMed]

16. Casado, C.; Pernas, M.; Sandonis, V.; Alvaro-Cifuentes, T.; Olivares, I.; Fuentes, R.; Martínez-Prats, L.; Grau, E.; Ruiz, L.;
Delgado, R.; et al. Identification of a Cluster of HIV-1 Controllers Infected with Low Replicating Viruses. PLoS ONE 2013, 8,
e77663. [CrossRef]

17. Casado, C.; Marrero-Hernández, S.; Márquez-Arce, D.; Pernas, M.; Marfil, S.; Borràs-Grañana, F.; Olivares, I.; Cabrera-Rodríguez, R.;
Valera, M.-S.; de Armas-Rillo, L.; et al. Viral Characteristics Associated with the Clinical Nonprogressor Phenotype Are Inherited
by Viruses from a Cluster of HIV-1 Elite Controllers. mBio 2018, 9, e02338-17. [CrossRef]

18. Diallo, M.S.; Samri, A.; Charpentier, C.; Bertine, M.; Cheynier, R.; Thiébaut, R.; Matheron, S.; Collin, F.; Braibant, M.;
Candotti, D.; et al. A Comparison of Cell Activation, Exhaustion, and Expression of HIV Coreceptors and Restriction Factors in
HIV-1-and HIV-2-Infected Nonprogressors. AIDS Res. Hum. Retrovir. 2021, 37, 214–223. [CrossRef]

19. Silver, Z.A.; Dickinson, G.M.; Seaman, M.S.; Desrosiers, R.C. A Highly Unusual V1 Region of Env in an Elite Controller of HIV
Infection. J. Virol. 2019, 93, e00094-19. [CrossRef]

20. Alsahafi, N.; Ding, S.; Richard, J.; Markle, T.; Brassard, N.; Walker, B.; Lewis, G.K.; Kaufmann, D.E.; Brockman, M.A.; Finzi, A. Nef
Proteins from HIV-1 Elite Controllers Are Inefficient at Preventing Antibody-Dependent Cellular Cytotoxicity. J. Virol. 2015, 90,
2993–3002. [CrossRef]

21. Leon, A.; Perez, I.; Ruiz-Mateos, E.; Benito, J.M.; Leal, M.; Lopez-Galindez, C.; Rallon, N.; Alcami, J.; Lopez-Aldeguer, J.;
Viciana, P.; et al. Rate and predictors of progression in elite and viremic HIV-1 controllers. AIDS 2016, 30, 1209–1220. [CrossRef]

22. Li, J.Z.; Blankson, J.N. How elite controllers and posttreatment controllers inform our search for an HIV-1 cure. J. Clin. Investig.
2021, 131, e149414. [CrossRef]

23. Luzuriaga, K.; Gay, H.; Ziemniak, C.; Sanborn, K.B.; Somasundaran, M.; Rainwater-Lovett, K.; Mellors, J.W.; Rosenbloom, D.;
Persaud, D. Viremic relapse after HIV-1 remission in a perinatally infected child. N. Engl. J. Med. 2015, 372, 786–788. [CrossRef]
[PubMed]

24. Pernas, M.; Tarancón-Diez, L.; Rodríguez-Gallego, E.; Gómez, J.; Prado, J.G.; Casado, C.; Dominguez-Molina, B.; Olivares, I.;
Coiras, M.; León, A.; et al. Factors Leading to the Loss of Natural Elite Control of HIV-1 Infection. J. Virol. 2018, 92, e01805-17.
[CrossRef] [PubMed]

25. Weber, J.; Gibson, R.M.; Sácká, L.; Strunin, D.; Hodek, J.; Weberová, J.; Pávová, M.; Alouani, D.J.; Asaad, R.; Rodriguez, B.; et al.
Impaired human immunodeficiency virus type 1 replicative fitness in atypical viremic non-progressor individuals. AIDS Res.
Ther. 2017, 14, 15. [CrossRef]

26. Buckheit, R.W.; Allen, T.G.; Alme, A.; Salgado, M.; O’Connell, K.A.; Huculak, S.; Falade-Nwulia, O.; Williams, T.M.; Gallant, J.E.;
Siliciano, R.F.; et al. Host factors dictate control of viral replication in two HIV-1 controller/chronic progressor transmission pairs.
Nat. Commun. 2012, 3, 716. [CrossRef] [PubMed]

27. Noel, N.; Lerolle, N.; Lécuroux, C.; Goujard, C.; Venet, A.; Saez-Cirion, A.; Avettand-Fenoël, V.; Meyer, L.; Boufassa, F.;
Lambotte, O.; et al. Immunologic and Virologic Progression in HIV Controllers: The Role of Viral “Blips” and Immune Activation
in the ANRS CO21 CODEX Study. PLoS ONE 2015, 10, e0131922. [CrossRef] [PubMed]

http://doi.org/10.1086/646609
http://doi.org/10.1371/journal.pone.0086719
http://doi.org/10.1371/journal.pone.0005474
http://doi.org/10.1371/journal.pone.0029844
http://doi.org/10.1371/journal.pone.0118871
http://doi.org/10.1016/j.immuni.2007.08.010
http://doi.org/10.1128/JVI.01741-12
http://www.ncbi.nlm.nih.gov/pubmed/22973038
http://www.ncbi.nlm.nih.gov/pubmed/17720999
http://doi.org/10.7326/L21-0297
http://www.ncbi.nlm.nih.gov/pubmed/34781719
http://doi.org/10.1371/journal.pone.0077663
http://doi.org/10.1128/mBio.02338-17
http://doi.org/10.1089/aid.2020.0084
http://doi.org/10.1128/JVI.00094-19
http://doi.org/10.1128/JVI.02973-15
http://doi.org/10.1097/QAD.0000000000001050
http://doi.org/10.1172/JCI149414
http://doi.org/10.1056/NEJMc1413931
http://www.ncbi.nlm.nih.gov/pubmed/25693029
http://doi.org/10.1128/JVI.01805-17
http://www.ncbi.nlm.nih.gov/pubmed/29212942
http://doi.org/10.1186/s12981-017-0144-0
http://doi.org/10.1038/ncomms1697
http://www.ncbi.nlm.nih.gov/pubmed/22395607
http://doi.org/10.1371/journal.pone.0131922
http://www.ncbi.nlm.nih.gov/pubmed/26146823


Viruses 2022, 14, 1270 13 of 16

28. Vieira, V.A.; Adland, E.; Grayson, N.E.; Csala, A.; Richards, F.; Dacon, C.; Athavale, R.; Tsai, M.-H.; D’Souza, R.;
Muenchhoff, M.; et al. Two distinct mechanisms leading to loss of virological control in the rare group of antiretroviral
therapy-naïve, transiently aviraemic children living with HIV. J. Virol. 2021, 96, e0153521. [CrossRef]

29. Balasubramaniam, M.; Pandhare, J.; Dash, C. Immune Control of HIV. J. Life Sci. 2019, 1, 4–37. [CrossRef]
30. Miura, T.; Brockman, M.A.; Schneidewind, A.; Lobritz, M.; Pereyra, F.; Rathod, A.; Block, B.L.; Brumme, Z.L.; Brumme, C.J.;

Baker, B.; et al. HLA-B57/B*5801 human immunodeficiency virus type 1 elite controllers select for rare gag variants associated
with reduced viral replication capacity and strong cytotoxic T-lymphocyte [corrected] recognition. J. Virol. 2009, 83, 2743–2755.
[CrossRef]

31. Turk, G.; Ghiglione, Y.; Falivene, J.; Socias, M.E.; Laufer, N.; Coloccini, R.S.; Rodriguez, A.M.; Ruiz, M.J.; Pando, M.Á.;
Giavedoni, L.D.; et al. Early Gag immunodominance of the HIV-specific T-cell response during acute/early infection is associated
with higher CD8+ T-cell antiviral activity and correlates with preservation of the CD4+ T-cell compartment. J. Virol. 2013, 87,
7445–7462. [CrossRef]

32. Gebara, N.Y.; Kamari, V.E.; Rizk, N. HIV-1 elite controllers: An immunovirological review and clinical perspectives. J. Virus Erad.
2019, 5, 163. [CrossRef]

33. González, N.; McKee, K.; Lynch, R.M.; Georgiev, I.S.; Jimenez, L.; Grau, E.; Yuste, E.; Kwong, P.D.; Mascola, J.R.; Alcamí, J.
Characterization of broadly neutralizing antibody responses to HIV-1 in a cohort of long term non-progressors. PLoS ONE 2018,
13, e0193773. [CrossRef]

34. Lorin, V.; Fernández, I.; Masse-Ranson, G.; Bouvin-Pley, M.; Molinos-Albert, L.M.; Planchais, C.; Hieu, T.; Péhau-Arnaudet, G.;
Hrebík, D.; Girelli-Zubani, G.; et al. Epitope convergence of broadly HIV-1 neutralizing IgA and IgG antibody lineages in a
viremic controller. J. Exp. Med. 2022, 219, e20212045. [CrossRef] [PubMed]

35. Shi, Y.; Su, J.; Chen, R.; Wei, W.; Yuan, Z.; Chen, X.; Wang, X.; Liang, H.; Ye, L.; Jiang, J. The Role of Innate Immunity in Natural
Elite Controllers of HIV-1 Infection. Front. Immunol. 2022, 13, 780922. [CrossRef]

36. Gasteiger, G.; Rudensky, A.Y. Interactions between innate and adaptive lymphocytes. Nat. Rev. Immunol. 2014, 14, 631–639.
[CrossRef]

37. Lu, W.; Chen, S.; Lai, C.; Lai, M.; Fang, H.; Dao, H.; Kang, J.; Fan, J.; Guo, W.; Fu, L.; et al. Suppression of HIV Replication by
CD8(+) Regulatory T-Cells in Elite Controllers. Front. Immunol. 2016, 7, 134. [CrossRef] [PubMed]

38. May, M.E.; Pohlmeyer, C.W.; Kwaa, A.K.; Mankowski, M.C.; Bailey, J.R.; Blankson, J.N. Combined Effects of HLA-B*57/5801 Elite
Suppressor CD8+ T Cells and NK Cells on HIV-1 Replication. Front. Cell Infect. Microbiol. 2020, 10, 113. [CrossRef] [PubMed]

39. Pina, A.F.; Matos, V.T.G.d.; Bonin, C.M.; Dal Fabbro, M.M.F.J.; Tozetti, I.A. Non-polarized cytokine profile of a long-term
non-progressor HIV infected patient. Braz. J. Infect. Dis. 2018, 22, 142–145. [CrossRef]

40. Ghimire, D.; Rai, M.; Gaur, R. Novel host restriction factors implicated in HIV-1 replication. J. Gen. Virol. 2018, 99, 435–446.
[CrossRef]

41. Colomer-Lluch, M.; Ruiz, A.; Moris, A.; Prado, J.G. Restriction Factors: From Intrinsic Viral Restriction to Shaping Cellular
Immunity Against HIV-1. Front. Immunol. 2018, 9, 2876. [CrossRef]

42. de Masson, A.; Kirilovsky, A.; Zoorob, R.; Avettand-Fenoel, V.; Morin, V.; Oudin, A.; Descours, B.; Rouzioux, C.; Autran, B.
Blimp-1 overexpression is associated with low HIV-1 reservoir and transcription levels in central memory CD4+ T cells from elite
controllers. AIDS 2014, 28, 1567–1577. [CrossRef]

43. Lopez-Galindez, C.; Pernas, M.; Casado, C.; Olivares, I.; Lorenzo-Redondo, R. Elite controllers and lessons learned for HIV-1 cure.
Curr. Opin. Virol. 2019, 38, 31–36. [CrossRef] [PubMed]

44. Merindol, N.; El-Far, M.; Sylla, M.; Masroori, N.; Dufour, C.; Li, J.-X.; Cherry, P.; Plourde, M.B.; Tremblay, C.; Berthoux, L. HIV-1
capsids from B27/B57+ elite controllers escape Mx2 but are targeted by TRIM5α, leading to the induction of an antiviral state.
PLoS Pathog. 2018, 14, e1007398. [CrossRef] [PubMed]

45. Ramírez de Arellano, E.; Díez-Fuertes, F.; Aguilar, F.; de la Torre Tarazona, H.E.; Sánchez-Lara, S.; Lao, Y.; Vicario, J.L.; García, F.;
González-Garcia, J.; Pulido, F.; et al. Novel association of five HLA alleles with HIV-1 progression in Spanish long-term non
progressor patients. PLoS ONE 2019, 14, e0220459. [CrossRef] [PubMed]

46. Sundaramurthi, J.C.; Ashokkumar, M.; Swaminathan, S.; Hanna, L.E. HLA based selection of epitopes offers a potential window
of opportunity for vaccine design against HIV. Vaccine 2017, 35, 5568–5575. [CrossRef] [PubMed]

47. Zaunders, J.; Dyer, W.B.; Churchill, M.; Munier, C.M.L.; Cunningham, P.H.; Suzuki, K.; McBride, K.; Hey-Nguyen, W.; Koelsch, K.;
Wang, B.; et al. Possible clearance of transfusion-acquired nef/LTR-deleted attenuated HIV-1 infection by an elite controller with
CCR5 ∆32 heterozygous and HLA-B57 genotype. J. Virus. Erad. 2019, 5, 73–83. [CrossRef]

48. Lunardi, L.W.; Bragatte, M.A.; Vieira, G.F. The influence of HLA/HIV genetics on the occurrence of elite controllers and a need
for therapeutics geotargeting view. Braz. J. Infect. Dis. 2021, 25, 101619. [CrossRef] [PubMed]

49. Naranbhai, V.; Carrington, M. Host genetic variation and HIV disease: From mapping to mechanism. Immunogenetics 2017, 69,
489–498. [CrossRef]

50. Chopera, D.R.; Woodman, Z.; Mlisana, K.; Mlotshwa, M.; Martin, D.P.; Seoighe, C.; Treurnicht, F.; de Rosa, D.A.; Hide, W.;
Karim, S.A.; et al. Transmission of HIV-1 CTL escape variants provides HLA-mismatched recipients with a survival advantage.
PLoS Pathog. 2008, 4, e1000033. [CrossRef]

http://doi.org/10.1128/JVI.01535-21
http://doi.org/10.36069/JoLS/20190603
http://doi.org/10.1128/JVI.02265-08
http://doi.org/10.1128/JVI.00865-13
http://doi.org/10.1016/S2055-6640(20)30046-7
http://doi.org/10.1371/journal.pone.0193773
http://doi.org/10.1084/jem.20212045
http://www.ncbi.nlm.nih.gov/pubmed/35230385
http://doi.org/10.3389/fimmu.2022.780922
http://doi.org/10.1038/nri3726
http://doi.org/10.3389/fimmu.2016.00134
http://www.ncbi.nlm.nih.gov/pubmed/27148256
http://doi.org/10.3389/fcimb.2020.00113
http://www.ncbi.nlm.nih.gov/pubmed/32266164
http://doi.org/10.1016/j.bjid.2018.01.003
http://doi.org/10.1099/jgv.0.001026
http://doi.org/10.3389/fimmu.2018.02876
http://doi.org/10.1097/QAD.0000000000000295
http://doi.org/10.1016/j.coviro.2019.05.010
http://www.ncbi.nlm.nih.gov/pubmed/31252326
http://doi.org/10.1371/journal.ppat.1007398
http://www.ncbi.nlm.nih.gov/pubmed/30419009
http://doi.org/10.1371/journal.pone.0220459
http://www.ncbi.nlm.nih.gov/pubmed/31393887
http://doi.org/10.1016/j.vaccine.2017.08.070
http://www.ncbi.nlm.nih.gov/pubmed/28888341
http://doi.org/10.1016/S2055-6640(20)30056-X
http://doi.org/10.1016/j.bjid.2021.101619
http://www.ncbi.nlm.nih.gov/pubmed/34562387
http://doi.org/10.1007/s00251-017-1000-z
http://doi.org/10.1371/journal.ppat.1000033


Viruses 2022, 14, 1270 14 of 16

51. Crawford, H.; Lumm, W.; Leslie, A.; Schaefer, M.; Boeras, D.; Prado, J.G.; Tang, J.; Farmer, P.; Ndung’u, T.; Lakhi, S.; et al.
Evolution of HLA-B*5703 HIV-1 escape mutations in HLA-B*5703-positive individuals and their transmission recipients. J. Exp.
Med. 2009, 206, 909–921. [CrossRef]

52. Burke, B.P.; Boyd, M.P.; Impey, H.; Breton, L.R.; Bartlett, J.S.; Symonds, G.P.; Hütter, G. CCR5 as a natural and modulated target
for inhibition of HIV. Viruses 2013, 6, 54–68. [CrossRef]

53. Valadez-González, N.; González-Martínez, P.; Lara-Perera, D.; Vera-Gamboa, L.; Góngora-Biachi, R. CCR5-∆32 allele involvement
in the clinical evolution of HIV1+ patients in Yucatán, Mexico. Salud Publica Mex. 2011, 53, 463–468. [PubMed]

54. Chaudhuri, R.P.; Neogi, U.; Rao, S.D.; Shet, A. Genetic Factors Associated with Slow Progression of HIV among Perinatally-
Infected Indian Children. Indian Pediatr. 2014, 51, 801–803. [CrossRef] [PubMed]

55. Kaur, G.; Mehra, N. Genetic determinants of HIV-1 infection and progression to AIDS: Susceptibility to HIV infection. Tissue
Antigens 2009, 73, 289–301. [CrossRef] [PubMed]

56. Amoêdo, N.D.; Afonso, A.O.; Cunha, S.M.; Oliveira, R.H.; Machado, E.S.; Soares, M.A. Expression of APOBEC3G/3F and
G-to-A hypermutation levels in HIV-1-infected children with different profiles of disease progression. PLoS ONE 2011, 6, e24118.
[CrossRef]

57. Freguja, R.; Gianesin, K.; Zanchetta, M.; De Rossi, A. Cross-talk between virus and host innate immunity in pediatric HIV-1
infection and disease progression. New Microbiol. 2012, 35, 249–257.

58. Hendel, H.; Hénon, N.; Lebuanec, H.; Lachgar, A.; Poncelet, H.; Caillat-Zucman, S.; Winkler, C.A.; Smith, M.W.; Kenefic, L.;
O’Brien, S.; et al. Distinctive Effects ofCCR5, CCR2,andSDF1Genetic Polymorphisms in AIDS Progression. JAIDS J. Acquir.
Immune Defic. Syndr. 1998, 19, 381–386. [CrossRef]

59. Moosa, Y.; Tanko, R.F.; Ramsuran, V.; Singh, R.; Madzivhandila, M.; Yende-Zuma, N.; Abrahams, M.-R.; Selhorst, P.; Gounder, K.;
Moore, P.L.; et al. Case report: Mechanisms of HIV elite control in two African women. BMC Infect. Dis. 2018, 18, 54. [CrossRef]

60. Vermeulen, M.; Coleman, C.; Mitchel, J.; Reddy, R.; van Drimmelen, H.; Fickett, T.; Busch, M.; Lelie, N. Comparison of human
immunodeficiency virus assays in window phase and elite controller samples: Viral load distribution and implications for
transmission risk. Transfusion 2013, 53, 2384–2398. [CrossRef]

61. Sykes, W.; Van den Berg, K.; Jacobs, G.; Jauregui, A.; Roubinian, N.; Wiesner, L.; Maartens, G.; Swanevelder, R.; Custer, B.;
Busch, M.; et al. Discovery of False Elite Controllers: HIV Antibody-Positive RNA-Negative Blood Donors Found To Be on
Antiretroviral Therapy. J. Infect. Dis. 2019, 220, 643–647. [CrossRef]

62. Ferrand, R.A.; Corbett, E.L.; Wood, R.; Hargrove, J.; Ndhlovu, C.E.; Cowan, F.M.; Gouws, E.; Williams, B.G. AIDS among older
children and adolescents in Southern Africa: Projecting the time course and magnitude of the epidemic. AIDS 2009, 23, 2039–2046.
[CrossRef]

63. Frankel, A.D.; Young, J.A.T. HIV-1: Fifteen Proteins and an RNA. Annu. Rev. Biochem. 1998, 67, 1–25. [CrossRef]
64. Li, G.; Piampongsant, S.; Faria, N.R.; Voet, A.; Pineda-Peña, A.-C.; Khouri, R.; Lemey, P.; Vandamme, A.-M.; Theys, K. An

integrated map of HIV genome-wide variation from a population perspective. Retrovirology 2015, 12, 18. [CrossRef] [PubMed]
65. Checkley, M.A.; Luttge, B.G.; Freed, E.O. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J. Mol. Biol.

2011, 410, 582–608. [CrossRef] [PubMed]
66. Bennett, A.L.; Henderson, R. HIV-1 Envelope Conformation, Allostery, and Dynamics. Viruses 2021, 13, 852. [CrossRef] [PubMed]
67. Xiao, T.; Cai, Y.; Chen, B. HIV-1 Entry and Membrane Fusion Inhibitors. Viruses 2021, 13, 735. [CrossRef] [PubMed]
68. Beitari, S.; Wang, Y.; Liu, S.-L.; Liang, C. HIV-1 Envelope Glycoprotein at the Interface of Host Restriction and Virus Evasion.

Viruses 2019, 11, 311. [CrossRef]
69. Hartley, O.; Klasse, P.J.; Sattentau, Q.J.; Moore, J.P. V3: HIV’s switch-hitter. AIDS Res. Hum. Retrovir. 2005, 21, 171–189. [CrossRef]
70. Mascola, J.R. HIV. The modern era of HIV-1 vaccine development. Science 2015, 349, 139–140. [CrossRef]
71. Huang, Y.; Yu, J.; Lanzi, A.; Yao, X.; Andrews, C.D.; Tsai, L.; Gajjar, M.R.; Sun, M.; Seaman, M.S.; Padte, N.N.; et al. Engineered

Bispecific Antibodies with Exquisite HIV-1-Neutralizing Activity. Cell 2016, 165, 1621–1631. [CrossRef]
72. Khattar, S.K.; DeVico, A.L.; LaBranche, C.C.; Panda, A.; Montefiori, D.C.; Samal, S.K. Enhanced Immune Responses to HIV-1

Envelope Elicited by a Vaccine Regimen Consisting of Priming with Newcastle Disease Virus Expressing HIV gp160 and Boosting
with gp120 and SOSIP gp140 Proteins. J. Virol. 2016, 90, 1682–1686. [CrossRef]

73. Archary, D.; Gordon, M.L.; Green, T.N.; Coovadia, H.M.; Goulder, P.J.R.; Ndung’u, T. HIV-1 subtype C envelope characteristics
associated with divergent rates of chronic disease progression. Retrovirology 2010, 7, 92. [CrossRef] [PubMed]

74. Blanpain, C.; Libert, F.; Vassart, G.; Parmentier, M. CCR5 and HIV infection. Recept. Channels 2002, 8, 19–31. [CrossRef] [PubMed]
75. Solari, R.; Pease, J.E. Targeting chemokine receptors in disease–a case study of CCR4. Eur. J. Pharmacol. 2015, 763, 169–177.

[CrossRef] [PubMed]
76. Miao, M.; De Clercq, E.; Li, G. Clinical significance of chemokine receptor antagonists. Expert. Opin. Drug Metab. Toxicol. 2020, 16,

11–30. [CrossRef]
77. Trivedi, P.J.; Adams, D.H. Chemokines and Chemokine Receptors as Therapeutic Targets in Inflammatory Bowel Disease; Pitfalls

and Promise. J. Crohns. Colitis. 2018, 12, S641–S652. [CrossRef]
78. Chen, B. Molecular Mechanism of HIV-1 Entry. Trends Microbiol 2019, 27, 878–891. [CrossRef]
79. Deng, H.; Unutmaz, D.; KewalRamani, V.N.; Littman, D.R. Expression cloning of new receptors used by simian and human

immunodeficiency viruses. Nature 1997, 388, 296–300. [CrossRef]

http://doi.org/10.1084/jem.20081984
http://doi.org/10.3390/v6010054
http://www.ncbi.nlm.nih.gov/pubmed/22282138
http://doi.org/10.1007/s13312-014-0505-x
http://www.ncbi.nlm.nih.gov/pubmed/25362010
http://doi.org/10.1111/j.1399-0039.2009.01220.x
http://www.ncbi.nlm.nih.gov/pubmed/19317737
http://doi.org/10.1371/journal.pone.0024118
http://doi.org/10.1097/00042560-199812010-00009
http://doi.org/10.1186/s12879-018-2961-8
http://doi.org/10.1111/trf.12117
http://doi.org/10.1093/infdis/jiz145
http://doi.org/10.1097/QAD.0b013e32833016ce
http://doi.org/10.1146/annurev.biochem.67.1.1
http://doi.org/10.1186/s12977-015-0148-6
http://www.ncbi.nlm.nih.gov/pubmed/25808207
http://doi.org/10.1016/j.jmb.2011.04.042
http://www.ncbi.nlm.nih.gov/pubmed/21762802
http://doi.org/10.3390/v13050852
http://www.ncbi.nlm.nih.gov/pubmed/34067073
http://doi.org/10.3390/v13050735
http://www.ncbi.nlm.nih.gov/pubmed/33922579
http://doi.org/10.3390/v11040311
http://doi.org/10.1089/aid.2005.21.171
http://doi.org/10.1126/science.aac7800
http://doi.org/10.1016/j.cell.2016.05.024
http://doi.org/10.1128/JVI.02847-15
http://doi.org/10.1186/1742-4690-7-92
http://www.ncbi.nlm.nih.gov/pubmed/21050445
http://doi.org/10.3109/10606820212135
http://www.ncbi.nlm.nih.gov/pubmed/12402506
http://doi.org/10.1016/j.ejphar.2015.05.018
http://www.ncbi.nlm.nih.gov/pubmed/25981299
http://doi.org/10.1080/17425255.2020.1711884
http://doi.org/10.1093/ecco-jcc/jjx145
http://doi.org/10.1016/j.tim.2019.06.002
http://doi.org/10.1038/40894


Viruses 2022, 14, 1270 15 of 16

80. Mariani, S.A.; Vicenzi, E.; Poli, G. Asymmetric HIV-1 co-receptor use and replication in CD4+ T lymphocytes. J. Transl. Med. 2011,
9, S8. [CrossRef]

81. Limou, S.; Coulonges, C.; Herbeck, J.T.; van Manen, D.; An, P.; Le Clerc, S.; Delaneau, O.; Diop, G.; Taing, L.; Montes, M.; et al.
Multiple-cohort genetic association study reveals CXCR6 as a new chemokine receptor involved in long-term nonprogression to
AIDS. J. Infect. Dis. 2010, 202, 908–915. [CrossRef]

82. Samri, A.; Charpentier, C.; Diallo, M.S.; Bertine, M.; Even, S.; Morin, V.; Oudin, A.; Parizot, C.; Collin, G.; Hosmalin, A.; et al.
Limited HIV-2 reservoirs in central-memory CD4 T-cells associated to CXCR6 co-receptor expression in attenuated HIV-2 infection.
PLoS Pathog. 2019, 15, e1007758. [CrossRef]

83. Zheng, Y.-H.; Lovsin, N.; Peterlin, B.M. Newly identified host factors modulate HIV replication. Immunol. Lett. 2005, 97, 225–234.
[CrossRef] [PubMed]

84. Picton, A.C.P.; Paximadis, M.; Chaisson, R.E.; Martinson, N.A.; Tiemessen, C.T. CXCR6 gene characterization in two ethnically
distinct South African populations and association with viraemic disease control in HIV-1-infected black South African individuals.
Clin. Immunol. 2017, 180, 69–79. [CrossRef] [PubMed]

85. Passam, A.M.; Sourvinos, G.; Krambovitis, E.; Miyakis, S.; Stavrianeas, N.; Zagoreos, I.; Spandidos, D.A. Polymorphisms of
Cx(3)CR1 and CXCR6 receptors in relation to HAART therapy of HIV type 1 patients. AIDS Res. Hum. Retrovir. 2007, 23,
1026–1032. [CrossRef] [PubMed]

86. Duggal, P.; An, P.; Beaty, T.H.; Strathdee, S.A.; Farzadegan, H.; Markham, R.B.; Johnson, L.; O’Brien, S.J.; Vlahov, D.; Winkler, C.A.
Genetic influence of CXCR6 chemokine receptor alleles on PCP-mediated AIDS progression among African Americans. Genes
Immun. 2003, 4, 245–250. [CrossRef]

87. Choge, I.; Cilliers, T.; Walker, P.; Taylor, N.; Phoswa, M.; Meyers, T.; Viljoen, J.; Violari, A.; Gray, G.; Moore, P.L.; et al. Genotypic
and phenotypic characterization of viral isolates from HIV-1 subtype C-infected children with slow and rapid disease progression.
AIDS Res. Hum. Retrovir. 2006, 22, 458–465. [CrossRef]

88. Le Clerc, S.; Coulonges, C.; Delaneau, O.; Van Manen, D.; Herbeck, J.T.; Limou, S.; An, P.; Martinson, J.J.; Spadoni, J.-L.; Therwath,
A.; et al. Screening low-frequency SNPS from genome-wide association study reveals a new risk allele for progression to AIDS. J.
Acquir. Immune Defic. Syndr. 2011, 56, 279–284. [CrossRef]

89. Paximadis, M.; Ngqobe, R.N.; Chaisson, R.E.; Martinson, N.A.; Tiemessen, C.T. RICH2 is implicated in viraemic control of HIV-1
in black South African individuals. Infect. Genet. Evol. 2017, 49, 78–87. [CrossRef]

90. Arias, J.F.; Iwabu, Y.; Tokunaga, K. Sites of action of HIV-1 Vpu in BST-2/tetherin downregulation. Curr. HIV Res. 2012, 10,
283–291. [CrossRef]

91. Alvarez, R.A.; Hamlin, R.E.; Monroe, A.; Moldt, B.; Hotta, M.T.; Rodriguez Caprio, G.; Fierer, D.S.; Simon, V.; Chen, B.K. HIV-1
Vpu antagonism of tetherin inhibits antibody-dependent cellular cytotoxic responses by natural killer cells. J. Virol. 2014, 88,
6031–6046. [CrossRef]

92. Laplana, M.; Caruz, A.; Pineda, J.A.; Puig, T.; Fibla, J. Association of BST-2 gene variants with HIV disease progression underscores
the role of BST-2 in HIV type 1 infection. J. Infect. Dis. 2013, 207, 411–419. [CrossRef]

93. Singh, H.; Samani, D.; Ghate, M.V.; Gangakhedkar, R.R. Impact of cellular restriction gene (TRIM5α, BST-2) polymorphisms on
the acquisition of HIV-1 and disease progression. J. Gene Med. 2018, 20, e3004. [CrossRef] [PubMed]

94. Dias, B.D.C.; Paximadis, M.; Martinson, N.; Chaisson, R.E.; Ebrahim, O.; Tiemessen, C.T. The impact of bone marrow stromal
antigen-2 (BST2) gene variants on HIV-1 control in black South African individuals. Infect. Genet. Evol. 2020, 80, 104216. [CrossRef]
[PubMed]

95. Mehandru, S.; Poles, M.A.; Tenner-Racz, K.; Manuelli, V.; Jean-Pierre, P.; Lopez, P.; Shet, A.; Low, A.; Mohri, H.; Boden, D.; et al.
Mechanisms of gastrointestinal CD4+ T-cell depletion during acute and early human immunodeficiency virus type 1 infection. J.
Virol. 2007, 81, 599–612. [CrossRef] [PubMed]

96. Veazey, R.S.; Lackner, A.A. Getting to the guts of HIV pathogenesis. J. Exp. Med. 2004, 200, 697–700. [CrossRef]
97. Nasi, A.; Chiodi, F. Mechanisms regulating expansion of CD8+ T cells during HIV-1 infection. J. Intern. Med. 2018, 283, 257–267.

[CrossRef]
98. Zhang, C.; Hu, W.; Jin, J.H.; Zhou, M.J.; Song, J.W.; Deng, J.N.; Huang, L.; Wang, S.Y.; Wang, F.S. The role of CD8 T cells in

controlling HIV beyond the antigen-specific face. HIV Med. 2020, 21, 692–700. [CrossRef]
99. Pannus, P.; Vanham, G. Viral Inhibitory Activity of CD8+ T Cells in HIV Infection. AIDS Rev. 2019, 21, 115–125. [CrossRef]
100. Gray, C.M.; Mlotshwa, M.; Riou, C.; Mathebula, T.; de Assis, R.D.; Mashishi, T.; Seoighe, C.; Ngandu, N.; van Loggerenberg,

F.; Morris, L.; et al. CAPRISA 002 Acute Infection Study Team: Human immunodeficiency virus-specific gamma interferon
enzyme-linked immunospot assay responses targeting specific regions of the proteome during primary subtype C infection are
poor predictors of the course of viremia and set point. J. Virol. 2009, 83, 470–478. [CrossRef]

101. Mlotshwa, M.; Riou, C.; Chopera, D.; de Assis, R.D.; Ntale, R.; Treunicht, F.; Woodman, Z.; Werner, L.; van Loggerenberg, F.;
Mlisana, K.; et al. Fluidity of HIV-1-specific T-cell responses during acute and early subtype C HIV-1 infection and associations
with early disease progression. J. Virol. 2010, 84, 12018–12029. [CrossRef]

102. Thobakgale, C.F.; Streeck, H.; Mkhwanazi, N.; Mncube, Z.; Maphumulo, L.; Chonco, F.; Prendergast, A.; Tudor-Williams,
G.; Walker, B.D.; Goulder, P.J.R.; et al. Short communication: CD8(+) T cell polyfunctionality profiles in progressive and
nonprogressive pediatric HIV type 1 infection. AIDS Res. Hum. Retroviruses 2011, 27, 1005–1012. [CrossRef]

http://doi.org/10.1186/1479-5876-9-S1-S8
http://doi.org/10.1086/655782
http://doi.org/10.1371/journal.ppat.1007758
http://doi.org/10.1016/j.imlet.2004.11.026
http://www.ncbi.nlm.nih.gov/pubmed/15752562
http://doi.org/10.1016/j.clim.2017.04.006
http://www.ncbi.nlm.nih.gov/pubmed/28428094
http://doi.org/10.1089/aid.2006.0248
http://www.ncbi.nlm.nih.gov/pubmed/17725420
http://doi.org/10.1038/sj.gene.6363950
http://doi.org/10.1089/aid.2006.22.458
http://doi.org/10.1097/QAI.0b013e318204982b
http://doi.org/10.1016/j.meegid.2017.01.007
http://doi.org/10.2174/157016212800792423
http://doi.org/10.1128/JVI.00449-14
http://doi.org/10.1093/infdis/jis685
http://doi.org/10.1002/jgm.3004
http://www.ncbi.nlm.nih.gov/pubmed/29282802
http://doi.org/10.1016/j.meegid.2020.104216
http://www.ncbi.nlm.nih.gov/pubmed/32006707
http://doi.org/10.1128/JVI.01739-06
http://www.ncbi.nlm.nih.gov/pubmed/17065209
http://doi.org/10.1084/jem.20041464
http://doi.org/10.1111/joim.12722
http://doi.org/10.1111/hiv.13021
http://doi.org/10.24875/AIDSRev.19000068
http://doi.org/10.1128/JVI.01678-08
http://doi.org/10.1128/JVI.01472-10
http://doi.org/10.1089/aid.2010.0227


Viruses 2022, 14, 1270 16 of 16

103. Laher, F.; Ranasinghe, S.; Porichis, F.; Mewalal, N.; Pretorius, K.; Ismail, N.; Buus, S.; Stryhn, A.; Carrington, M.; Walker, B.D.; et al.
HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer+ Gag-Specific CD4+ T
Cells in Chronic Clade C HIV-1 Infection. J. Virol. 2017, 91, e02477-16. [CrossRef] [PubMed]

104. Chen, H.; Ndhlovu, Z.M.; Liu, D.; Porter, L.C.; Fang, J.W.; Darko, S.; Brockman, M.A.; Miura, T.; Brumme, Z.L.; Schneidewind, A.;
et al. TCR clonotypes modulate the protective effect of HLA class I molecules in HIV-1 infection. Nat. Immunol. 2012, 13, 691–700.
[CrossRef] [PubMed]

105. Leng, J.; Ho, H.-P.; Buzon, M.J.; Pereyra, F.; Walker, B.D.; Yu, X.G.; Chang, E.J.; Lichterfeld, M. A cell-intrinsic inhibitor of HIV-1
reverse transcription in CD4(+) T cells from elite controllers. Cell Host. Microbe. 2014, 15, 717–728. [CrossRef] [PubMed]

106. Kanki, P.J.; Hamel, D.J.; Sankalé, J.L.; Hsieh, C.C.; Thior, I.; Barin, F.; Woodcock, S.A.; Guèye-Ndiaye, A.; Zhang, E.; Montano, M.;
et al. Human immunodeficiency virus type 1 subtypes differ in disease progression. J. Infect. Dis. 1999, 179, 68–73. [CrossRef]
[PubMed]

107. Kiepiela, P.; Leslie, A.J.; Honeyborne, I.; Ramduth, D.; Thobakgale, C.; Chetty, S.; Rathnavalu, P.; Moore, C.; Pfafferott, K.J.; Hilton,
L.; et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 2004, 432, 769–775.
[CrossRef] [PubMed]

108. Thobakgale, C.F.; Prendergast, A.; Crawford, H.; Mkhwanazi, N.; Ramduth, D.; Reddy, S.; Molina, C.; Mncube, Z.; Leslie, A.;
Prado, J.; et al. Impact of HLA in mother and child on disease progression of pediatric human immunodeficiency virus type 1
infection. J. Virol. 2009, 83, 10234–10244. [CrossRef] [PubMed]

109. Prado, J.G.; Prendergast, A.; Thobakgale, C.; Molina, C.; Tudor-Williams, G.; Ndung’u, T.; Walker, B.D.; Goulder, P. Replicative
capacity of human immunodeficiency virus type 1 transmitted from mother to child is associated with pediatric disease
progression rate. J. Virol. 2010, 84, 492–502. [CrossRef]

110. Tzitzivacos, D.B.; Tiemessen, C.T.; Stevens, W.S.; Papathanasopoulos, M.A. Viral genetic determinants of nonprogressive HIV
type 1 subtype C infection in antiretroviral drug-naive children. AIDS Res. Hum. Retrovir. 2009, 25, 1141–1148. [CrossRef]

111. Odaibo, G.N.; Adewole, I.F.; Olaleye, D.O. High Rate of Non-detectable HIV-1 RNA Among Antiretroviral Drug Naive HIV
Positive Individuals in Nigeria. Virology 2013, 4, 35–40. [CrossRef]

112. Saag, M.; Deeks, S.G. How do HIV elite controllers do what they do? Clin. Infect. Dis. 2010, 51, 239–241. [CrossRef]
113. Smith, N.M.G.; Mlcochova, P.; Watters, S.A.; Aasa-Chapman, M.M.I.; Rabin, N.; Moore, S.; Edwards, S.G.; Garson, J.A.; Grant,

P.R.; Ferns, R.B.; et al. Proof-of-Principle for Immune Control of Global HIV-1 Reactivation In Vivo. Clin. Infect. Dis. 2015, 61,
120–128. [CrossRef] [PubMed]

114. Watters, S.A.; Mlcochova, P.; Maldarelli, F.; Goonetilleke, N.; Pillay, D.; Gupta, R.K. Sequential CCR5-Tropic HIV-1 Reactivation
from Distinct Cellular Reservoirs following Perturbation of Elite Control. PLoS ONE 2016, 11, e0158854. [CrossRef] [PubMed]

http://doi.org/10.1128/JVI.02477-16
http://www.ncbi.nlm.nih.gov/pubmed/28077659
http://doi.org/10.1038/ni.2342
http://www.ncbi.nlm.nih.gov/pubmed/22683743
http://doi.org/10.1016/j.chom.2014.05.011
http://www.ncbi.nlm.nih.gov/pubmed/24922574
http://doi.org/10.1086/314557
http://www.ncbi.nlm.nih.gov/pubmed/9841824
http://doi.org/10.1038/nature03113
http://www.ncbi.nlm.nih.gov/pubmed/15592417
http://doi.org/10.1128/JVI.00921-09
http://www.ncbi.nlm.nih.gov/pubmed/19605475
http://doi.org/10.1128/JVI.01743-09
http://doi.org/10.1089/aid.2009.0080
http://doi.org/10.4137/VRT.S12677
http://doi.org/10.1086/653678
http://doi.org/10.1093/cid/civ219
http://www.ncbi.nlm.nih.gov/pubmed/25778749
http://doi.org/10.1371/journal.pone.0158854
http://www.ncbi.nlm.nih.gov/pubmed/27403738

	Background 
	Method 
	Low Transmission Risk of HIV Infection from ECs 
	Mechanism Delineated from Viral Features That Were Associated with Nonprogressive HIV Infection among ECs and LTNPs 
	Putative Mechanism of Viral Control as Influenced by the Host Genome 
	Mechanism of Viral Control among ECs and LTNPs as Derived from Associated Host Immune Characteristics 
	Discussion and Research Gaps on ECS and LTNPS in Nigeria and South Africa 
	Conclusions 
	What Is Known about This Topic 
	What This Study Adds 
	References

