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Abstract

Motivation: Cancer phylogenies are key to studying tumorigenesis and have clinical implications.

Due to the heterogeneous nature of cancer and limitations in current sequencing technology,

current cancer phylogeny inference methods identify a large solution space of plausible phyloge-

nies. To facilitate further downstream analyses, methods that accurately summarize such a set T of

cancer phylogenies are imperative. However, current summary methods are limited to a single

consensus tree or graph and may miss important topological features that are present in different

subsets of candidate trees.

Results: We introduce the MULTIPLE CONSENSUS TREE (MCT) problem to simultaneously cluster T and

infer a consensus tree for each cluster. We show that MCT is NP-hard, and present an exact

algorithm based on mixed integer linear programming (MILP). In addition, we introduce a heuristic

algorithm that efficiently identifies high-quality consensus trees, recovering all optimal solutions

identified by the MILP in simulated data at a fraction of the time. We demonstrate the applicability

of our methods on both simulated and real data, showing that our approach selects the number of

clusters depending on the complexity of the solution space T .

Availability and implementation: https://github.com/elkebir-group/MCT.

Contact: melkebir@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer results from an evolutionary process, during which somatic

mutations accumulate in a population of cells (Nowell, 1976),

resulting in the formation of multiple tumor clones with distinct sets

of mutations (Fig. 1a). A phylogenetic tree, or phylogeny, is a model

that represents this process. Mathematically, a phylogenetic tree for

a tumor is a rooted tree T, whose leaves correspond to extant cells

and whose internal vertices correspond to ancestral cells. The root

of T is a normal cell, containing no somatic mutations. In classic

phylogenetics, we aim to infer T given the leaf set L(T) under an ap-

propriate evolutionary model. However, due to extensive uncer-

tainty in single-cell DNA sequencing data (Navin, 2014) and the

presence of mixed cellular populations in bulk DNA sequencing

data (El-Kebir et al., 2015), we do not observe the leaves of T.

Rather, our data consist of individually-sequenced cells that may

contain errors that must be corrected, or cell populations that

have been sequenced in bulk, resulting in mutation frequencies.

As a consequence of this ambiguity, tumor phylogeny inference

methods for both data types typically infer multiple phylogenetic

trees T ¼ fT1; . . . ;Tng with distinct topologies and distinct leaf sets

that represent alternative evolutionary histories (Fig. 1b).

The majority of current methods in cancer phylogenetics make the

infinite sites assumption, which states that a mutation is gained only

once and never subsequently lost (Dang et al., 2017; Deshwar et al.,

2015; Donmez et al., 2016; El-Kebir et al., 2015, 2016; Jahn et al.,

2016; Jiang et al., 2016; Jiao et al., 2014; Malikic et al., 2015; Popic

et al., 2015; Ross and Markowetz, 2016; Strino et al., 2013; Yuan

et al., 2015). Under this assumption, we may represent a phylogenetic

tree T by a mutation tree T 0 (El-Kebir et al., 2016; Jahn et al., 2016).

More specifically, we contract unlabeled edges of T to obtain T 0, whose

vertices we label by the mutations that were introduced on the incoming

edges (Fig. 1a). Tumor phylogenies that adhere to the infinite sites as-

sumption have been used to identify mutations that drive cancer pro-

gression (Jamal-Hanjani et al., 2017; McGranahan et al., 2015), assess

the interplay between the immune system and the clonal architecture of
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a tumor (Łuksza et al., 2017; Zhang et al., 2018) and identify common

evolutionary patterns in tumorigenesis and metastasis (Turajlic et al.,

2018a, b). These downstream analyses critically rely on the accuracy of

the input phylogenetic tree. Thus, methods to accurately summarize the

solution space T are essential, so as to remove inference errors and iden-

tify common dependencies between mutations in the input trees.

A common approach employed in several studies (Deshwar et al.,

2015; El-Kebir et al., 2015; Jiao et al., 2014) summarizes the solution

space T by constructing the parent-child graph GT , which is a

directed, edge-weighted graph that represents the union of all trees in

T . That is, each edge (u, v) of this graph corresponds to an edge in a

tree T in the solution space T and is weighted by the number of

occurrences in T (Fig. 1c). A key deficiency of the parent-child graph

is that it does not accurately represent topological features of the solu-

tion space, i.e. patterns of co-occurrence and mutual exclusivity

among edges in individual trees in the solution space. Moreover,

downstream analyses require a single phylogenetic tree as input and

are unable to operate directly on the parent-child graph.

To overcome the latter limitation, Govek et al. (2018) introduced

the SINGLE CONSENSUS TREE problem, which aims at constructing a

consensus tree that best represents the solution space T . To quantify

similarity or distance between two trees, one needs a distance func-

tion. Recently, Karpov et al. (2018) introduced a tree edit distance

measure that can be efficiently computed using dynamic program-

ming. Using a distance function that directly measures edge similarity,

Govek et al. (2018) seek a consensus tree with minimum total dis-

tance to the trees in T . The main drawback to summarizing T by a

single tree is that important topological features may be missed, which

is especially the case when T contains multiple clusters of distinctive

trees. We note that there is a large body of work for consensus tree

problems in classic phylogenetics (cf. Warnow, 2017). These methods

are often based on bipartitions of a fixed leaf set. However, as men-

tioned above, the leaf set is typically unknown a priori in cancer phy-

logenetics due to the nature of the input data, preventing the direct

application of consensus tree methods that rely on fixed leaf sets.

In this paper, we introduce the MULTIPLE CONSENSUS TREE (MCT)

problem of simultaneously grouping trees T into k clusters and

reconstructing a consensus tree for each cluster with minimum total

distance. The MCT approach better summarizes solution spaces T
with distinct topological features, overcoming limitations of current

approaches (Fig. 1d). We prove that MCT is NP-hard, and give an

exact approach based on mixed integer linear programming (MILP)

that is able to efficiently solve small instances to optimality. In add-

ition, we introduce a heuristic based on coordinate ascent that scales

to large input instances. We benchmark our methods on simulated

data, showing that the heuristic approach yields solution of quality

comparable to that of the MILP approach at only a fraction of the

time. We demonstrate the applicability of the MCT problem on re-

cent lung cancer data. Our methods enable one to draw informed

conclusions in downstream phylogenetic analyses of tumors.

2 Problem statement

The key object in this paper is a mutation tree, which is a defined as

follows.

Definition 1 A mutation tree T is a rooted tree whose m nodes are

uniquely labeled by mutations ½m� ¼ f1; . . . ;mg.

We obtain a mutation tree T ¼ ðV;EÞ from a phylogenetic tree

T 0 ¼ ðV 0;E0Þ that satisfies the infinite sites assumption by first contract-

ing its unlabeled edges, and then labeling the resulting vertices by the

mutations present on their incoming edges (Fig. 1a). To summarize a set

T of mutation trees (Fig. 1b), we consider the following distance func-

tion, which was shown to be a distance metric by Govek et al. (2018).

Definition 2 Let T ¼ ðV;EÞ and T 0 ¼ ðV;E0Þ be two rooted trees on the

same vertex set V. The parent-child distance dðT;T 0Þ is the number of

edges unique to either tree, i.e.

dðT;T 0Þ ¼ jE n E0j þ jE0 n Ej: (1)

Mathematically, the parent-child distance dðT;T 0Þ of two rooted trees

T ¼ ðV;EÞ and T 0 ¼ ðV;E0Þ is the size of the symmetric difference be-

tween E and E0. This distance has been used extensively in the tumor

phylogeny inference literature to compare inferred trees to simulated

trees (El-Kebir et al., 2015; Malikic et al., 2015; Popic et al., 2015).

Govek et al. (2018) used the parent-child distance to define a consensus

tree for a set input trees T as follows.

Definition 3 A consensus tree for rooted trees T ¼ fT1; . . . ;Tng with the

same vertex set V is a rooted tree R with vertex set V.

Subsequently, Govek et al. (2018) introduced the SINGLE CONSENSUS TREE

problem, which given a set T ¼ fT1; . . . ;Tng of input trees seeks a con-

sensus tree R with minimum total distance dðT ;RÞ ¼
Pn

i¼1 dðTi;RÞ.

(a) (b) (c)

(d)

Fig. 1. (a) Tumors are heterogeneous, composed of multiple clones with different sets of somatic mutations. This heterogeneity is the result of an evolutionary process,

as modeled by a phylogenetic tree. Under the commonly used infinite sites model of evolution, where each mutation is acquired once and never lost, a phylogenetic

tree may be equivalently represented by a mutation tree. (b) Due to ambiguities in bulk and single-cell sequencing data of tumors, current methods infer a large solution

space of plausible mutation trees T . For further downstream analyses of tumorigenesis, this solution space needs to be summarized. (c) Current summary methods ei-

ther construct the parent-child graph GT or identify a single consensus tree R, failing to adequately summarize solution spaces comprised of clusters of trees with distinct

topological features. (d) Here, we introduce the MULTIPLE CONSENSUS TREE problem to simultaneously cluster mutation trees and construct a consensus tree of each cluster
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Problem 1 (SINGLE CONSENSUS TREE (SCT)) Given distinct rooted trees

T ¼ fT1; . . . ;Tng with the same vertex set, find a consensus tree R such

that dðT ;RÞ ¼
Pn

i¼1 dðTi;RÞ is minimum.

To better account for extensive ambiguity in the topology of solution

trees, we introduce the MULTIPLE CONSENSUS TREE problem, which gener-

alizes the SINGLE CONSENSUS TREE to k clusters.

Problem 2 (MULTIPLE CONSENSUS TREE (MCT)) Given distinct rooted trees

T ¼ fT1; . . . ;Tng and integer 1 � k � n, find a clustering r : ½n� ! ½k�
and consensus trees R ¼ fR1; . . . ;Rkg such that (i) no cluster s 2 ½k� is

empty, i.e. r is surjective, and (ii) dðT ;R; rÞ ¼
Pn

i¼1 dðTi;RrðiÞÞ is

minimum.

3 Combinatorial structure and complexity

Section 3.1 characterizes the solution space of the MCT problem.

Section 3.2 shows that this problem is NP-hard. Proofs are in the

supplement due to space constraints.

3.1 Combinatorial characterization of optimal solutions
To characterize the space of solutions to the MCT, we start by

reviewing results for the SCT problem (Govek et al., 2018). Given

input trees T , Govek et al. (2018) defined the parent-child graph GT
as follows.

Definition 4 (Govek et al. (2018)) The parent-child graph GT of a set

T ¼ fT1; . . . ;Tng of trees is a weighted directed graph GT ¼ ðV;EÞ with

the same vertex set V as each input tree, an edge ðu; vÞ 2 E if and only if

there exists an input tree Ti ¼ ðV;EiÞ 2 T where ðu; vÞ 2 Ei, and weight

‘ðu; vÞ equal to the number of input trees with edge (u, v), i.e.

‘ðu; vÞ ¼ jfTi ¼ ðV;EiÞ 2 T jðu; vÞ 2 Eigj: (2)

Subsequently, the authors showed that solutions to an SCT instance T
are maximum weight spanning arborescences in the parent-child graph

GT . We note that maximum weight spanning arborescences and branch-

ings (with multiple root vertices) have frequent applications in computa-

tional biology (e.g. Desper et al., 1999).

Theorem 1 (Govek et al., 2018) Given input trees T ¼ fT1; . . . ;Tng,
there exists a consensus tree R with minimum distance dðT ;RÞ ¼Pn

i¼1 dðTi;RÞ that is a maximum weight spanning arborescence in the

parent-child graph GT .

We have the following two lemmas that follow from the above theorem.

Lemma 1 There exists an optimal consensus tree R to SCT instance T
where each edge (u, v) of R occurs in an input tree.

Lemma 2 There exists an optimal consensus tree R to SCT instance T
where if an edge (u, v) is present in all trees T then (u, v) is an edge of

the consensus tree R.

Let m ¼ jVj be the size of the vertex set V of a set T of input trees. We

prove the following relationship between the weight ‘ðRÞ ¼
P
ðu;vÞ2EðRÞ

‘ðu; vÞ of any spanning arborescence R in GT and its distance dðT ;RÞ to

input trees T .

Lemma 3 The total distance dðT ;RÞ ¼
P

i¼1 dðTi;RÞ of any spanning

arborescence R ¼ ðV;ERÞ of parent-child graph GT to input trees T ¼
fT1; . . . ;Tng equals 2½nðm� 1Þ � ‘ðRÞ�.

We have the following important proposition.

Proposition 1 Given a clustering r : ½n� ! ½k�, the MCT problem decom-

poses into k independent SCT problems.

From the above proposition and Theorem 1, we obtain the following

corollaries that are generalizations of Lemmas 1, 2 and 3.

Corollary 1 There exists an optimal solution ðR; rÞ to MCT instance

ðT ; kÞ where each edge of each consensus tree Rs 2 R occurs in an input

tree in the set T s of trees assigned to cluster s.

Corollary 2 There exists an optimal solution ðR; rÞ to MCT instance

ðT ; kÞ where if an edge (u, v) is present in all trees T s assigned to cluster

s then (u, v) is an edge of the consensus tree Rs.

Corollary 3 There exists an optimal solution ðR; rÞ to MCT instance

ðT ; kÞ with total distance

dðT ;R; rÞ ¼ nðm� 1Þ �
Xk

s¼1

‘ðRsÞ; (3)

where ‘ðRsÞ is the weight of a maximum weight spanning arborescence

Rs of the parent-child graph GT s
obtained from T s.

As the number of k of clusters increases the minimum total distance will

decrease, as shown by the following proposition.

Proposition 2 The minimum total distance of an MCT instance ðT ; kÞ is

monotonically decreasing with increasing number k of clusters.

3.2 Complexity
Theorem 2 Multiple Consensus Tree (MCT) is NP-hard.

We give a polynomial-time reduction from the Clique problem, a

known NP-complete problem (Garey and Johnson, 1979).

Problem 3 (CLIQUE) Given an undirected, simple graph H with vertex set

V(H), edge set E(H) and a positive integer c � jVðHÞj, decide whether G

contains a clique of size c.

To reduce a CLIQUE instance (H, c) to an MCT instance ðT ; kÞ,
we introduce the notation dðvÞ to indicate the subset of edges that

are incident to v, i.e. dðvÞ ¼ fðu;wÞ 2 EðHÞju ¼ v or w ¼ vg. For

each vertex vi of H, we construct a tree Ti ¼ ðU;AiÞ. The vertex set

U of Ti is defined as fr;?g [ VðHÞ [ EðHÞ and the edge set Ai con-

tains directed edges fðr;?Þg; fðr; viÞjvi 2 VðHÞg; fð?; eÞje 2 dðvÞg
and fðvi; eÞje 2 EðHÞ n dðvÞg. We set k ¼ n� cþ 1. Since all the in-

put trees T ¼ fT1; . . . ;Tng are on the same vertex set U and

1 � k � n, it holds that ðT ;kÞ is an instance of MCT problem.

Clearly, this construction can be performed in time polynomial in n

and m. Figure 2 shows an example of reduction.

Defining the cost as the total distance dðT ;R; rÞ, we have the fol-

lowing two lemmas that provide lower bounds on the cost of any feas-

ible solution ðR; rÞ to ðT ; kÞ obtained from a CLIQUE instance (H, c).

Lemma 4 The cost of a clustering r : ½n� ! ½k� that partitions T into

parts of sizes n1; . . . ; nk is at least 2 ðc� 1Þ � jEðHÞj �
Pk

s¼1

ns

2

� �� �
. This

bound is tight if and only if the input trees T s assigned to each cluster s

encode a clique in the undirected graph H.

Lemma 5 The cost of any clustering r : ½n� ! k of ðT ; kÞ is at least

2 ðc� 1Þ � jEðHÞj � c
2

� �� �
. This bound is tight if and only if r contains
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k – 1 singleton clusters and one cluster with c trees that encode the vertices of

a clique in the undirected graph H.

Finally, we use the above two lemmas to prove the following lemma,

from which the theorem follows.

Lemma 6 There is a clique of size c in the undirected graph H if and only

if the corresponding MCT instance ðT ; kÞ has an optimal solution with

cost 2 ðc� 1Þ � jEðHÞj � c
2

� �� �
.

4 Material and methods

This section introduces three algorithms for MULTIPLE CONSENSUS

TREE that exploit the combinatorial structure identified in the previ-

ous section. Section 4.4 describes a procedure for selecting the num-

ber k of clusters, balancing the decrease in distance and the

additional complexity with increasing k.

4.1 Brute force algorithm
By Proposition 1, each MCT instance ðT ; kÞ decomposes into k SCT

instances when given the clustering r. Thus, one can identify optimal

solutions ðR; rÞ to ðT ; kÞ by exhaustively generating all clusterings r,

retaining clusterings that have minimum total distance. The number of

clusterings is given by the Stirling number of the second kind (Knuth,

1997), which is bounded by kn. Given r, we must solve k maximum

weight spanning arborescence problems on sets fT 1; . . . T kg of trees.

Gabow et al. (1986) give an algorithm that identifies a maximum (min-

imum) weight spanning r-arborescence rooted at a given vertex r of a

weighted directed graph G ¼ ðV;EÞ in OðjEj þ jVj log jVjÞ time. For

simplicity, we bound the number jEðGT s
Þj of edges in each parent-

child graph GT s
by OðjVðGT s

Þj2Þ ¼ Oðm2Þ. As such, the complexity

of identifying an optimal consensus tree of a set of trees is

Oðm½m2 þm log m�Þ ¼ Oðm3Þ. It follows that the time of identifying

the optimal set of consensus trees is bounded by Oðkm3Þ Therefore the

complexity of the brute force algorithm is Oðkn � km3Þ ¼ Oðknþ1m3Þ.

4.2 Mixed integer linear program
We introduce a mixed integer linear program (MILP) that models the

feasible solution space of an MCT instance ðT ¼ fT1; . . . ;Tng; kÞ.

To do so, we model (i) the surjective clustering function r : ½n� ! ½k�,
(ii) the consensus trees fR1; . . . ;Rkg as spanning arborescences, (iii)

the weight ‘ðRsÞ of each consensus tree Rs and (iv) additional cuts to

improve performance. Let m be the number of vertices in the shared

vertex set of input trees T .

4.2.1 Clustering

We introduce binary variables x 2 f0; 1gn�k to model clustering

r : ½n� ! ½k�. More specifically, we require xi;s ¼ 1 if rðiÞ ¼ s and

xi;s ¼ 0 if rðiÞ 6¼ s for each cluster s and input tree i. To that end, we

introduce the following constraints.

Xk

s¼1

xi;s ¼ 1 8i 2 ½n� (4)

xi;s 2 f0; 1g 8i 2 ½n�; s 2 ½k� (5)

In addition, we require r to be surjective. That is, each cluster s

contains at least one tree, which we model as follows.

Xn

i¼1

xi;s � 1 8s 2 ½k� (6)

4.2.2 Consensus trees

By Proposition 1, the MCT problem decomposes into k instances of

the SCT problem. By Theorem 1, we know that each SCT instance is

a maximum weight spanning arborescence problem with unknown

root. Consider the subproblem of a cluster s 2 ½k�. To model the

edges of the consensus tree Rs, we introduce variables ys;p;q for each

ordered pair ðp; qÞ 2 ½m� � ½m� of vertices such that ys;p;q ¼ 1 if con-

sensus tree Rs contains the edge (p, q) and ys;p;q ¼ 0 otherwise. We

require that Rs is a spanning arborescence of the vertex set ½m�, i.e.

Rs contains a single vertex p that does not have a parent. To indicate

the root vertex, we introduce variables zs;p for each vertex p such

that zs;p ¼ 1 if p is the root of Rs and zs;p ¼ 0 otherwise. We have

the following constraints that model a single root vertex and the

presence of a unique parent of each non-root vertex.

Xm
p¼1

zs;p ¼ 1 8s 2 ½k� (7)

(a) (b) (c)

(d) (e)

(f)

Fig. 2. An example reduction from the CLIQUE problem to MCT. (a) An undirected graph H with jEðHÞj ¼ 4 edges and n ¼ jV ðHÞj ¼ 4 vertices, containing a clique of

size 3. (b–e) The n¼ 4 input trees T ¼ fT1;T2;T3;T4g to the MCT problem obtained from H. The problem instance of determining whether H contains a clique of

size c¼3 reduces to the MCT instance ðT ; kÞ where k ¼ n � c þ 1 ¼ 2. An optimal clustering r for ðT ; 2Þ yields T 1 ¼ fT1;T2;T3g and T 2 ¼ fT4g. (f) The parent-child

graph GT 1 , with the optimal consensus tree R1 for input trees T 1 indicated in red. The parent-child graph of T 2 is identical to T4 with edge weights ‘ðu; vÞ ¼ 1 for

each edge (u, v) such that the corresponding optimal consensus tree R2 equals T4. As such, the total distance equals 2 ðc � 1Þ � jEðHÞj � c
2

� �� �
¼ 10. By Lemma 6,

H contains a clique of size c¼3

Multiple consensus trees of cancer phylogenies i411



Xm
p¼1

ys;p;q ¼ 1� zs;q 8s 2 ½k�; q 2 ½m� (8)

ys;p;q � 0 8s 2 ½k�;p;q 2 ½m� (9)

zs;p � 0 8s 2 ½k�;p 2 ½m� (10)

For each order pair ðp;qÞ 2 ½m� � ½m�, let bp;q ¼ 1 if there exists an

input tree Ti 2 T containing the edge (p, q) and bp;q ¼ 0 otherwise. By

Corollary 1, we have that each edge (p, q) of Rs must occur in at least

one input tree Ti 2 T . As such, we have the following constraint:

ys;p;q � bp;q 8s 2 ½k�; p;q 2 ½m� (11)

Next, we need to model connectivity, i.e. from the root vertex p

of Rs every other vertex q 6¼ m must be reachable. In other words,

we need to prevent that Rs has cycles. For a subset U � ½m� of verti-

ces, let d�ðUÞ be the subset of directed edges (p, q) occurring in the

input trees T where p 62 U and q 2 U. More formally, d�ðUÞ ¼
fðp; qÞ 2 ½m� � ½m�jp 2 ½m� nU;q 2 U;bp;q ¼ 1g. For any cut set

U � ½m�, it must hold that U contains either the root vertex or there

must be at least one incoming edge to U. This is captured by the fol-

lowing constraint.X
ðp;qÞ2d�ðUÞ

ys;p;q þ
X
p2U

zs;p � 1 8s 2 ½k�;U � ½m� (12)

The spanning arborescence polytope defined by constraints (7)–

(12) has integral vertices (Schrijver, 2003). In other words, we do

not require variables y and z to be binary.

4.2.3 Parent-child distance

For each ordered pair ðp; qÞ 2 ½m� � ½m�, let ai;p;q ¼ 1 if input tree Ti

contains the edge (p, q) and ai;p;q ¼ 0 otherwise. To model the distance

dðTi;RrðiÞÞ of input tree Ti 2 T to its corresponding consensus tree

RrðiÞ, we introduce the variable wi;s;p;q which indicates that trees Ti and

Rs contain the edge (p, q) and Ti is assigned to cluster s. In other words,

wi;s;p;q is the product of ai;p;q; ys;p;q and xi;s. We thus have

dðTi;RrðiÞÞ ¼
Xk

s¼1

Xm
p¼1

Xm
q¼1

wi;s;p;q: (13)

Using Corollary 3, we obtain the following objective function.

min nðm� 1Þ �
Xn

i¼1

Xk

s¼1

Xm
p¼1

Xm
q¼1

wi;s;p;q: (14)

We model wi;s;p;q ¼ ai;p;q � ys;p;q � xi;s using the following con-

straints, which force wi;s;p;q to 0 if one of fai;p;q; ys;p;q;xi;sg is 0.

wi;s;p;q � ai;p;q 8i 2 ½n�; s 2 ½k�; p; q 2 ½m� (15)

wi;s;p;q � ys;p;q 8i 2 ½n�; s 2 ½k�;p; q 2 ½m� (16)

wi;s;p;q � xi;s 8i 2 ½n�; s 2 ½k�; p; q 2 ½m� (17)

wi;s;p;q � 0 8i 2 ½n�; s 2 ½k�; p;q 2 ½m� (18)

By integrality of x and y, we do not require w to be binary varia-

bles. Moreover, by the direction of the objective function, we do not

need to force wi;s;p;q to 1 if ai;p;q ¼ ys;p;q ¼ xi;s ¼ 1.

4.2.4 Additional cuts

To improve performance of the ILP, we use Corollary 1 to require

that Rs contains the edge (p, q) only if there exists a tree Ti 2 T s

containing the edge (p, q). To that end, we introduce the following

constraint.

ys;p;q �
Xn

i¼1

ai;p;qxi;s 8s 2 ½k�; p; q 2 ½m� (19)

By Corollary 2, if all input trees Ti 2 T s contain the edge (p, q)

then there exists an optimal solution in which consensus tree Rs con-

tains (p, q) as well. This is captured by the following constraint.

ys;p;q �
Xn

i¼1

ai;p;qxi;s �
Xn

i¼1

xi;s þ 1 8s 2 ½k�;p; q 2 ½m� (20)

Finally, we introduce the following symmetry breaking con-

straints that impose an ordering on r such that jT 1j � jT 2j �
. . . � jT kj.

Xn

i¼1

xi;s �
Xn

i¼1

xi;sþ1 þ 1 8s 2 ½k� 1� (21)

4.2.5 Cut separation

The number of constraints (12) grows exponentially in m.

Therefore, we do not include these constraints in our formulation.

Following a standard approach (Wolsey, 1998), we separate these

constraints during the branch-and-bound procedure by identifying a

minimum cut in a directed graph. Excluding constraints (12), our

formulation has Oðnkm2Þ variables and constraints. Supplementary

Figure S1 contains the full MILP.

4.3 Coordinate ascent heuristic
We use coordinate ascent to solve the MULTIPLE CONSENSUS TREE

heuristically. The idea is to identify consensus trees and clusterings

alternatingly, starting from a random clustering r. Then, for each

cluster s 2 ½k�, we construct the parent-child graph GT s
from the set

T s of input trees in cluster s. From GT s
, we obtain the consensus

tree Rs by computing the maximum weight spanning arborescence

of the graph. Finally, we update the clustering r by reassigning each

Ti 2 T to a cluster s 2 ½k� such that dðTi;RsÞ is minimized. These

steps are repeated until convergence is achieved (Algorithm 1). To

avoid getting stuck in local optima, we allow the user to specify the

number of restarts, initializing each restart with a new randomly-

generated clustering. Alternatively, we allow the user to specify a

time limit, restarting the algorithm until the running time exceeds

the time limit.

4.4 Model selection for the number k of clusters
Given input trees n ¼ jT j with m vertices, the number k of clusters

ranges from 1 to n. To decide which number k of clusters to use, we

apply the Bayesian Information Criterion (BIC). Note that this cri-

terion requires a likelihood of the data given the model. In our case,

the model corresponds to a solution ðR;rÞ to MCT instance ðT ; kÞ.
We need to define a likelihood function that is proportional to the

probability PrðT jR;rÞ of generating the data T given solution

ðR;rÞ. To do so, we define the normalized distance �dðT;T0Þ be-

tween two trees T and T 0 as

�dðT;T 0Þ ¼ dðT;T 0Þ
2ðm� 1Þ : (22)

Therefore, the mean normalized distance �dðT ;R; rÞ of a set T of

n trees and a solution ðR;rÞ equals
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�dðT ;R;rÞ ¼
Pn

i¼1 dðTi; SrðiÞÞ
2nðm� 1Þ : (23)

We assume that the probability PrðTjR; rÞ of generating a tree T

in T by a model ðR;rÞ is proportional to the mean normalized simi-

larity hðT ;R; rÞ defined as

hðT ;R; rÞ ¼ 1� �dðT ;R; rÞ ¼ 1�
Pn

i¼1 dðTi;RrðiÞÞ
2nðm� 1Þ : (24)

Note that as k increases, the sum of the distances of the optimal

solutions to a set T of trees is strictly decreasing by Proposition 2.

Therefore, as k increases, the likelihood hðT ;R; rÞ of optimal solu-

tions ðR; rÞ is increasing. Assuming independence in generating each

input tree, the probability PrðT jR;rÞ of the model generating a set

T of n trees is PrðTjR;rÞn, which is proportional to hðT ;R; rÞn.

However, as k increases, the complexity of the model, i.e. the

number of parameters in solution ðR; rÞ, is also increasing. Using

Proposition 1, optimal consensus trees R are determined by the clus-

tering r. The clustering r contains k clusters, amounting to the fol-

lowing Bayesian Information Criterion (BIC).

k

2
ln n� 2 ln ðhðT ;R; rÞnÞ (25)

¼ k

2
ln n� 2n ln 1�

Pn
i¼1 dðTi; SrðiÞÞ
2nðm� 1Þ

" #
(26)

The factor of 1/2 ensures that the two terms are of similar scale.

The task is now to choose k such that the above equation is minimized.

5 Results

We implemented the three algorithms (BF, MILP and CA) in Cþþ using

the LEMON graph library (http://lemon.cs.elte.hu). We implemented

MILP using CPLEX v12.8 (https://www.ibm.com/analytics/cplex-opti

mizer). In this section, we illustrate the application of our methods to

simulated and real data. Specifically, Section 5.1 provides results of our

algorithms on simulated data, whereas Section 5.2 applies our methods

to recent lung cancer data (Jamal-Hanjani et al., 2017).

5.1 Simulations
To evaluate our methods, we simulate bulk DNA sequencing data of

tumors using a previously published tumor simulator (El-Kebir

et al., 2018). We generate a total of 45 instances, composed of either

five or ten bulk samples per instance and m 2 f9; 11;13g mutation

clusters (Supplementary Table S1). Subsequently, we run the

SPRUCE algorithm (El-Kebir et al., 2015) to enumerate the set T of

mutation trees for each instance. The mean number of trees is 47

(Supplementary Table S1). We group the 45 simulated instances by

the number of mutation trees into three classes, resulting in 16

‘small’ instances with 6-10 trees, 15 ‘medium’ instances with 11–39

trees and 14 ‘large’ instances with 40-352 trees (Fig. 3a).

For each class of instances (small, medium or large) and number

k 2 f2; . . . ;5g of clusters, we run the mixed integer linear program

(MILP) and the brute force algorithm (BF) restricted to a running

time of 1 h. In addition, we run the coordinate ascent (CA) algo-

rithm in two modes: (i) using a time limit of 1 h, and (ii) restricted to

100 restarts. We run each algorithm in single-threaded mode on a

computer with two Intel Xeon CPUs at 2.6 GHz (32 cores) and 512

GB of RAM.

Supplementary Table S2 shows the number of instances solved

to optimality by MILP and BF. We find that MILP outperforms the

BF algorithm, solving 65% of instances to optimality versus 45.6%

for BF. All small instances were solved to optimality by MILP,

whereas BF failed to solved two small instances with k¼5 clusters

within the time limit. In particular, performance of BF decreases

with increasing number k of clusters and number n of input trees,

reflecting the exponential increase in the number kn of enumerated

clusterings with increasing number n of trees. Similarly, MILP per-

formance decreases with increasing n and k (Supplementary Fig.

S1). The instances that were solved to optimality by MILP include

all instances solved to optimality by BF. For these reasons, we ex-

clude BF from further analyses and focus on MILP and CA.

To investigate the behavior of CA versus the MILP algorithm,

we compute the mean normalized distance �dðT ;R; rÞ for each simu-

lated instance T and output ðR;rÞ. This distance is defined in

Section 4.4. We find that CA using only 100 restarts identifies solu-

tions with similar mean normalized distance as CA and MILP using

(a) (b) (c)

Fig. 3. Coordinate ascent (CA) algorithm computes consensus trees with simi-

lar mean distance as the MILP algorithm in only a fraction of the time. (a)

Number of trees for each class of simulated instances. (b) Mean normalized

distance for solutions for each method. (c) Running time in seconds for each

method (logarithmic scale)

Algorithm 1: COORDINATEASCENT(T , k)

Input: Trees T ¼ fT1; . . . ;Tng and number k>0 of clusters

Output: Consensus trees R ¼ fR1; . . . ;Rkg and clustering r
1 r random clustering

2 L;D 1
3 while D>0 do

4 for s 1 to k do

5 Let GT s
be the parent-child graph of input trees T s with

edge weights ‘ : EðGT s
Þ ! N

6 Compute max weight spanning arborescence Rs of GT s

7 for i 1 to n do

8 r(i) argmins�[k]d(Ti,Rs)

9 L0  dðT ;R; rÞ
10 D L0 � L

11 L L0

12 return (R, r)
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a time limit of 1 h (Fig. 3b). These 100 restarts were completed in

seconds (Fig. 3c). Thus, CA with a small number of restarts com-

putes high-quality consensus trees at only a fraction of the time

required by MILP. Moreover, the CA algorithm with 100 restarts

recovers all optimal solutions computed by MILP (Supplementary

Table S2).

Finally, we consider one simulated instance to illustrate the

advantages of the MULTIPLE CONSENSUS TREE over previous

approaches, and to illustrate the model selection step for choosing

the number k of clusters. The instance we consider has n¼9 trees

and m¼9 mutation clusters (Supplementary Fig. S2). Thus, the

maximum number k of clusters equals n¼9. We use CA with 100

restarts to compute consensus trees R ¼ fR1; . . . ;Rkg and cluster-

ings r : ½n� ! ½k� for each number k 2 f1; . . . ;9g of clusters. In line

with Proposition 2, Figure 4a shows that the mean normalized dis-

tance �dðT ;R;rÞ decreases with increasing number k of clusters. In

particular, �dðT ;R;rÞ ¼ 0 for k¼9 clusters, each containing a single

input tree.

Applying the Bayesian Information Criterion (BIC), we select the

solution with k¼2 clusters (Fig. 4a). The two resulting consensus

trees R1 and R2 contain jT 1j ¼ 5 and jT 2j ¼ 4 input trees, respect-

ively (Fig. 4a). Figure 4b and c show the parent-child graphs GT 1

and GT 2
, with colored edges indicating the two corresponding con-

sensus trees. In these figures, we see that the two consensus trees R1

and R2 differ in vertices d, e and g. Input trees T 1 include the edge

(b, e) whereas input trees T 2 include the edge (a, e). In addition,

trees in T 1 include a branch composed of edges (e, g) and (g, d),

whereas trees T 2 contain d and g as siblings of parent b.

Importantly, these topological features are not apparent when sum-

marizing T by the parent-child graph GT or by constructing a single

consensus tree from GT . That is, the parent-child graph GT does

not show patterns of co-occurrence and mutual exclusivity among

edges. For instance, edge (b, e) does not co-occur with edges (b, d)

or (b, g) in T , which cannot be concluded from GT (Fig. 4c).

Furthermore, the unique optimal consensus tree R obtained from

GT does not contain the edge (b, e) (Fig. 4c), which occurs in 4 out

of 9 input trees (Supplementary Fig. S2). Hence, R is an incomplete

summary of T . Only by summarizing T using multiple consensus

trees do these topological features become apparent. Supplementary

Figure S3 shows the distribution of the identified number k of

clusters for each class of instances, showing that the number k of

clusters selected by BIC increases with the number n of trees.

5.2 Real data
We consider a lung cancer cohort of 100 patients (Jamal-Hanjani

et al., 2017), composed of tumors that have undergone multi-region

bulk DNA sequencing. Jamal-Hanjani et al. (2017) used PyClone

(Roth et al., 2014) to cluster mutations with similar cancer cell frac-

tions and ran CITUP (Malikic et al., 2015) to compute solution

spaces T for each tumor, identifying multiple trees for 25 patients.

We focus our analysis on patients CRUK0013 and CRUK0037, the

only two patients with more than four reported trees. Jamal-

Hanjani et al. (2017) identified 8 trees for patient CRUK0013

(Supplementary Fig. S4) and 17 trees for patient CRUK0037

(Supplementary Fig. S5). To summarize these trees, we run CA

coupled with the model selection procedure for the number k of

clusters.

First, we consider patient CRUK0013, which has m¼9 vertices/

mutation clusters. Figure 5a shows the relationship between the

number k of clusters and the mean normalized distance �dðT ;R;rÞ
computed by the CA method. The decrease in distance from k¼1 to

k¼2 is modest. Consequently, the BIC prefers the k¼1 solution.

Inspection of the parent-child graph GT and consensus tree R

reveals that the consensus tree R covers 55 out 64 edges in T , where

the 9 uncovered edges are incoming to v8 and v9. In particular, there

are no patterns of co-occurrence or mutual exclusivity among the

edges leading to v8 and v9 in individual trees in T (Fig. 5c), justifying

the choice for k¼1 cluster. This example, in addition to our simu-

lated data results (Supplementary Fig. S3), show that our method

does not overfit the input data when there are no clear topological

features in the solution space.

By contrast, for patient CRUK0037, with m¼10 vertices (muta-

tions clusters) and n¼17 trees, our method infers k¼2 clusters

(Fig. 6a). Inspection of the n¼17 input trees reveals that there is

variation in the placement of five vertices, as shown by the parent-

child graph (Fig. 6b). We focus our attention on vertices v5, v7 and

v10, each with two possible parents. Figure 6c shows the contingency

table of all combinations of these three clusters, enabling us to ob-

serve that v1 ! v7 and v4 ! v10 are mutually exclusive. This pattern

of mutual exclusivity is not apparent in the parent-child graph

(a) (b) (c)

Fig. 4. Adequate representation of the solution space T requires k¼2 consensus trees. This simulated instance contains n ¼ jT j ¼ 9 input trees. (a) Top plot

shows the mean normalized distance inferred by the coordinate ascent algorithm as a function of the number k of clusters. Bottom plot shows the number of

trees per cluster. Using the BIC criterion, we summarize T with k ¼ 2 clusters. (b) Parent-child graphs GT 1 ;GT 2 and consensus trees R1, R2 (colored edges) of com-

puted clustering. (c) Parent-child graph GT (bottom) and corresponding consensus tree R (top) do not adequately represent the topological features in input trees

T . That is, edge (b, e) does not co-occur with edges (b, d) or (b, g) in T , which cannot be concluded from GT . Moreover, consensus tree R does not contain the

edge (b, e), which occurs in 4 out of 9 input trees. Hence, R is an incomplete summary of T
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obtained from all trees (Fig. 6b). Furthermore, the placement of the

three mutation clusters in the k¼1 consensus tree obtained from

this graph is supported by only 2 out of 17 input trees. Thus, with

k¼1, neither the parent-child graph nor the consensus tree provide

an adequate summary of the solution space of this patient.

Our method partitions the input trees into k¼2 clusters: one

cluster with seven input trees (Fig. 6d) and the other cluster with the

remaining ten trees (Fig. 6e). This partition identifies patterns of co-

occurrence and mutual exclusivity that are unique to each cluster.

All seven trees in the first cluster contain the edge v1 ! v10, whereas

the remaining ten trees in the second cluster contain the edge

v4 ! v7. On the other hand, the trees in the first cluster exhibit mu-

tual exclusivity between v4 ! v5 and v4 ! v7, whereas these two

edges are present in 7/10 trees in the second cluster. Similarly, edges

v1 ! v10 and v8 ! v5 are mutually exclusivity in all ten trees in the

second cluster, whereas these two edges are present in 5/7 trees in

the first cluster. Thus, our method partitions the solution space of

17 trees into two clusters with distinct topological features. In add-

ition, our method infers a consensus tree for each of the two clusters.

The placement of v5, v7 and v10 in the consensus tree of the first

cluster is supported by 3/7 trees assigned to this cluster, being the

dominant topological feature among these seven trees (Fig. 6f).

Similarly, the consensus tree of the second cluster highlights the

most representative placement of these three vertices (supported by

5/10 trees, see Fig. 6g).

The first consensus tree contains the branch v1 ! v10, whereas

the second consensus tree contains the branch v1 ! v4 ! v10.

Vertex v10 contains the driver mutation HOOK3, whose placement

may alter conclusions in downstream analyses, including those that

assess tumor fitness to immunotherapy (Łuksza et al., 2017) or iden-

tify repeated evolutionary trajectories among driver mutations

(Turajlic et al., 2018b). To avoid incorrect conclusions both consen-

sus trees must be considered in these analyses. Our method facili-

tates such more robust downstream analyses, by simultaneously

clustering input trees according to shared topological features, iden-

tifying the right number of clusters depending on the degree of dif-

ferences among solution trees.

6 Discussion

We introduced the MULTIPLE CONSENSUS TREE (MCT) problem that

enables one to accurately summarize a solution set T composed of

tumor phylogenies with distinct topological features using multiple

consensus trees, overcoming limitations of current approaches.

Current approaches that summarize T by constructing a graph that

is the union of all edges in T fail to account for mutual exclusivity

or co-occurence of edges in individual trees (Deshwar et al., 2015;

El-Kebir et al., 2016; Jiao et al., 2014). In a similar vein, summariz-

ing T by constructing a single consensus tree as described by Govek

et al. (2018) may fail to represent topological features that are spe-

cific to a subset of trees in T .

Mathematically, MCT is a generalization of the SINGLE

CONSENSUS TREE to k consensus trees. That is, given input trees T
and integer k>0, we aim to simultaneously partition T into k dis-

joint, non-empty clusters and reconstruct a consensus tree for each

cluster with minimum total distance. We proved that MCT is NP-

hard. In addition, we presented two exact approaches based on

mixed integer linear programming (MILP) and exhaustive enumer-

ation. Using simulated data, we showed that the MILP efficiently

solves small instances to optimality. In addition, we introduced a

heuristic based on coordinate ascent that scales to large input

(a)

(b) (c)

Fig. 5. Lung cancer patient CRUK0013 with n¼8 trees is accurately summar-

ized by a single consensus tree. (a) The mean normalized distance inferred by

the coordinate ascent algorithm as a function of the number k of clusters, and

the BIC. (b) The parent-child graph and consensus tree. (c) The number of in-

put trees supporting each possible combination of topological features

(a)

(b)

(c)

(d) (e)

(f) (g)

Fig. 6. Lung cancer patient CRUK0037 with n¼17 trees is accurately summar-

ized by k¼ 2 consensus trees. (a) The mean normalized distance inferred by

the coordinate ascent algorithm as a function of the number k of clusters, and

the BIC. (b) The parent-graph and the consensus tree for k¼1. (c) The number

of input trees supporting each possible combination of topological features.

(d, e) The two parent-child graphs and consensus trees for k¼ 2. (f, g) The

number of input trees in each cluster supporting each possible combination

of topological features.
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instances. By benchmarking our methods on simulated data, we

showed that the heuristic approach recovered all optimal solutions

identified by the MILP at only a fraction of the time. We demon-

strated the applicability of the MCT problem on lung cancer data,

illustrating that our model selection step selects the right number k

of clusters depending on the degree of differences among solution

trees.

There are a couple of avenues for future research. First, we used

the parent-child distance in this manuscript. One could consider al-

ternative distance functions, such as the tree distance function re-

cently introduced by Karpov et al. (2018). Second, the complexity of

the MCT given fixed number k of clusters remains open. As we have

seen in our analysis of real and simulated data, it is often the case

that k	 n. Thus, an algorithm that is fixed parameter tractable in k

would have immediate practical applications. Third, there may be

multiple optimal solutions to MCT. More specifically, for a fixed

clustering there might be multiple optimal consensus trees, and there

might be multiple clusterings with the same total distance. Similarly

to the original problem, it will be an interesting direction to identify

common patterns and differences among such optimal solutions.

Fourth, the mutation trees T considered in this manuscript adhere

to the infinite sites assumption. Recent works in cancer phyloge-

netics have considered other evolutionary models, such as the infin-

ite alleles model (El-Kebir et al., 2016), the Dollo parsimony model

(Bonizzoni et al., 2017; El-Kebir, 2018) or the finite sites model

(Zafar et al., 2017). It will be an interesting question to adapt the

methodology and problem to trees that employ these alternative

models of evolution. Finally, a characterization of the distribution

of trees in the solution space T and their topological features under

an error model of single-cell or bulk DNA sequencing has not been

attempted yet. Akin to the work by Steel and Penny (1993) in classic

phylogenetics, such work would provide much needed theoretical

guidance on the larger issue of non-uniqueness of solutions in cancer

phylogenetics.
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