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prediction, reflecting the common belief that cancer is a systems biology disease.
However, controversy exists in the literature regarding whether network markers are
indeed better features than genes alone for predicting as well as understanding
metastasis. We believe much of the existing results may have been biased by the overly
complicated prediction algorithms, unfair evaluation, and lack of rigorous statistics. In
this study, we propose a simple approach to use network edges as features, based on
two types of networks respectively, and compared their prediction power using three
classification algorithms and rigorous statistical procedure on one of the largest
datasets available. To detect biomarkers that are significant for the prediction and to
compare the robustness of different feature types, we propose an unbiased and novel
procedure to measure feature importance that eliminates the potential bias from
factors such as different sample size, number of features, as well as class distribution.

Results: Experimental results reveal that edge-based feature types consistently
outperformed gene-based feature type in random forest and logistic regression
models under all performance evaluation metrics, while the prediction accuracy of
edge-based support vector machine (SVM) model was poorer, due to the larger
number of edge features compared to gene features and the lack of feature selection
(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03692-2&domain=pdf
mailto: jianhua.ruan@utsa.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Adnan et al. BMC Bioinformatics 2020, 21(Suppl 14):359 Page 2 0f 18

(Continued from previous page)

in SYM model. Experimental results also show that edge features are much more
robust than gene features and the top biomarkers from edge feature types are
statistically more significantly enriched in the biological processes that are well known
to be related to breast cancer metastasis.

Conclusions: Overall, this study validates the utility of edge features as biomarkers but
also highlights the importance of carefully designed experimental procedures in order
to achieve statistically reliable comparison results.

Keywords: Biomarker discovery, Network-based classification, Breast cancer
metastasis, Gene expression, Breast cancer prediction, Comparative analysis

Background

Breast cancer has been identified as the prevalent diagnosed disease and also been the
second most leading cause of death in western women [1]. Almost one woman out of 8
has the chance of being diagnosed with breast cancer over the course of their lifetime [2].
Spreading of cancer into the other organs within the body after the treatment/surgery
of cancer is termed as metastasis and about 5% of women are affected by breast can-
cer metastasis [3]. Tumor size, histology, lymph node status and other factors have been
considered for early diagnosis but later these aforementioned factors were found to be
insufficient. Lately, molecular profiling of primary breast cancerous tissues has enabled
the development of machine learning models for early prediction of metastasis. For pre-
diction purpose, the patient being metastasis-free for at least 5 years and metastasis
within 5 years are classified as good and poor outcomes respectively.

Prognostic gene biomarkers which includes the most differential genes between good
and poor outcome were proposed for the diagnosis of breast cancer metastasis [1, 4-6].
Surprisingly, gene biomarkers varied across different studies, posing a significant chal-
lenge of identifying robust gene biomarkers [7]. Part of this dilemma can be attributed to
the fact that multiple prognostic gene biomarkers may have similar and weak correlation
to the disease [7, 8]. Biologically, proteins work together within a cell to accomplish a bio-
logical process and cancer is caused by the de-regulation of those biological processes.
Motivated by the biological nature of proteins, some studies combined network informa-
tion (PPI, co-expression network, metabolic network, pathway information) with the gene
expression to acquire more accurate and robust network biomarkers [9-19]. These meth-
ods utilize gene modules (i.e., a set of genes as a network biomarker) as features which
are more distinguishable between good and poor outcome exploiting the given network
information and quantification of a gene module is done by averaging the expressions
of the genes within the module. Not all gene modules are used as features in the pre-
diction model; initial statistical significance test is conducted to obtain a smaller set of
gene modules with higher differentiability between the good and poor outcome in some
of the proposed methods [9, 13]. In other studies, edge (i.e., gene pair) biomarkers were
used for better prediction accuracy. In these methods, differential edge biomarkers are
used to capture the rewired interactions using co-expression network [20] and PPI [21]
as the background network. Another approach PhenoNet [22] was proposed to capture
differential regulation in PPI where pathway information is used as the baseline. Some
methods combining differential expression and gene regulatory networks have not only
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achieved better prediction accuracy but also helped identify biomarkers that are well asso-
ciated with the studied disease [23, 24]. However, some doubt still exist whether network
biomarkers offer better prediction accuracy and robustness compared to gene expression
alone [25, 26].

Each of the above-mentioned methods utilizes machine learning prediction model for
the discovery of the biomarkers. Different prediction models are found to be performing
better in different studies. For instance, Linear Regression, Logistic Regression (LR), Ran-
dom Forest (RF) and Linear SVM (SVM) are the models mostly used to predict the disease
in question. In biomarker discovery, the interpretability of the trained model is very cru-
cial to identify the genes responsible for the cause of the disease. Random forest is very
easy to interpret and it also provides a feature importance measurement which can be
easily used to identify potential biomarkers. Another advantage of random forest is that it
can be used as a feature selection tool to acquire the most responsible disease-associated
genes as well as used as an accurate prediction model [27, 28].

In this current study, we present two edge-based feature types based on PPI and CE
networks and tested on the Amsterdam Classification Evaluation Suite (ACES) dataset
which includes more than 1600 patients from twelve patient cohorts. Comparative anal-
ysis is done on the edge-based feature types compared to gene-based feature type from
several different aspects. Prediction accuracy of the feature types is evaluated for multiple
prediction models (i.e., RF, SVM, and LR models). Multiple evaluation metrics are con-
sidered to validate which feature type is more accurate. All of the comparisons are done
considering with/without the statistical significance. In addition, a novel procedure has
been proposed to evaluate the robustness of different feature types using the RF model
and to identify the most significant biomarkers for each of the feature types. Results reveal
that edge-based features provide not only more accurate prediction than gene-based fea-
tures under multiple performance metrics but also much more robust performance than
the latter. The top biomarkers from edge-based feature types are statistically more sig-
nificantly enriched in the biological processes that are well known to be related to breast
cancer metastasis.

Results and discussions

Evaluation of prediction performance using random forest

Thirteen (13) datasets (i.e., 12 separate studies and combined 12 studies as one
dataset) were used to evaluate the performance of prediction models. AUC com-
parison of RF model is shown in Fig. 1. Overall it can be observed that both
CEEdge and PPIEdge feature types perform better than gene-based feature type,
while some of the difference lack statistical significance. Very low AUC scores of
Loi, WangY and Zhang datasets suggest that the model predictions are almost like
random prediction. This is most likely due to the small dataset size and/or imbal-
anced class distribution of metastatic and non-metastatic patients in those datasets
(see Table 8).

For a better understanding of the prediction accuracy of different feature types, F1- and
Kappa-scores were also evaluated, which relied on specific class probability thresholds.
The first computation of both metrics was based on the class prediction by the RF using
the default probability threshold (0.5). The results for F1-score and Kappa are given in
Figs. 2 and 3 respectively. While the edge-based models are consistently better than the
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Gene 0.580 0.634
CEEdge 0.586 0.638
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Fig. 1 AUC evaluation of edge-based RF model compared to gene-based RF model. The highlighted entry as
“Bold” and “Underlined” indicates that the edge-based model outperformed gene-based model with
statistical significance. Significance of the p-value of the paired t-test between the edge- and gene-based
model AUCs is provided in the “P _Value” row under that edge-based feature type row. ***, ** and * indicate
that the p-value is lower than 0.0005, 0.005 and 0.05 respectively. “ns” indicates that the p-value is not
statistically significant. “Red” entry indicates that gene-based model outperformed edge-based model with
statistical significance. Colors are provided for better visualization of the results

gene-based model, it is evident that the values for both F1-score and Kappa in most mod-
els are fairly low, except the Hatzis, Minn and WangYE datasets. As many of the datasets
are highly imbalanced (with much more negative samples), the predicted probabilities
returned by the RF model mostly contained probabilities much lower than the 0.5 thresh-
old which resulted in very few positive predictions. A few NaN values for the p-value
of paired t-test were observed for the F1-score and Kappa comparison due to the values
being zero in all repetitions (i.e., all samples classified as negative).

Observing the problem of using the default probability threshold on producing mean-
ingful F1-score and Kappa for evaluation purposes, a different strategy was employed to
predict the class labels using the “optimal” probability threshold determined from the
ROC curve (for details see 2). The results for the F1-score and Kappa using the optimal
probability threshold are shown in Figs. 4 and 5 respectively. While the Kappa scores are
still very low in Loi, Miller, WangY and Zhang datasets due to their small dataset sizes
and/or skewed class distribution, the overall evaluation results based on F1-score and
Kappa are much stable than the results found using the default probability threshold of the
RF model. Based on this evaluation strategy;, it is again evident that the edge-based models
consistently outperformed gene-based model with/without statistical significance.

The overall performance comparison of RF models using different metrics is summa-
rized in Table 1. Based on AUC measurement, CEEdge outperforms gene-based feature
in 4 datasets with statistical significance and also outperforms in another 7 datasets albeit
with no statistical significance; PPIEdge outperforms gene-based feature in 7 datasets
whereas it is outperformed by gene-based feature in 4 datasets. Using F1-score and
Kappa, it is clear that CEEdge and PPIEdge performed much better than the gene-based
model. With the default class probability threshold, CEEdge and PPIEdge outperform
gene-based model in 12 and 10 datasets respectively for F1-score and in 11 and 8 datasets

Desmedt Hatzis Ivshina Loi Pawitan Miller Minn Schmidt Symmans WangY WangYE Zhang ACES
Gene 0.013 0.104 0.235 0.024 0.017 0.221 0.001 0.000 0.002 0.224 0.000 0.139
CEEdge 0.053 0.216 0.338 0.131 0.069 0.309 0.026 0.006 0.018 0.339 0.000 0.258

P Value % k% % %k Xk * %k %k Xk kK % kK % %k * Kk % %k K * % % %k % NaN * Xk k
PPIEdge 0.061 [OI844] 0.157 0.260 0.081 0.041 0.324 0.005 0.004 0.002 0.269 0.000 0.181
P Value * %k k *k * %k k * Kk kK * k¥ %k k ns * NaN * k¥ NaN %k k

Fig. 2 F1-score evaluation of edge-based RF model compared to gene-based RF model, with default class
probability threshold. The explanation of the highlighted entry in figure is similar as in Fig. 1
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Desmedt Hatzis lvshina Loi Pawitan Miller Minn Schmidt Symmans WangY WangYE Zhang ACES
Gene 0.004 0.027 0.034 0.002 0.010 0.117 0.001 0.000 0.002 0.113 0.000 0.082
CEEdge 0.012 0.069 0.068 0.059 0.028 0.139 0.020 0.002 0.013 0.196 0.000 0.153

P Value * % % Xk * kK * %k * %k * % * * %k k ns * * %k NaN * %k k
PPIEdge 0.029 JJ0ME0] 0.043 0.023 0.036 0.023 0.193 0.004 0.003 0.002 0.140 0.000 0.104
P Value %k k % % Xk ns ns * %k * * %k ns * NaN * %k NaN %k k

Fig. 3 Kappa evaluation of edge-based RF model compared to gene-based RF model, with default class
probability threshold. The explanation of the highlighted entry in figure is similar as in Fig. 1

respectively for Kappa. When the optimal class probability threshold is used, the com-
parison results are very similar, with CEEdge winning F1-score in 10 datasets and Kappa
in 10 datasets, and PPIEdge winning Fl-score in 8 datasets and Kappa in 9 datasets
with/without statistical significance.

Performance evaluation using support vector machines and logistic regression
AUC comparison for SVM and LR models between the gene- and edge-based feature
types are given in Figs. 6 and 7 respectively. From the results of the SVM model, it is evi-
dent that SVM has very poor performance in most of the smaller datasets such as Ivshina,
Loi, Miller, WangY, and Zhang. The AUC results are worse than the random prediction in
4 of the 13 datasets. A similar trend can also be observed from the result of the LR model.
The overall performance comparison of SVM and LR models using gene- and edge-based
feature types is provided in Table 2. Gene-based feature type outperforms edge-based fea-
ture types in most of the datasets (with or without statistical significance) for SVM model.
The poor performance of edge-based feature types in the SVM model is due to a large
number of edge features compared to gene features. The number of edge-based features is
at least 13 times larger than the number of gene features. Moreover, gene expression data
contains a lot of noisy features. When edge features were generated it contained much
more noisy features than the gene-based features. Another problem is that SVM does not
have any built-in feature selection method. A single SVM model built with these huge
number of edge features is unable to obtain a good decision boundary between metastatic
and non-metastatic class. On the other hand, CEEdge and PPIEdge feature type outper-
form gene-based feature type in 8 and 9 datasets respectively with/without statistical
significance in LR-based models. The good performance of edge-based LR models is due
to the L1 penalization in the model building process which provides sparse coefficients
for edge features and ensures only the discriminative edge features contributed to the
final model. Additionally, the optimized C parameter by inner cross-validation also leads
to good LR models for edge-based feature types.

The fact that the edge-based feature types perform significantly better than the gene-
based feature type in most of the analyzed datasets from multiple evaluation metrics

Desmedt Hatzis Ivshina Loi Pawitan Miller Minn Schmidt Symmans WangY WangYE Zhang ACES

Gene 0369 0.395 0303 0437 0.300 0.470 0.338 0367 0.168 M 0.091

CEEdge | 0.390 0.416 0313 0440 0307 0.446 0342 0377 0.164 0517 0.091 0.527

P_Value  *** ns Ex % ns ns ns EaX ns L3 ns ns

PPIEdge 0.402 [0i720] 0.418 0.319 0433 0.317 0469 0337 0382 0.172 | 05511 0.079 [0:526
* %k

P_Value  *** Lkt * ns % ns ns i ns ns * bl s

Fig. 4 F1-score evaluation of edge-based RF model compared to gene-based RF model, with optimal class
probability threshold. The explanation of the highlighted entry in figure is similar as in Fig. 1
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Desmedt Hatzis Ivshina Loi Pawitan Miller Minn Schmidt Symmans WangY WangYE Zhang ACES

Gene| 0.090 . 0.165 -0.004 [70:247 0.078 [0:215 0.203" 0215 | 0.007 [70:250" 0.000

CEEdge  0.112 0.181 0.007 | 0.244 0.089 0.230 0210 0.223 | 0.016 | 0.256  0.000
P_Value  *** ns x ns ns ns ® ns ns ns ns NaN
PPIEdge  0.125 [[61876] 0.183 0.006 | 0:237 | 0.110 0.197 = 0.233 | 0.011 | 0.246 | 0.000 [0:290|
P_Value  *** ns A ns ns ARk ns kA ns ns NaN x

Fig. 5 Kappa evaluation of edge-based RF model compared to gene-based RF model, with optimal class
probability threshold. The explanation of the highlighted entry in figure is similar as in Fig. 1

suggests a bona fide benefit of the network information in better classifying metastatic
and non-metastatic patients. It is worth noting that the number of edges was much larger
than the number of genes in the analysis, which underlines the effectiveness of RF and
LR’s implicit feature selection. It also suggests that edge-based features possess more dis-
criminative power than gene-based features albeit a huge number of features. On the
other hand, this indicates that a significant amount of feature redundancy may be present

in the edge-based datasets, which necessitates a detailed feature robustness analysis.

Performance comparison with existing methods

To further evaluate the discriminating power of edge-based features, the PPIEdge feature
type was used to construct multiple random forest classifiers and compared with two
state-of-the-art network-based methods. Park [10] produces genesets (group of genes)
using the linkage algorithm and uses the average of the genes belonging to a geneset as the
composite feature. In Feral [18], a geneset is created by taking it’s 9 neighbors randomly
for each gene. A feature group is created by applying the operators (mean, maximum,
minimum, median, variance) on the geneset for each gene. Sparse group lasso is used as
the prediction model.

Figure 8 shows the average AUC of different methods. Feral and PPIEdge methods
clearly outperform the Park method significantly whereas the AUCs of PPIEdge-based
classifiers (with the number of estimators range from 1000 to 5000) are slightly better than
Feral. Note that Feral (and many other existing methods for network-based classifiers) is
significantly more complex than our method. Feral used multiple group operators as well

Table 1 Performance summary of CEEdge and PPIEdge feature types compared to gene-based
feature type in RF models. “Win" indicates that the edge-based feature type outperformed
gene-based feature type and “Lose” indicates that the gene-based feature type outperformed
edge-based one. “SS” and “NSS” indicate that win/lose was statistically significant and not statistically
significant respectively

Evaluation Metric Type Feature Win Lose Win Lose Equal

Type SS SS NSS NSS /NaN

CEED: 4 0 7 2 0
AUC S

PPIEdge 7 4 1 1 0

CEEd 12 0 0 0 1
F1-score (0.5 probability threshold) 9e

PPIEdge 10 0 1 0 2

CEEd Il 0 1 0 1
Kappa (0.5 probability threshold) 9¢

PPIEdge 8 0 2 1 2

CEEd 4 1 6 2 0
F1-score (Optimal probability threshold) 9e

PPIEdge 7 1 4 0

CEEd 4 0 6 2 1
Kappa (Optimal probability threshold) 9¢

PPIEdge 6 3 3 1
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Desmedt Hatzis Ivshina Loi Pawitan Miller Minn Schmi

Gene 0.595 0.474 0.432 0.650 0.471 0.637 | )5 0.661 0.521
CEEdge  0.586 0.472 0.448 0.623 0.453 0.625 I 0.670 0.518
P_Value 0.262 0.000 0.924 0.309 0.003 0.318 0.492 0.013 0.035 0.939

PPIEdge| 0.601 [BIEBEI 0.476 0.430) 0.594 0.517 [0:65610:703" 0.645 | 0.435
P_Value 0.347 0000 0923 0.895 0.000 0011 0.157 0.003 0031 0070 0.008 0.576 0.000

Fig. 6 AUC comparison of edge-based and gene-based SYM models. The explanation of the highlighted
entry in figure is similar as in Fig. 1

as random neighbor selection to create a large number of feature groups, and a classifi-
cation algorithm tailored towards the feature types (sparse group lasso). It is unknown
whether the performance gain of Feral came primarily from the network-based features,
or the lasso-based regularization, or a combination of both. Performance evaluation of
complex models is often inflated, as the testing data may have played a role in the con-
struction of the “optimal” evaluation pipeline (explicitly or implicitly). In contrast to Feral,
our edge-based classifier used a very simple feature extraction method (pairs of genes
defined by a given network) and common underlying classification algorithms for both
gene-based and network-based classification. Therefore, the evaluation results are less
likely to be biased, and clearly show that the performance improvement originated from

the features.

Running time and memory requirement

To get an overview of the running time and memory requirement of the different machine
learning models, the running time and peak memory consumption for executing a single
fold of ACES dataset was evaluated and provided in Tables 3 and 4 respectively. RF model
seems to be the most efficient in both running time and memory consumption. Although
the LR model requires a lot of memory the execution time is much lower compared to
the SVM model. Overall, it is evident that the running time and memory consumption
CEEDge and PPIEdge consumed a lot of memory compared to the gene feature type
because of the huge number of features in edge feature types. Overall, the running time
of SVM model is extremely poor compared to the RF and LR models.

Robustness evaluation

For robustness analysis, RF model was used as the base model. A single RF model could
not provide feature importance values for all of the features in a feature type. Thus, we
employed an approach to building RF model for multiple iterations (with different seeds
to generate random numbers) on the same input dataset can increase the features sam-
pled and produce feature importance values for more features. We did an experiment to
determine the number of features having non-zero feature importance value with respect

Desmedt Hatzis Ivshina Loi Pawitan Miller Minn Schmidt Symmans WangY WangYE Zhang ACES

Gene 0.526 0.573 0.481 0.496 = 0.711 0.589 0.668
CEEdge 0.507 0.553 0.461 0.598 0.710 0.622 0.695

P_Value ns ns ns ns ns X% ns ns xAN
PPiEdge  0.601 [OI8AE 0.584 0.556 0.710  0.599 | 0.704 0.597 0.683
P_Value  **x* ns ns bt = *x ns ns x

Fig. 7 AUC comparison of edge-based and gene-based LR models. The explanation of the highlighted entry
in figure is similar as in Fig. 1
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Table 2 Performance summary of CEEdge and PPIEdge features compared to gene feature in SVM
and LR models. Table description is similar to as in Table 1

Prediction Model Feature Type Win SS Lose SS Win NSS Lose NSS Equal

SVM CEEdge 1 5 1 6 0
PPIEdge 1 6 4 2 0

IR CEEdge 4 0 4 5 0
PPIEdge 7 1 2 3 0

to the number of iterations of RFs. RF with 500 estimators (decision trees) was trained
for 10, 20, 50, 100, 200 iterations on PPIEdge feature type. Figure 9 shows the impact of
building RF model for multiple iterations. It is evident that the chance of being sampled
in the random subset of features in the node splitting of the decision tree increased as the
number of iteration increased. All of the features had a feature importance value after 200
iterations. The approach was employed to give each feature a chance of being in the top
feature list. Another advantage of our approach is that the bootstrapping process added a
statistical significance measure for the feature importance scores.

ACES dataset as a whole was used for the evaluation of feature robustness in our
analysis. Gene stability among the separate datasets was measured as the robustness in
previous studies [18]. Some problems such as uneven patient samples in different studies,
class imbalance problem, uneven distribution of breast cancer sub-types have a strong
impact on the stability of the founded gene signatures (data not shown). To circum-
vent this problem, in this study, the ACES dataset was partitioned into two equal-sized
sub-samples with similar class and subtype distributions.

Figure 10 shows the ratio of observed to the expected number of overlaps at different
levels of expectations. (The number of top features needed at different expectation lev-
els for each feature type is provided in Table 5). It was clearly observable that CEEdge
and PPIEdge feature types had much higher overlap ratios compared to gene-based fea-
ture type. This finding indicates that network integration with gene expression provided

0. 7348 0. 7357 0. 7365 0. 7367
0.7025
0.7 1
0.6 ,
0.5F ,
0.3F 8
02f 1
0.1F .
0
&

*
>

Average AUC
o
i
T

] S

<«® J & §

QQ\ & QQ\

Methods

Fig. 8 AUC comparison of PPIEdge feature type compared to Park and Feral. Error bar denotes the 95%
confidence interval. “PPI-1000” denotes RF model with 1000 decision trees (estimators) trained on PPIEdge
feature type. Value on the top of the bar indicates the average AUC of that method. ™" indicates the
significance of the p-value obtained from the paired t-test between the AUCs of Feral and PPl methods. “*”
and “**"indicate that the p-value is lower than 0.05 and 0.005 respectively
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Table 3 Runtime evaluation (in seconds) of RF, SVM and LR models for different feature types

Model Gene CEEdge PPIEdge
RF 122 435 46

SVM 126 1513.6 1614.5
LR 1.3 140.6 144.1

more robust features than the gene expression alone, which is in conformity with a previ-
ous study [18], contrary to two other studies [26, 29]. This discrepancy may be attributed
to the external feature selection for the network-based models where no external fea-
ture selection was employed in our evaluation. The mean difference in the overlap ratios
is also statistically significant (see Table 6). The ratio decreases as the expectation level
increases, which is expected because the significance of the selected features decreases as
the number of selected features increases, resulting in more noise in the selected features.

Gene ontology enrichment evaluation

To identify the biological functions of the top significant biomarkers (details of the pro-
cess of finding top biomarkers, see “Methods” section) for different feature types, Gene
Ontology analysis was done with the top 500 genes for each feature type and the results
are provided in Table 7. Cell cycle and cell cycle-related processes are in the top enriched
biological processes for all feature types, which confirms that the procedure of feature
ranking is complete. Other GO terms including antigen processing, cell-cell adhesion,
telomere maintenance, natural killer cell mediated cytotoxicity and focal adhesion, which
are well-known biological processes involved in metastasis are found to be significant
in some but not all feature types. Some other important signaling pathways such as T-
cell receptor, p53, Wnt, Jak-stat are also found in different feature types. Note that the
p-values of the enrichment score was adjusted for multiple hypothesis testing. From the
table, it is evident that PPIEdge has the most significant p-values for most of the GO
terms which indicates that PPIEdge is more biologically relevant than CEEdge feature
type, and potentially can provide important biological information for a better mechanis-
tic understanding of the development of metastasis. Moreover, our approach for top gene
identification is much robust because almost the same biological GO terms are found in
all the three feature types.

Conclusions

In this study, we propose two types of edge-based features based on protein-protein inter-
action network and gene co-expression network, and compare them with the gene-based
features under different evaluation contexts. Edge-based random forest (RF) and logistic

regression (LR) models outperformed corresponding gene-based models significantly in

Table 4 Peak memory consumption evaluation (in MegaByte (MB)) of RF, SVM and LR models for
different feature types

Model Gene CEEdge PPIEdge
RF 687.1 6162.8 67434
SVM 5318 61294 67374

LR 6115 7209.1 8140.7
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Fig. 9 Number of non-zero feature importance values after running RF for various number of iterations for
PPIEdge

predicting breast cancer metastasis for multiple evaluation metrics. The improved accu-
racy of RF and LR models can be partially attributed to the built-in feature selection
mechanism which utilizes the most discriminative edge features into the model. In con-
trast, the poor performance of edge features in support vector machine (SVM) model is
due to the much higher dimension of the edge-based features and the lack of internal
feature selection in SVM model. A novel statistical procedure is proposed for robustness
measure which is unaffected by the small sample size, class imbalance problem and the
uneven distribution of breast cancer sub-types within the sub-samples used for robust-
ness analysis. Although edge-based feature types are much larger in feature dimension
than the gene-based feature type, the experimental results reveal that edge-based fea-
tures are consistently much more robust than the gene-based features at different levels
of statistical significance. We also introduce a rigorous RF-based strategy for select-
ing top-ranked genes as biomarkers for each of the feature types. Top biomarkers are
found to be significantly enriched in breast cancer metastasis-related biological processes
not only for edge-based feature types but also for the gene-based feature type, which
clearly demonstrated the robustness and accuracy of the proposed approach in identify-
ing biomarkers responsible for metastasis. Finally, we conclude that the edge biomarkers

a0l ¥ @ Gene
“ — CEEdge
04 —+ PPIEdge

Observed / expected overlaps

Expected overlaps

Fig. 10 Robustness measure (y-axis) for Gene, CEEdge and PPIEdge features at different levels of expected
overlaps (x-axis)
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Table 5 The number of top features selected for different feature types with various expected
number of overlaps in feature robustness analysis

Expected overlaps 2 5 10 20 50
Gene 159 252 357 504 798
CEEdge 565 895 1268 1791 2836
PPIEdge 598 947 1342 1895 3001

are more robust and provide better prediction accuracy than gene expression alone, sig-
nifying the potential of edge-based biomarker discovery for the interpretation of the
underlying mechanism of the breast cancer metastasis.

Methods

Gene expression and network data

Gene expression dataset. The gene expression dataset for breast cancer metastasis was
collected from the Amsterdam Classification Evaluation Suite (ACES) [25]. ACES is a
compilation of twelve (12) separate breast cancer studies from NCBI’'s Gene Expression
Omnibus. The ACES dataset used only the 133A platform. It discarded the same GEO
patient IDs from multiple studies. Using R’s arrayQualityMetrics, array quality control
was checked for all the patient samples belonging to the same study. RLE (Relative Log
Expression) or NUSE (Normalized Unscaled Standard Error Plot) analysis were employed
to exclude the patient sample outliers from further examination. After executing all these
preprocessing steps, 1616 patient samples were selected in the final patient cohort. The
expression arrays of these 1616 patients were normalized altogether using the justRMA
method from R. Probe intensities were log-normalized and mean centered for each sam-
ple. Finally, 12750 gene probes remained in ACES dataset. Additionally, there were batch
effects in the dataset due to the collection of expression data from different location and
for different sub-types of breast cancer. R’s combat was employed to remove the batch
effects from the dataset. For details of the dataset and preprocessing steps, see the article
[25].

The class label of a patient is determined as negative (good) class if the patient was
free from recurrence of cancer for at least five (5) years. If cancer occurred again within
five (5) years for a patient, the patient is classified as a positive (poor) class. The detailed
information about the studies and the class distributions are provided in Table 8.

Protein-protein interaction network (PPI). The protein-protein interaction network
(PPI) was curated from the BioGrid (version 3.4.149) interaction database [30]. The net-
work only considered the edges if two genes were in the 12750 genes of ACES dataset.
After discarding self-edges, 180371 edges for 12750 nodes (i.e., genes) remained in the
PPI network.

Gene co-expression network (CE). A global gene co-expression network was used
as another network in the evaluation. Pearson correlation coefficients [31] between the

Table 6 p-values of the paired t-test between the robustness of gene- and edge-based feature types
for different expected overlaps

Expected overlaps 2 5 10 20 50

CEEdge p-value 5.3E-08 2.5E-11 24E-13 2.2E-15 1.8E-17
PPIEdge p-value 2.7E-16 7E-17 1.5E-17 8.3E-18 3.7E-19
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Table 7 Gene Ontology(GO) analysis of different feature types. The entries for Gene, CEEdge and
PPIEdge indicate the Benjamini corrected p-value for that GO term

GO term Gene  CEEdge PPIEdge
Cell cycle 2.3E-15 45E-19 2.0E-30
Sister chromatid cohesion 44E-5 1.7E-5 5.1E12
Anaphase-promoting complex-dependent catabolic process 44E-5 88E-6 14E-7
Negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 3.9-4 32E-4  1.1E-5
Antigen processing and presentation of exogenous peptide antigen via MHC class Il 7.1E-4  3.8E-2  2.9E-3
DNA repair 42E-1 3.8E-1 88E-3
Positive regulation of telomere maintenance via telomerase 3.6E-1 14E-2
Cell-cell adhesion 1.7E-2
T cell receptor signaling pathway 6.0E-1 9.7E-1 6.7E-2
p53 signaling pathway 49E-2  1.1E-1 64E-2
RB Tumor Suppressor/Checkpoint Signaling in response to DNA damage 76E-1  90E-1  12E-1
Wnt signaling pathway, planar cell polarity pathway 8.1E-1 53E-1  2.1E-1
Natural killer cell mediated cytotoxicity 9.5E-1 8.8E-1
Focal adhesion 9.7E-1
Small cell lung cancer 70E-1 63E-1 3.8E-2
Jak-STAT signaling pathway 9.7E-1  99E-1  95E-1
Tumor necrosis factor-mediated signaling pathway 6.5E-1 59E-1  2.1E-2

genes’ expressions in the ACES dataset was computed. If two corresponding genes were
present within the top-k most co-expressed genes from each other, an edge was created
in the network. To keep the network structure (i.e., number of edges and degree distribu-
tion) like the PPI network, the number of neighbors (k) was set to 84. The co-expression
network contained 161042 edges for 12750 nodes (i.e., genes) and the power-law distribu-
tion was observed for the degree distribution of the network; it is the typical distribution
of the real-world network [32].

Edge-based feature type. The edge-based feature type utilizes all the edges belonging
to a given network (i.e., PPI and CE network). Expression of an edge was calculated as
the sum of the expression of the two genes corresponding to that edge (Fig. 11). The
edge-based feature type from PPI and CE network are termed as “PPIEdge” and “CEEdge”
respectively.

Table 8 Specification of the studies in ACES

Dataset Geo accession no. No. of poor No. of good Total patient
Desmedt 7390 56 127 183
Hatzis 25066 102 48 150
Ivshina 4922 30 72 102
Loi 6532 24 33 57
Pawitan 1456 33 114 147
Miller 3494 21 68 89
Minn 2603 21 44 65
Schmidt m21 24 145 169
Symmans 17705 37 187 224
WangY 5327 10 42 52
WangYE 2034 88 169 257
Zhang 12093 9 112 121

ACES 455 1161 1616
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Edges Edge Exp.
AB | Exp(A) + Exp(B)
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Network

Fig. 11 Edge-based feature from a given network

Prediction performance comparison

To measure the prediction performance of different feature types, an RF model was built
on each of the feature types for the 13 datasets separately. An RF model with 100 esti-
mators (i.e., 100 decision trees) was used with other default settings from Sklearn API
[33] in python. The performance was measured using 5-fold cross validation for 100 rep-
etitions. Three types of metrics were used to evaluate the prediction performance of
different feature types. These are the area under the receiver-operating characteristics
curve (AUC) [34], the Cohen’s Kappa [35] and the F1-score [36]. AUC score is depen-
dent on the predicted probability vector for test instances by the prediction model (raw
predicted probabilities obtained from RF model). However, Kappa and F1-score are com-
puted by the class prediction of test instances rather than the predicted probabilities from
the prediction model. For evaluating Kappa and F1-score, two strategies were employed.
RF’s default class prediction was used to compute the metrics in one strategy. Another
strategy was to make a prediction of classes (i.e., two class prediction) using the optimal
probability threshold. For this experiment, 200 repetitions of 10-fold cross validation were
executed to evaluate the Kappa and F1-score. Each fold was considered as a test set and
80% and 20% (randomly chosen) of the remaining 9 folds were divided into training and
validation sets respectively. RF model was trained on the training set and optimal proba-
bility threshold was chosen using the predicted probabilities returned by the trained RF
model for the validation set instances. Optimal probability threshold was determined as
the shortest distance from the top-left corner to the ROC curve as defined in the Eq. 1
[37].

distance = \/ (1 — sensitivity)® + (1 — specificity)? (1)

Finally, predicted probabilities were obtained for the test set instances from the trained
RF model and the class labels were decided using the optimal probability threshold
obtained from the validation set. The negative class was set for the test instance whose
probability was lower than the optimal probability threshold; it was set to positive class
otherwise. Kappa and F1-score were recomputed to evaluate the prediction performance
of the feature type based on the second strategy. In this procedure, no bias/overfitting
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was introduced into the computation of Kappa and F1-score because optimal probabil-
ity threshold was determined by completely separate validation set rather than utilizing
training or test sets [38].

Linear kernel-based Support Vector Machine (SVM) and Logistic Regression (LR) were
also employed to evaluate the prediction accuracy of the different feature types. AUC
scores of 5-fold cross validation for 10 repetitions were measured for the comparison.
Default settings of Linear SVM from Sklearn API [33] in python were used. For LR model,
inverse of regularization strength C parameter was optimized by an inner 5-fold cross
validation on the training set. C parameter was searched in the set {0.001, 0.01, 0.1, 1, 10,
100}. Additionally, L1 penalty was set in the LR model to provide sparse feature coeffi-
cients. Finally, LR model was trained on the training set with the best C parameter found
by the inner cross validation.

Paired t-test between gene- and edge-based feature type was done to provide statisti-
cal significance of the comparisons. A p-value was computed for the comparison of the
mean of the feature types for each of the evaluation metrics. The statistical significance
threshold was set to 0.05 for each comparison. The comparative result was provided for
both statistical significance and insignificance.

Moreover, to evaluate the significance of the edge-based features (gene pairs), an RF
model trained on PPIEdge feature type was compared to two existing network-based
methods, Park [10] and Feral [18]. RF model with 1000, 2000, and 5000 estimators
(decision trees) was trained on the PPIEdge feature type to provide optimal predictive
accuracy. 10-fold cross-validation was repeated for 30 times for this comparison.

Robustness analysis

To measure the robustness of the feature types, we relied on the feature importance scores
returned by the RF model. The robustness of a feature type is measured by first drawing
random samples from the dataset and identify x top-ranked features by importance score
from each sampled dataset, and then calculate the ratio between the observed number of
common features identified from the two subsets of samples, and the expected number of
common features by chance. However, a few important details are worth noting, in order
to achieve statistically valid comparison results.

First, it is important to note that, because of the nature of its algorithm, RF model
calculates the importance score only for a randomly sampled subset of features, and
a zero value in the importance score simply means the feature was never sam-
pled in the model building process. While the number of estimators (decision trees)
needed to achieve a good prediction performance is usually small (=100 in our case)
and remains similar for gene-based and edge-based features, the number of estima-
tors needed for identifying top-ranked features and performing robustness analysis is
much larger, as the ranking is meaningful only when every feature has been sampled
(and scored) at least once. Also note that more estimators are needed for edge fea-
tures than gene features to achieve similar coverage, due to the large number of edge
features.

Another important issue is that in order to compare the robustness between edge fea-
tures and gene features, the number of selected top-features needs to be adjusted for
different feature types according to the number of features available. This is to ensure
that the same fold enrichment of observed/expected number of common features from
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different feature types should correspond to similar statistical significance. As an illustra-
tion, assume that we have 10,000 genes and 160,000 edges. Say that we choose top 200
genes from two independent sets of patients, we would expect 4 =(200*200/10,000) genes
in common between the two gene lists by chance. If there were actually 16 genes in com-
mon, the level of fold enrichment is 16 / 4 = 4, and the p-value is 2.4e-6 (fisher’s exact test
based on hypergeometric distribution). To compare the robustness between gene-based
features and edge-based features, say that we also choose top 200 edge-based features
from each dataset. The expected overlap between the two sets of edges is 200 * 200 /
160,000 = 0.25. An actual overlap of one edge would represent a 4-fold enrichment as in
gene-based features, but is statistically insignificant (p = 0.22). On the other hand, if we
choose proportionally (i.e., 200 x 160,000 / 10,000 = 3,200 edges), we would expect 3,200
* 3,200 / 160,000 = 64 common edges by chance, and an actual overlap of 256 edges would
represent the same 4-fold enrichment, but is statistically much more significant than the
gene-based features (p-value = 3.4e-78 for edges vs p-value = 2.4e-6 for genes). In compar-
ison, if we choose 800 edges from each dataset, the expected number of common edges
is 4 (same as in the case of gene features), and an actual overlap of 16 edges will represent
a 4-fold enrichment, with a statistical significance of 4.1e-6, which is very comparable to
the case of gene-based features.

With the above intuition, we decided to choose different number of features for
gene-based and edge-based features separately, while keeping the expected number
of overlaps the same for different types of features. Since the expected number of
overlaps between two lists of features is calculated as expected_#_of _overlaps =
(#_of _selected_top jeatures)2 /(total_#_of features), the number of selected top features

is determined by:

X = \/ total_#_of _features x expected_#_of _overlaps (2)

Finally, to achieve an unbiased evaluation of robustness, the ACES dataset was ran-
domly partitioned into two disjoint sub-samples, where each sub-sample had the same
number of patients and similar metastatic/non-metastatic patient ratio. Top features were
picked for a sub-sample from the returned feature importance vector for a feature type
after training the RF model by that sub-sample. Multiple RF models were trained with
different random states (i.e., random seed) on the same sub-sample to produce feature
importance values for each feature belonging to the sub-sample. The number of esti-
mators (decision trees) was chosen to be 300, 500 and 500 and the number of training
iterations was assigned as 50, 200 and 200 for Gene, CEEdge and PPIEdge feature types
respectively. Final feature importance of a feature was determined as the average of the
non-zero values returned by the multiple trained RF models. Feature importance vector
for each sub-sample was computed and top features were selected based on the highest
feature importance values. Top X genes were selected from the two corresponding sub-
samples and the robustness was measured as the ratio between the observed number of
overlaps to the expected number of overlaps between the top X features of the two sub-
samples. The process of splitting ACES into two sub-samples was repeated for 20 times
so that a vector of 20 overlap ratios were obtained for each feature type for a specific
expectation value (expected number of overlaps).
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Gene ontology enrichment analysis

Top genes were selected after conducting bootstrapping on 65% of the sub-sampled
data (with replacement) of ACES for 1000 repetitions for each of the feature types.
The number of estimators (i.e., decision trees) for gene, CEEdge, and PPIEdge feature
types were kept at 1000, 12630, and 14123 respectively. The number of estimators in
RF for CEEdge and PPIEdge was increased linearly according to the number of features
in the gene-based RF model. For instance, the number of estimators for CEEdge was
set to (1,000%161,042)/12,750 = 12630, where 1000 is the number of estimators in gene-
based RF model, and 12750 (161042) the number of gene (CEEdge) features. Increasing
the number of estimators in CEEdge and PPIEdge-based RF models provided a similar
percentage of non-zero feature importance measures for CEEdge- and PPIEdge-based
models compared to gene-based model. The final importance score of a feature (gene
or edge) was computed as the average of the non-zero feature importance values from
the feature importance values obtained from 1000 repetitions of RF (Recall that a zero
value in feature importance from RF model simply means the feature was not sampled
in the model building process). Sorting the final feature importance values in descend-
ing order for each feature type resulted in the feature ranking vector. Top 500 genes
were selected from the sorted feature ranking vector for gene ontology enrichment anal-
ysis of the gene-based features. Top 500 genes for edge feature type were selected by
pooling genes from the top-ranked edges until 500 genes were obtained. David Bioin-
formatics Resources 6.8 [39] web application was used for gene ontology enrichment

analysis.
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