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SUMMARY

Characterization ofmolecular mechanisms underlying pregnancy development of
sows is important for the genetic improvement of pig breeding traits, and also
provides resources for biomedical research on human pregnancy diseases. How-
ever, the transcriptome and metabolome across multiple developmental stages
of sow pregnancy were still lacking. In this study, we obtained 84 distinct RNA
sequencing and 42 metabolome datasets of pig blood across six development
stages from estrus to lactation. We confirmed the initial sequence and exonic
structural features, stage-specific molecules, expression or accumulation pattern
of molecules, the regulatory mechanism of transcriptome and metabolome, and
important pregnancy-related metabolites both in pigs and humans. In conclusion,
we proposed the key differences among the stages of sows from estrus to lacta-
tion in RNAs and metabolites and put forward key markers. These data results
were expected to provide essential resources for pig breeding and biomedical
research on human pregnancy disease.
1Institute of Animal Science,
Chinese Academy of
Agricultural Sciences, No. 2
Yuanmingyuan West Road,
Haidian District, Beijing
100193, China

2Lead contact

*Correspondence:
shilijun01@caas.cn (L.S.),
iaswlx@263.net (L.W.)

https://doi.org/10.1016/j.isci.
2022.105825
INTRODUCTION

It is helpful to employ animal models for validating medicinal medications and better understanding the

development of disease. In-depth research has been done using the pig as a model for neurological, car-

diovascular, and metabolic problems.1 Animal reproductive features have economic significance and are

largely sex specific.2 Many crucial events leading to the phenotypes of reproductive traits occur during

the pregnancy and breastfeeding periods. In the life of a pregnant sow, each day is never the same, and

every day marks the piglet’s growth. The endocrine status of the pregnant female and her nutritional status

are critical for successfully establishing and maintaining pregnancy.3 A dynamic, carefully planned process,

the metabolism, during pregnancy can have disastrous effects on both the mother and fetus if it fails.4

Before giving birth to a litter of piglets, a sow goes through a gestation period that lasts roughly three

months, three weeks, and three days. Pig pregnancies are complicated to establish and maintain and

depend on the conceptus and sow’s uterine endometrium communicating effectively, in which, the stages

of sows from estrus to lactation are often divided into eight parts, including days 0–9 (estrus and mating

period), days 10–35 (implantation period), days 36–110 (embryonic stage), and days 111–114 (last few

days before farrowing), 0–7 days postpartum (primary stage of breastfeeding), 8–20 days after delivery

(mid-lactation period), and after 21 days after delivery (late lactation).5–8

The significant changes in the transcriptome at different life stages may result in age-specific susceptibil-

ities to disease, reproduction, or exposure to contaminants. Several community-wide research studies

have been conducted to create a database of genes expressed throughout mice, humans, rats, and cattle

normal development,9–13 such efforts are less advanced for the pig, especially sows in gestation. Metab-

olites are the end product of gene transcription and protein expression, and also have the power to

control these processes.14 Analysis of the combined transcriptome and metabolome provides the infor-

mation to interpret key molecules from genes to phenotypes. In pigs, some combined transcriptome and

metabolome studies for important economic traits or drug reactions have been reported, such as feed

efficiency,15 hypoxia-related signature,16 and the responses of pigs orally inoculated with amoxicillin so-

lution,17 while studies on metabolites in various stages of pregnancy are still quite a few. Therefore, char-

acterizing the molecular mechanisms of the reproduction and lactation process of pigs based on the
iScience 26, 105825, January 20, 2023 ª 2022 The Author(s).
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Figure 1. Details of the study design

Blood samples were collected from six development (day 1, 30, 100, and 113 of pregnancy, and day 120 and 130 after

parturition) of seven pigs, and used for transcriptome and metabolome sequencing.
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transcriptome and metabolome data will be very necessary and can be a useful model for human preg-

nancy disorders.

In this study, tocomprehensively characterize the keymolecular underpinning the sowdevelopmental stage from

estrus to lactation, we sequenced the whole transcriptome and metabolome in seven Yorkshire pigs. We

obtained 126 sequence datasets (Figure 1), and perform the bioinformatics analyses for the RNAs and metabo-

lites. These data results will be a very useful resource to research pig breeding and human pregnancy disease.
RESULTS

Overview of the landscape of the pig transcriptome andmetabolome from estrus to lactation

We obtained 84 RNA-seq datasets of mRNAs, lncRNAs, and miRNAs throughout six stages in seven York-

shire pigs, which produced 3,910,124,178 clean reads (Table S1). A total of 14,810 protein-coding genes

(PCGs), 5,058 lncRNAs (2,701 known and 2,357 novel), and 1,889 miRNAs (340 known and 1,549 novel)

were expressed in the pig blood samples from estrus to lactation (Table S2). For each stage, the molecules

were expressed with expression valuesR0.1 in at least two samples, and six stages observed differences in

the numbers of transcriptomicmolecules (Table S3 and Figure 2A). In detail, stage day 113, the last few days

before farrowing, had the least amount of PCGs, lncRNAs, and miRNAs that were expressed in comparison

with the other five stages (Figure 2A). In all six stages, 13,295 genes, 4,209 lncRNAs, and 1,242 miRNAs were

commonly expressed molecules. Additionally, we obtained 42 metabolome datasets for metabolites and

identified 629 metabolites including 225 untargeted lipidomic metabolites (Table S2). Hierarchical clus-

tering analysis (HCA, Figure 2B) of metabolites of all 42 samples demonstrated that different stages ex-

hibited unique metabolite profiles. Morphologically or functionally similar stages, such as d ay 1 versus

(vs) day 30, day 100 vs day 113, and day 120 vs day 130, were clusteredmore closely to each other, indicating

that these stages shared a more consistent metabolite profile with the other stages (Figure 2B). In addition,

day 120 and day 130 were the stages of lactation, and they were distinguished from the other stages of

pregnancy (Figure 2B). We also calculated the correlation coefficient for every two groups and found

that day 1 and day 30, day 100 and day 113, and day 120 and day 130 had higher correlations (0.9721,

0.9567, and 0.9885) than other groups (Table S4). While, the HCA results of PCG, lncRNA, and miRNA

did not show obvious clustering distinctions between different stages (Figures S1A–S1C).

For PCGs, lncRNAs, miRNAs, and metabolites identified in all stages, the principal component analysis

(PCA) was performed, and the results of metabolites revealed the similarity between biological replicates

and differences between every two stages (Figure S2), while the observation of PCGs, lncRNAs, and miR-

NAs did not (Figures S3–S5). Furthermore, the PCA of PCGs, lncRNAs, and miRNAs between any two
2 iScience 26, 105825, January 20, 2023
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Figure 2. The landscape of sow blood transcriptome and metabolome

(A) Number of expressed PCGs, lncRNAs, and miRNAs in each stage.

(B) Hierarchical clustering analysis (HCA) of 629 metabolite abundance of 42 sow blood samples. Distance between samples was defined as distance = 1 -

Spearman correlation.

(C–F) Feature comparisons of transcript length, number of exons, number of isoforms per gene, and gene expression between lncRNA and PCG.

(G) Stage specificity of transcripts shown through tissue specificity index.

(H) Cumulative distribution of the average percentage of entire transcription or metabolites abundance contribute. The mean values for samples from the

same category were shown by lines. The proportion of transcripts arranged from the highest to lowest abundance was shown by the x axis. The accumulated

fraction of transcripts relative to all transcripts was indicated by the y axis.

(I) Cumulative distribution of the average percentage for all transcription that genes contributed.
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stages (Figures S2–S5) observed that some of them could be separated from each other, such as day 1 and

day 113, day 1 and day 130, day 30 and day 113, and day 30 and day 120. We did the variance partition anal-

ysis and calculated the variance of each PCG, lncRNA, miRNA, and metabolite explained by stage, individ-

ual, and residuals. We found that the variance explained by stage was as much as that by the individual for
iScience 26, 105825, January 20, 2023 3
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PCG, lncRNA, and miRNA, which may explain the mixed pattern of HCA analysis and PCA analysis that

occurred in PCG, lncRNA, and miRNA (Figure S1D). While for metabolite, the variance explained by stage

was far less than that explained by the individual; then, we could clearly distinguish samples by stage in

HCA and PCA analyses (Figure S1D).

By investigating the initial sequence and exonic structural features, we found that lncRNAs had shorter

lengths, fewer exons, lower transcript numbers, and lower expression compared to PCGs (Figures 2C–

2F). Through calculating the stage specificity of genes and metabolites, we detected that the novel miRNA

had a higher stage-specific index than other molecules, and the PCG had a lower stage-specific index (Fig-

ure 2G). For most molecule groups, a small number of hundred genes or metabolites were responsible for

approximately 50% of the transcription abundance (Figure 2H). Furthermore, the stage day 113 had the

highest fraction of total transcriptional output by genes (Figure 2I).

The development-dependent molecules expression and accumulation patterns

We used the DEseq2 package in R to identify transcriptome molecules that were DE (differentially

expressed) RNAs between any two stages. In total, 3,652 DE PCGs, 694 lncRNAs, and 184 miRNAs were

identified, and the overall DE transcriptome molecules were shown in (Table S5 and Figures 3A–3C).

The number of DE RNA molecules was significantly different in any pair of stages compared. In detail,

the adjacent stages day 1 vs day 30, day 100 vs day 113, day 113 vs day 120, and day 120 vs day 130 had

fewer DE RNAs than the other compared groups. Particularly, there were no DE lncRNAs and miRNAs

on day 1 vs day 30. Most DE PCGs and lncRNAs were detected on day 30 vs day 130 (1,389 DE mRNAs

and 259 DE lncRNAs) and day 100 vs day 130 (2,165 mRNAs and 430 DE lncRNAs). By the pairwise compar-

ison of metabolites between any two stages, there were 515 significantly different metabolites (SDMs)

identified (Table S5 and Figure 3D), and the comparisons between other stages and mid-stage of milk pro-

duction had more SDMs, such as day 1 vs day 130, day 30 vs day 130, and day 100 vs day 130.

For the DE lncRNAs, 4,040 strong lncRNA-mRNA correlation pairs (correlation >0.9 or <�0.9, and p < 0.05)

were predicted, which contained 235 lncRNAs and 1,015 PCGs (Table S6). By screening the PCGs within

100 kb upstream and downstream of the DE lncRNAs, we detected 2,421 genes cis-target for 666 DE

lncRNAs (Table S6). In total, we confirmed 3,312 target genes of 674 DE lncRNAs. For the miRNAs, we pre-

dicted 2,387 genes targeted for 106 DE miRNAs (Table S6).

To assess the development-dependent transcriptomic andmetabolomic activities throughout the development

of sow pregnancy, we conducted a stage-course differential PCG, lncRNA, and miRNA expression and metab-

olite accumulation analysis by comparing any two adjacent development stages. We showed the overall devel-

opment-dependent patterns in Figures 3E–3H and Table S7. In total, we observed 15, 8, 4, and 21 expression or

content patterns during day 1-day 30-day 100-day 113-120-day 130 for PCGs, lncRNAs, miRNAs, and metabo-

lites, respectively, in which, more PCGs were involved in the DMMMM and MDMMM patterns, and more miR-

NAs and metabolites were involved in MMMDM pattern. The vast majority of PCGs, lncRNA, miRNAs, and

metabolites stayed unchanged throughout the stages (over 73%), and no molecules’ expressions continuously

changed during the stage, either increasing (UUUUU) or decreasing (DDDDD). We performed the functional

annotation of molecules in the same pattern and found that they were distinct across different patterns

(Table S7). For instance, the PCGs at MUMDM and MMUMM patterns might respectively prepare for embryo

implantation and lactation, and they were individually involved in hemopoiesis and structural constituent of

the cytoskeleton, and protein and lipid metabolism process (Table S7).

Additionally, we conducted the time-series analysis to comprehensively reveal the development-dependent

transcriptomic and metabolomic molecules, and we respectively found nine, 11, eight, and eight profiles with

significant time-series feature in PCGs, lncRNA, miRNA, and metabolite (Figures 4 and S6, and Table S8). The

molecules containing 107 PCGs, 98 lncRNAs, and 61 metabolites in profile 39 kept rising from day 1 to day

130, and 150 PCGs, 64 miRNAs, and 26 metabolites continued to decline throughout the period. In these sig-

nificant profiles, 1,586 PCGs, 1,431 lncRNAs, 419 miRNAs, and 211 metabolites were included. Among them,

575 PCGs, 282 lncRNAs, and 70 miRNAs were DE molecules, and 174 metabolites were SDMs.

Stage-specific PCGs, lncRNAs, miRNAs, and metabolites

The PCGs, lncRNAs, miRNAs, andmetabolites with more than four times higher expression in a given stage

over any other stages were considered as the stage-specific molecules. In total, we identified 123, 23, 188,
4 iScience 26, 105825, January 20, 2023
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Figure 3. Results of Differentially expressed (DE) analyses

(A–C) respectively indicated the number of DE PCGs, lncRNAs and miRNAs between any two stages, and the digital in box was the number.

(D) Number of significantly different metabolites (SDMs) between any two stages, and the digital in box was the number.

(E–G) respectively indicated 15, eight, and four expression patterns from day 1 to day 130 for DE PCGs, lncRNAs, and miRNAs.

(H) 21 SDMs content change patterns from day 1 to day 130.
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Figure 4. 50 patterns encompassing the PCGs and lncRNAs during different stages using STEM

(A) Result of PCGs.

(B) Result of lncRNAs. Profiles ordered by significance. The number in the top left-hand corner of a profile box was the profile ID number, and the number in

the bottom left-hand corner of a profile box is the p-value. The colored profiles had a statistically significant number of genes assigned. Non-white profiles of

the same color represent profiles grouped into a single cluster.
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and 12 stage-specific PCGs, lncRNAs, miRNAs, and metabolites, respectively (Figures 5A–5D, Table S9).

The stage of day 113 had the most specific PCGs (65) and lncRNAs (11), and day 30 and day 120 had the

most specific miRNAs (Figures 5A and 5B, Table S9).

Furthermore, the Phi coefficient was calculated to find the exclusive PCGs, lncRNAs, and miRNAs in each

stage. Mean square contingency coefficient (Phi coefficient) R 0.6 indicates that the molecule was ex-

pressed in (nearly) all samples from the stage (it was exclusive of the stage), and not almost expressed in

other stages. A molecule with Phi coefficient%�0.6 indicated that it was (nearly) not expressed in samples

from the stage and it was almost expressed in other stages. Thousands of DE molecules were identified,

while the stage-preferential expression molecules were only 11 (Figure S7). We also considered the 11 mol-

ecules as the stage-specific gene types (Table S9), in which, six were exclusive to stage day 130, and four of

them were lncRNAs.

We performed the functional annotation for the stage-specific molecules and found that they had a significant

relation with immune response and oxygen carrier activity (Table S9). In addition, the stage-specific molecules

had different enrichments across development times (Table S9). For instance, themolecules at stage day 1 were

strongly involved in the lipid and glycogen metabolic process, and the molecules at stages day 113 and day130

were significantly associated with protein and amino acid metabolism (Table S9).

Molecule co-expression network analysis

To find co-expression modules associated with sow gestation and lactation, we used PCGs, lncRNAs,

miRNAs, and metabolites to conduct an unsigned weighted gene network analysis (WGCNA). A total of

26 co-expression modules including PCGs, lncRNAs, miRNAs, and metabolites were discovered (Fig-

ure 6A). Figure 6B displayed the number of molecules in each module. The expressions of six modules

were noticeably (Bonferroni p-value < 0.05, Figure 6C) stage specific, namely, two, one, one, one, and

two co-expression modules for days 1, 30, 100, 113, and 130, respectively (Figure 6A). According to the

functional annotation, the stage-specific modules were strongly associated with signal transduction, meta-

bolic process, immune responses, and cellular processes (Figure 6C and Table S10). The Darkgreen was

highly associated with stages days 1 and 30, in which, 19 LysoPC metabolites were included. The purple

module had 97 TG metabolites significantly associated with day 100, which might be needed for labor

and lactation. 31 PC metabolites in the Lightgreen module were significantly related to milk production

(day 130). Numerous PCGs, lncRNAs, miRNAs, and metabolites with unclear function were co-expressed

withmolecules annotated in the samemodules, serving as helpful resources for pigs’ molecular annotation.

Construction of regulatory networks of PCGs, lncRNAs, and miRNAs

We studied whether the stage-specific PCGs were strongly involved in targets of certain lncRNAs and miR-

NAs based on target genes for DE lncRNAs and miRNAs between the comparisons in any two stages.

Table S11 observed the detailed summary statistics. These enriched lncRNAs and miRNAs might strongly

influence sow pregnancy development. For instance, the targets of lncRNAs ENSSSCG00000041596 and

XLOC_522486 were specifically expressed on day 113 and day 1, respectively (Figure 7A). The targets of

lncRNA ENSSSCG00000041596 were significantly engaged in chaperonin-containing T-complex and com-

plement activation (Table S11). The targets of miRNA ssc-miR-7142-3p specifically expressed at day 113

(Figure 7A) were significantly enriched in protein-glutamine gamma-glutamyltransferase activity, positive

regulation of ATPase activity, and peptide crosslinking (Table S11).

We also conducted a competing endogenous RNA investigation for identifying the regulatory influence of

lncRNAs on the expression of PCGs by mediating miRNAs during the stages. Table S12 provided a detailed

description of the significantly (p < 0.05) negative correlation of miRNA-target pairs, containing 632 DE

PCGs, 349 DE lncRNAs, and 73 DEmiRNAs. Out of the 73 DEmiRNAs, 11miRNAs were found in the significant

module Lightcyan connected with day 113, and one miRNA in the Darkgrey module was strongly associated

with day 130. The Figure 7B displayed the lncRNA-miRNA-mRNA interactions for these 12 miRNAs.
iScience 26, 105825, January 20, 2023 7
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Prediction of TFs

For the DE and stage-specific PCGs, and the PCGs in significant modules of WGCNA, we predicted their

bound TFs. In total, 3,762 PCGs were enriched with 33 significant motifs (E-value < 0.05, Figure S8), which

were annotated 297 TF. Among them, 40, four, and two TFs were DE PCGs, stage-specific PCGs, and mol-

ecules in the significant modules of WGCNA, respectively (Table S13).

There were four TFs (EGR1, EGR3, KLE1, and MSGN1) involved in the development of sow pregnancy that

showed stage-specific expression. For example, EGR1 and EGR3 were the stage-specific genes on day 1 and

respectively participated in the locomotor rhythm and neuromuscular synaptic transmission (Table S9).

MSGN1 as a basic helix-loop-helix transcription factor involved in the protein dimerization activity, showed

stage-specific expression at day 120 (Table S9), and activated the genes in the Notch pathway, which acted

on mammary stem cells to promote self-renewal.18,19 For the PCGs in the significant modules of WGCNA,

HIC1 and EGR2 were identified as the TFs in the significant Darkgreen module of day 1 and day 30 (Figure 6C,

Table S10), and involved in transcription regulatory and motor neuron axon guidance.
Integrated analysis of metabolome and transcriptome in development stages

To analyze the regulatory network of the SDMs, a correlation analysis of DE PCGs/lncRNAs/miRNAs and

SDMs was performed in each group. Correlation analysis showed that a total of 2,936 DE PCGs, 517

lncRNAs, and 147 miRNAs were significantly correlated with 300, 284, and 258 SDMs, respectively (corre-

lation value R0.7 or % �0.7 and p < 0.05, Tables S14 and S15). One stage-specific miRNA was strongly

correlated with four metabolites at day 30, and one PCG, two lncRNAs, and two miRNAs as the specific

molecules at day 100 were significantly correlated with seven metabolites (Tables S14 and S15). In the sig-

nificant modules of WGCNA, 99 transcriptomemolecules were significantly correlated with 45 metabolites.

Numerous metabolites were positively or negatively regulated by multiple RNAs and a single transcrip-

tome molecule could regulate multiple metabolites (Tables S14 and S15). For example, 11,14,17-Eicosa-

trienoic acid(FFA(20:3n3) was significantly correlated with 13 DE PCGs in comparison group day 1 vs day

30 (two negatively correlated and 11 positively correlated, Figure 8A). PCG ENSSSCG00000036983 of
8 iScience 26, 105825, January 20, 2023
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Figure 6. The weighted gene co-expression network analysis (WGCNA)

(A) Associations of modules with stages. The Bonferroni method was used for themultiple corrected statistical significance. Each cell contains the correlation

and corrected p-value.

(B) Bar chart indicated numbers of transcriptome and metabolome molecules detected in individual modules.

(C) Heatmap showed the expressions of RNAs and metabolite accumulation in the six significant modules. The important functional enrichments,

expressions of TFs, and motif of representative sequence were shown nearly to the corresponding module.
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significant module-related day 1 was annotated to be positively correlated with ChE(20:4)*ChE(20:4) and

PC(38:4)*PC(18:0_20:4) (Figure 8B). Stage-specific miRNA 1_737 of day 100 was positively correlated

with seven metabolites (Chenodeoxycholic acid, hyocholic acid, chenodeoxycholic acid glycine conjugate,

glycohyocholic acid, pregnenolone sulfate, pregnanolone sulfate, and X-MZ397RT475, Figure 8C). Accord-

ing to these results, a complex regulatory mechanism played between the variation in metabolite accumu-

lation and transcriptome molecule expression during the stages of pig from estrus to lactation.

Combined analysis with the important pregnancy-related metabolites of human

We searched the reported studies of metabolites related to human pregnancy and discovered 50 metab-

olites commonly identified in humans and pigs. These 50 metabolites (Table S16) identified in humans
iScience 26, 105825, January 20, 2023 9
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Figure 7. Regulatory networks of PCGs, lncRNAs, and miRNAs

The red, blue, and yellow indicated lncRNAs, PCGs, and miRNAs, respectively.

(A) The regulatory networks of stage-specific molecules for two lncRNAs and four miRNAs with their target genes.

(B) The lncRNA-miRNA-mRNA interactions including 12 miRNAs identified in the Lightcyan module associated with day 113 and Darkgrey module strongly

associated with day 130.
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mainly were from four studies,4,20–22 in which, eight metabolites were important markers for human preg-

nancy. These eight metabolites were also the markers for pig pregnancy and were significantly detected by

the DE analysis, stage-specific analysis, and WGCNA. Furthermore, four (4-Vinylphenol sulfate, choline,

pregnanolone sulfate, and pregnenolone sulfate) of the eight metabolites were involved in benzoate meta-

bolism, glycine, serine and threoninemetabolism, progesteronemetabolism, and steroid hormone biosyn-

thesis, respectively, and they had strong correlations with 214 PCGs, 34 lncRNAs, and 42 miRNAs. We

showed the regulatory networks of these four key metabolic indicators in Figures 9 and S9–S11.
DISCUSSION

In the present study, we built a sow RNA-Seq transcriptomic and metabolomic BloodMap including six stages

from estrus to lactation. Thousands of molecules were commonly expressed across all six stages, despite some

PCGs, lncRNAs, miRNAs, and metabolites displaying a stage-specific differential expression. Interestingly, day

113 had more specific molecules than other stages, which might provide for the body’s needs for upcoming la-

bor and lactation. The stage-specific molecules are well correlated with the biological functions of each stage.

For example, day 100-specific lncRNAswere activated in embryonic development. These indicated that the sow

might have various regulatory systems throughout the breeding development.

We observed an obvious clustering distinction of metabolites between different stages using HCA and PCA an-

alyses, which indicated the similarity between biological replicates anddifferences between stages. For the tran-

scriptome molecules, the clustering distinctions seemed weak, while some of stages could be separated from

each other by the PCA results. Variance partition analysis confirmed that the individual effects were dominant

factor affecting the expression of transcriptomemolecules. To eliminate individual factors, we carefully conduct-

ed the differential expression analysis by considering the individual effect using the model ‘‘design =� Stage +

Individual’’. By DE analysis, we found that the comparison groups day 30 vs day 130 and day 100 vs day 130 had

thousands of DE PCGs, lncRNAs and miRNAs, and SDMs, which suggested a significant difference between

pregnancy and lactation. The same expression pattern of molecules suggested their similar function. Four

stage-specific TFs, EGR1, EGR3, KLF1, andMSGN1, were found tobe associatedwith embryo implantation, fetal

blood supply, and embryo development.23–26 Two TFs, EGR2, and HIC1, in the significant modules associated

with day 1 and day 30, were suggested to be involved in marking mammary morphogenesis and healthy.27,28

Hence, these RNAs might be the key molecules regulating the development of sow pregnancy.

The identification of SDMs showed that the metabolite content of each stage was strongly different, while the

stage-specificmetabolite was relatively few, which was due to correlations amongmetabolites. By theWGCNA,

we obtained 289 metabolites significantly associated with the development stages of the sow from estrus to
10 iScience 26, 105825, January 20, 2023



11,14,17-Eicosatrienoic acid(FFA(20:3n3) -0.76 0.57 0.62 0.71 0.68 0.63 0.82 0.76 0.64 0.07 0.74 0.70 0.58 0.72 0.76 0.60 0.66 0.74 0.71 0.70 0.74 0.69 0.67 0.67 0.70 0.62 0.67 -0.68 0.71 -0.78 0.67

5,8,11-Eicosatrienoic acid(FFA(20:3n9) -0.60 0.70 0.72 0.76 0.69 0.71 0.72 0.78 0.51 -0.06 0.60 0.59 0.70 0.51 0.69 0.68 0.70 0.74 0.72 0.70 0.80 0.70 0.72 0.72 0.74 0.67 0.64 -0.63 0.73 -0.64 0.41

Docosahexaenoic acid(FFA(22:6) -0.53 0.40 0.39 0.36 0.36 0.40 0.56 0.52 0.52 0.11 0.35 0.70 0.46 0.64 0.68 0.41 0.37 0.47 0.45 0.46 0.53 0.49 0.42 0.42 0.43 0.43 0.53 -0.73 0.54 -0.60 0.53

Eicosadienoic acid(FFA(20:2n6) -0.60 0.68 0.67 0.74 0.65 0.66 0.65 0.74 0.44 -0.07 0.59 0.55 0.65 0.44 0.64 0.64 0.65 0.71 0.67 0.65 0.78 0.64 0.67 0.68 0.69 0.63 0.59 -0.63 0.68 -0.64 0.38

Isovalerylcarnitine(AcCa(5:0) -0.49 0.61 0.60 0.59 0.62 0.61 0.79 0.75 0.71 -0.07 0.47 0.66 0.50 0.65 0.72 0.54 0.61 0.74 0.72 0.72 0.63 0.70 0.71 0.72 0.70 0.61 0.70 -0.45 0.78 -0.61 0.77

Linoleic acid(FFA(18:2(9Z,12Z)) -0.59 0.74 0.78 0.85 0.77 0.77 0.73 0.82 0.50 -0.07 0.66 0.52 0.74 0.51 0.70 0.73 0.76 0.76 0.77 0.75 0.84 0.74 0.77 0.76 0.78 0.72 0.66 -0.60 0.75 -0.68 0.39

LysoPC(22:4/0:0) 0.52 -0.26 -0.25 -0.26 -0.27 -0.24 -0.51 -0.34 -0.35 -0.25 -0.55 -0.58 -0.30 -0.62 -0.44 -0.25 -0.29 -0.31 -0.28 -0.31 -0.32 -0.35 -0.28 -0.29 -0.28 -0.25 -0.38 0.73 -0.38 0.69 -0.49

N-Acetylornithine -0.58 0.38 0.33 0.32 0.36 0.31 0.66 0.44 0.61 0.11 0.49 0.69 0.30 0.67 0.61 0.34 0.41 0.60 0.40 0.50 0.46 0.47 0.40 0.46 0.43 0.39 0.60 -0.63 0.54 -0.65 0.77

Oleic acid(FFA(18:1(9Z)) -0.59 0.65 0.60 0.72 0.61 0.61 0.60 0.68 0.41 -0.06 0.59 0.54 0.55 0.38 0.59 0.58 0.60 0.70 0.62 0.61 0.75 0.59 0.62 0.64 0.65 0.58 0.54 -0.60 0.62 -0.62 0.42

Palmitoleic acid(FFA(16:1) -0.55 0.70 0.68 0.72 0.66 0.69 0.71 0.78 0.55 -0.09 0.52 0.66 0.62 0.50 0.71 0.65 0.66 0.76 0.73 0.69 0.81 0.70 0.72 0.73 0.74 0.67 0.63 -0.57 0.71 -0.58 0.52

PC(36:5e)*PC(36:5e) -0.42 0.51 0.43 0.39 0.39 0.50 0.58 0.58 0.50 0.40 0.36 0.73 0.52 0.60 0.57 0.39 0.39 0.53 0.51 0.50 0.41 0.53 0.53 0.49 0.50 0.49 0.49 -0.49 0.65 -0.57 0.58

PC(38:7e)*PC(38:7e) -0.50 0.21 0.14 0.16 0.19 0.21 0.46 0.36 0.42 0.26 0.29 0.65 0.20 0.64 0.53 0.13 0.17 0.32 0.31 0.29 0.25 0.31 0.27 0.24 0.24 0.20 0.34 -0.53 0.41 -0.56 0.70

PC(40:7e)*PC(40:7e) -0.41 0.27 0.18 0.16 0.18 0.24 0.46 0.36 0.53 0.36 0.25 0.80 0.24 0.60 0.55 0.23 0.18 0.42 0.31 0.33 0.33 0.37 0.29 0.31 0.29 0.31 0.43 -0.63 0.44 -0.51 0.68

PE(40:6p)*PE(18:0p_22:6) -0.47 0.36 0.35 0.43 0.46 0.44 0.56 0.55 0.49 0.29 0.45 0.57 0.31 0.71 0.56 0.30 0.36 0.45 0.55 0.50 0.37 0.49 0.51 0.44 0.42 0.39 0.47 -0.46 0.59 -0.71 0.78

PE(40:7e)*PE(18:1e_22:6) -0.46 0.36 0.35 0.43 0.44 0.45 0.55 0.56 0.48 0.32 0.44 0.58 0.32 0.69 0.55 0.30 0.34 0.45 0.55 0.49 0.36 0.49 0.52 0.44 0.43 0.39 0.46 -0.47 0.59 -0.70 0.76

Pregnanolone sulfate 0.37 -0.35 -0.20 -0.26 -0.23 -0.20 -0.43 -0.31 -0.40 -0.26 -0.57 -0.72 -0.27 -0.44 -0.41 -0.23 -0.25 -0.31 -0.26 -0.27 -0.35 -0.29 -0.16 -0.22 -0.28 -0.24 -0.27 0.63 -0.24 0.44 -0.46

TG(46:2)*TG(14:0_14:0_18:2) -0.30 0.24 0.13 0.15 0.06 0.26 0.12 0.25 -0.03 0.71 0.20 0.38 0.39 0.19 0.09 0.10 0.05 0.14 0.13 0.09 0.01 0.14 0.18 0.10 0.14 0.20 0.02 -0.23 0.32 -0.33 0.02

Valerylcarnitine(AcCa(5:0) -0.45 0.27 0.21 0.29 0.29 0.24 0.46 0.42 0.39 -0.03 0.37 0.44 0.15 0.51 0.49 0.12 0.24 0.37 0.39 0.39 0.28 0.32 0.35 0.32 0.30 0.20 0.36 -0.44 0.47 -0.57 0.74

X-MZ397RT475 0.37 -0.35 -0.20 -0.26 -0.23 -0.20 -0.43 -0.31 -0.40 -0.26 -0.57 -0.72 -0.27 -0.44 -0.41 -0.23 -0.25 -0.31 -0.26 -0.27 -0.35 -0.29 -0.16 -0.22 -0.28 -0.24 -0.27 0.63 -0.24 0.44 -0.46
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ChE(20:4)*ChE(20:4) 0.23 0.82 0.44 0.65 0.62 0.37 0.56

Arachidonic acid(FFA(20:4) 0.66 0.15 0.53 0.21 0.16 0.87 0.07

PC(37:4)*PC(17:0_20:4) 0.49 -0.20 0.60 0.22 0.23 0.80 0.13

PC(38:4)*PC(18:0_20:4) -0.05 0.87 0.37 0.79 0.78 0.22 0.76

LysoPC(16:1/0:0) 0.78 -0.43 -0.34 -0.44 -0.44 0.34 -0.50

LysoPC(16:0/0:0) 0.89 -0.49 -0.20 -0.35 -0.37 0.51 -0.45

LysoPC(0:0/17:0) 0.70 -0.15 0.52 0.09 0.01 0.81 -0.10

LysoPC(18:2/0:0) 0.81 -0.49 -0.15 -0.53 -0.62 0.39 -0.69

LysoPC(O-18:1/0:0) 0.83 0.15 -0.09 -0.21 -0.34 0.28 -0.44

LysoPC(18:0/0:0) 0.92 0.15 0.26 0.10 0.03 0.76 -0.09

LysoPC(0:0/18:0) 0.91 0.02 0.36 0.03 -0.02 0.83 -0.15

LysoPC(0:0/20:2) 0.65 -0.14 0.73 0.07 0.07 0.93 -0.04

LysoPC(20:2/0:0) 0.81 -0.20 0.54 -0.03 -0.05 0.92 -0.17

Guanosine 0.92 0.03 0.12 0.20 0.11 0.79 0.00

Hypoxanthine 0.79 -0.30 0.02 -0.22 -0.17 0.61 -0.25

Guanine 0.74 -0.04 0.43 0.22 0.28 0.90 0.17

X-MZ245RT460 0.48 0.44 0.70 0.61 0.53 0.87 0.43

X-MZ233RT601 0.25 0.55 0.81 0.53 0.42 0.58 0.33

Niacinamide 0.47 0.19 0.65 0.58 0.56 0.88 0.46
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Figure 8. Heatplot of the associations between transcriptome and metabolome

PCGs, lncRNAs, and miRNAs in rows and metabolites in columns observed the interrelation between RNAs and metabolites. The positive and negative

correlations were indicated by red and blue, respectively.

(A) Heatplot of the correlations between DE RNAs and SDMs on day 1 vs day 30.

(B) Heatplot of the correlations between stage-specific RNAs and metabolites of day 100.

(C) Heatplot of the correlations between RNAs and metabolites of significant modules associated with day 1.
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lactation, and these metabolites might be the marker for the corresponding stage. In addition, these metabo-

lites might be the important markers of human pregnancy to research-related metabolic diseases. For instance,

the accumulation of pregnenolone sulfate increased in the stage of pregnancy in humans,4 and was significantly

high on day 100 of pigs’ pregnancy, which indicated that the pregnenolone sulfate had a similar function in hu-

mans and pigs. Furthermore, we conducted the integrated analysis of metabolome and transcriptome to show

that many transcriptomemolecules andmetabolites were involved in the same functional pathways of a specific

stage. The expression of transcriptome RNAs exhibited a strong association with the metabolite, which indi-

cated the metabolites had the opportunity to serve as the gene expression markers.

According to the DE and time-series analyses, stage-specific molecules identification, WGCNA, and inte-

grated analysis of metabolome and transcriptome, many promising candidate molecules involved in the

reproductive processes were detected. For instance, nine PCGs (SLC45A1, MAL, EGR3, EGR1, HBB,

SNCG, NR4A1, AHSP, and DNM3), one lncRNA (ENSSSCG00000045096), and one metabolite (glycohyo-

cholic acid) were jointly confirmed by DE and time-series analyses, and stage-specific molecules identifica-

tion. EGR3 and EGR1 were also observed in the prediction of TFs. SLC45A1 was associated with
iScience 26, 105825, January 20, 2023 11
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Figure 9. Regulatory networks of metabolite pregnanolone sulfate commonly identified in humans and pigs

(A) The transcriptome and metabolite correlation. The tan, blue-green, and red indicated PCGs, lncRNAs, and miRNAs, respectively. Pregnanolone sulfate

was mainly involved in progesterone metabolism. The circles and triangles indicated negative and positive correlations, respectively.

(B) The ceRNA regulatory network of PCGs, lncRNAs, and miRNAs involved in the interrelated network.
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development of infancy,29 andMAL was highly expressed in early endosome membranes.30 HBB was asso-

ciated with a variety of physiological properties and its p.K65R SNP had strong impacts on reproductive

performance of Awassi ewes.31 SNCGwas overexpressed in various types of human tumors of reproductive

organs, such as breast, ovary, and cervix.32–34 NR4A1, an immediate-early gene encoding an orphan nu-

clear receptor, had a key role in the ovulatory process, and was a potential molecular marker in selection

for increasing litter size in pigs.35 AHSP had protection against oxidative stressors, which were related to

miscarriage.36 DNM3 was the member of a superfamily of large GTPase proteins dynamin, and dynamin

polymers contributed to the membrane fission and scission of nascent vesicles from parent membranes.37

The function research of lncRNA ENSSSCG00000045096 was limited, while its target PCG CDS1 was iden-

tified to own significantly higher expressions on day 113, day 120, and day 130 than that on day 30. The

previous study proposed that CDS1 was an essential gene for cell growth,38 and was linked to DNA repli-

cation.39 Glycohyocholic acid was reported to be a potential marker of a pregnancy-specific liver disor-

der.40 These implied that the key molecules might be involved in embryo implantation and development

process of pigs, and be the important genetic markers.

The datasets were accessible by the NCBI database and supplemental information of this study, which con-

sists of 42 samples from multiple development stages across the sow pregnancy. It may be used to detect

novel genes, lncRNAs, and miRNAs, and to better annotate the pig transcriptome. The profile of a novel

gene, lncRNA or miRNA expression, and metabolite accumulation throughout 42 samples of this study

can be used as the fingerprint to infer its normal biological function in the development of sows’ pregnancy.

In addition, stage-specific expression analysis, expression patterns of key molecules, and integrated anal-

ysis of metabolome and transcriptome could be used to examine the pharmacological and toxicological

effects of medications that may differ depending on the stage of human pregnancy. Moreover, the

BloodMap reported here may be utilized as a foundation for cross-species comparison, improving the

way that findings on preclinical animal safety are translated into health effects in humans.
Limitations of the study

The present study provided a relatively large dataset and suggested the important biomarkers for mammal

pregnancy with their preliminary regulatory mechanism. Our research was the early bioinformatics analysis;
12 iScience 26, 105825, January 20, 2023
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herein, the validation of these markers was lacking. Another limitation was the small sample size, resulting

in a non-negligible individual effect, while we used the model ‘‘design = � Stage + Individual’’ to decrease

the influence of individual effects on the difference analysis.
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Health pig blood tissue Changping Experimental Base of the Institute of

Animal Sciences, Chinese Academy of Agricultural

Sciences (Beijing, China)

https://ias.caas.cn/

Deposited data

Raw and analyzed data This paper PRJNA857151

Raw data of metabolite This paper Table S2

Experimental models: Organisms/strains

Pig: Yorkshire pig Changping Experimental Base of the Institute of

Animal Sciences, Chinese Academy of Agricultural

Sciences (Beijing, China)

https://ias.caas.cn/

Software and algorithms

UPLC-HRMS instrument Thermo Scientific N/A

AcquityTM HSS C18 column Waters Co. N/A

AcquityTM BEH amide column Waters Co. N/A

Accucore C30 core-shell column Thermo Scientific N/A

Ensembl database https://asia.ensembl.org/Sus_scrofa/Info/Index?db=core N/A

XCalibur software Thermo Scientific N/A

STAR http://star.mit.edu/ http://star.mit.edu/

Cytoscape software https://cytoscape.org/ https://cytoscape.org/

BEDTools https://bedtools.readthedocs.io/en/latest/ https://bedtools.readthedocs.io/en/latest/

StringTie https://bioinformaticshome.com/tools/rna-seq/

descriptions/StringTie.html#gsc.tab=0

https://bioinformaticshome.com/tools/rna-

seq/descriptions/StringTie.html#gsc.tab=0

MetaboAnalyst5.0 https://www.metaboanalyst.ca/faces/home.xhtml https://www.metaboanalyst.ca/faces/home.xhtml

KOBAS http://kobas.cbi.pku.edu.cn/kobas3/genelist/ http://kobas.cbi.pku.edu.cn/kobas3/genelist/

MEME Suite http://meme-suite.org/index.html http://meme-suite.org/index.html
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Lixian Wang (iaswlx@263.net).
Materials availability

The present study did not generate new unique reagents.

Data and code availability

The RNA-seq data used here had been submitted to the NCBI Sequence Read Archive (SRA) under acces-

sion PRJNA857151 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA857151). The Raw mass spectral data

of metabolism was in Table S2.

This paper does not report original code.

Any additional information required to reanalyze the data reported in this manuscript is available from the

lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal individuals and samples collection

All the experimental animals were 550 days old Yorkshire pigs from Changping Experimental Base of the

Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (Beijing, China). Seven Yorkshire

pigs were from the same flockmanagement and would prepare for the third pregnancy. The blood samples

were collected from estrus to lactation, namely, Day 1 (estrus and mating period; on day1 of pregnancy),

Day30 (implantation period; on day30 of pregnancy), Day100 (embryonic period; on day100 of pregnancy),

Day113 (last few days before farrowing, at day113 of pregnancy), Day120 (early stage of milk production, at

day6 after parturition), and Day 130 (mid-stage of milk production, at day 16 after parturition). A total of

seven biological replicates were carried out for each stage.

All 42 blood samples of seven pigs were collected. We divided each blood sample into two parts: one was

disposed of by red cell lysis buffer (RT122, Tiangen, Beijing, China) to obtain the white cell, and the remain-

ing blood was used for isolating serum by centrifugation for 15 minutes (3,000 rpm). The white cell and

serum samples were snap-frozen in liquid nitrogen.

METHOD DETAILS

RNA and metabolites extraction

42 blood white cell samples were used for extracting the total RNA with the TRIzol reagent (Life Technol-

ogies, CA, USA). The 1% agarose gels were utilized to track the RNA degradation and contamination. A

NanoPhotometer� spectrophotometer (IMPLEN, CA, USA) was to check the RNA purity. The RNA concen-

tration and integrity were respectively measured through theQubit� RNAAssay Kit in Qubit� 2.0 Fluorom-

eter (Life Technologies) and RNA Nano 6000 Assay Kit.

Each serum sample was split into two portions, and the polar and non-polar lipid metabolites were ex-

tracted for metabolomic profiling analysis. Polar metabolites extraction: precisely absorbing 100 mL serum

to the EP tube, adding 400 mL methanol-acetyol (1/1, v/v), vortexing 120 s, centrifugaling 15 min with

15,000 g, transferring 200 mL of the liquid to two 1.5 mL EP tubes, respectively. Lipid metabolites extraction:

adding 120 mL methanol (including lipid extract for internal standard Ceramide (D18: 1/26: 0-O-18: 1 (D9))

to 20 mL of serum, vortexing 180 s, adding 360 mL MTBE and 100 mL ultra-pure water in turn, after mixing the

vortex, 10 min lay layers in the refrigerator at 4� C, 15,000 g 3 15 min centrifuged layers, precise transfer of

300 mL of upper lipid extract objects accurately in the EP tube. Finally, the polar and lipid metabolites were

dried in the centrifugal concentration (Thermo Scientific, USA) with a low-temperature vacuum reduction.

RNA library construction and sequencing

For mRNA and lncRNA, the strand-specific library was created by removing ribosomal RNA to.41 Through

the EpicentreRibo-Zero� rRNA Removal Kit (Epicentre, WI, USA), we respectively eliminated the rRNA

from total RNA, and got the rRNA-free residue. Subsequently, the RNA was broken into short fragments

of 250–300 bp, which were used as the template to synthesize the cDNA. The PCR amplification and prod-

ucts were separately conducted and purified (AMPure XP system) to construct a library. Finally, according

to the effective concentration of the library and data output requirements, we sequenced the libraries by a

Novaseq 6000 platform (Illumina, NBE, USA), and obtained 150 bp paired-end reads.

With a Small RNA Sample Pre Kit (Illumina, NBE, USA), we constructed a library of small RNA. Briefly, both

ends of small RNA were directly added adapters and then were reversely transcribed to synthesize cDNA,

in which, the total RNA samples were as the sating materials. The target DNA fragments were separated by

PAGE gel electrophoresis following PCR amplification, and the cDNA library was created by reusing the

sliced gel. Based on the effective concentration of the library and data output requirements, we sequenced

the libraries through a Novaseq 6000 platform (Illumina, NBE, USA), and achieved 50 bp single-end reads.

Metabolomic analysis and evaluation of metabolite contents

Based on the manufacturer’s instructions, we analyzed the metabolites by the UPLC-HRMS instrument

(Thermo Scientific, San Jose, CA, USA). The reported research also described the detailed information,14

in which, polar metabolites used AcquityTM HSS C18 column (Waters Co., USA, 2.1 3 100 mm) and

AcquityTM BEH amide column (Waters Co., USA, 1.7 mm, 2.1 3 100 mm), and lipid metabolites utilized Ac-

cucore C30 core-shell column (Thermo Scientific, USA). The high-resolution mass spectrometry detection
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conditions were performed according to three resolutions, namely 70,000, 17,500, and 120,000 full widths

half maximum resolution through the XCalibur software (Thermo Scientific, USA) to obtain the MS/MS

spectra data.

With the Compound Discoverer software, we carried out the full scan and handled the profile data to

extract the comprehensive component as the instructions of manufacturer. Further, through the area under

curve values extracted by with XCalibur Quan Browser, the polar metabolite quantitative information was

achieved and exported. For the lipidomics data, we used the LipidSearch software to process peak picking,

and identify lipids.

Identification of protein-coding genes (PCGs), lncRNAs, and miRNAs

Based on the clean reads, all follow-up analyses were conducted. For the mRNAs and lncRNAs, we aligned

the clean reads to the pig reference genome (Scrofa11.1) by the STAR software. StringTie was used for

counting the fragment of genes, and fragments per kilobase of exon model per million mapped fragments

(FPKM) indicated the expression of PCGs and lncRNAs. StringTie and Scripture (beta2) were used to detect

the novel lncRNA transcripts, and the detailed descriptions were in the previous study,42 while the initial

identification of lncRNAs was not filtered by the expression levels. For small RNAs, by Cutadapt 2.8, we

trimmed the quality and removed the adaptor of the reads, and identified the miRNAs according to the

description method in the report research.43 The reference genome was Scrofa11.1, and the novel miRNAs

were detected by combining unannotated sequences with the known miRNA annotation from Ovis aries,

Bos taurus, and Gallus gallus.

Analysis of transcriptomic and metabolomic molecule expression profiles

In this study, a transcriptomic molecule was regarded as expressed if its expression value in FPKM for PCGs

and lncRNAs, and counts per million (CPM) for miRNAs were equal to or greater than 0.1 in five (10%) sam-

ples. If the expression in FPKM or CPM of a transcriptomic molecule was more than 0.1 in two samples for

each stage, the molecule was considered expressed in the stage. Further, the transcriptomic molecule was

regarded as a commonly expressed RNA with its expressions occurring in all developmental stages.

We performed the HCA for the PCGs, lncRNAs, miRNAs, andmetabolites according to a distance matrix of

the Spearman correlation of these samples, and carried out a two-dimensional scatter plot to visualize the

global relationships among samples with the PCA analyses. We conducted the initial sequence and exonic

structural features analysis and examined the stage specificity of gene abundance shown by the tau score

(t) (0–1), in which, 0 and 1 indicated ubiquitously transcribed and highly tissue-specific genes, respectively.

We analyzed the stage specificity of transcripts observed through the stage specificity index and conduct-

ed the cumulative distribution of the average percentage of all transcription or metabolites abundance

supplied through genes or metabolites when arranged from most to least expressed in all groups.

Blood-enriched stage-specific PCGs, lncRNAs, miRNAs, and metabolites

DE PCGs, lncRNAs, and miRNAs between any two stages were identified by the DEseq2 package in R with

the corrected p-values less than 0.05, in which, we carefully considered the individual effect using the

model ‘‘design = � Stage + Individual’’. We conducted the t-test for the metabolites, of which, a p-value

less than 0.05 and fold change (FC) R 2 or %0.5 denoted statistical significance. The orthogonal PLS-DA

was utilized to identify the differences between these samples and to eliminate the irrelevant differences.

The variables were regarded to be different if the variable importance in projection (VIP) values were

greater than 1. Finally, the SDMs were screened by p-values less than 0.05, FCR 2 or%0.5, and VIP greater

than 1. The stage-specific molecules were identified using different multiple thresholds of 4. A PCG,

lncRNA,miRNA, or metabolite was considered to be a stage-specificmolecule if its expression level or con-

tent level was more than four times higher in a given stage over any other stage.

We calculated the Phi coefficient to find the exclusive PCGs, lncRNAs, and miRNAs in each stage. The con-

dition selected samples that were either expressed (FPKM/CPMR0.1) or were not expressed (FPKM/CPM

<0.1). We used a threshold of 0.1 to conservatively select stage-specific PCGS, lncRNAs, and miRNAs that

had substantial expression. The second condition selected samples coming either from the tested stage or

from all other stages. We calculated the Phi coefficient using the function Phi coefficient of the R package

psych. The Phi coefficient measured the association between two binary variables. We defined those PCGs,

lncRNAs, and miRNAs with Phi coefficient R0.6 as the stage-exclusive genes.
18 iScience 26, 105825, January 20, 2023



ll
OPEN ACCESS

iScience
Article
Analysis of development-dependent molecules expression and content patterns

According to the DE molecules, we analyzed their expression patterns between any two adjacent stages

with the younger stage as the denominator. A DE upregulated molecule between two adjacent stages

was grouped into the ‘‘up’’ pattern. A DE downregulated molecule between two adjacent stages was

grouped into ‘decrease’, and a molecule with no difference in expression between two adjacent stages

was grouped into ‘‘maintain’’. Thus, a DE molecule was classified as one out of 125 patterns, ranging

from up-up-up-up-up (UUUUU), maintain-maintain-maintain-maintain-maintain (MMMMM), to decrease-

decrease-decrease-decrease-decrease (DDDDD).

In addition, we conducted the time-series analysis for all the PCGs, lncRNAs, miRNAs, and metabolites us-

ing STEM (Short Time-series expression Miner),44 in which, the ‘‘maximum number of model profiles’’ and

the ‘‘maximum unit change in model profiles between time points’’ were set at 50 and 2, respectively.
Transcription factor (TF) binding motif analysis

The enrichment of TFs bound in the promoters of DE PCGs was detected by theMEME Suite (http://meme-

suite.org/index.html). We extracted 2,000 bp sequences upstream of DE PCGs by the BioMart program of

Ensembl database (https://asia.ensembl.org/Sus_scrofa/Info/Index?db=core) to predict the motifs en-

riched 8–15 widths through the STREME tool (E-value < 0.05). The JASPAR CORE vertebrates database

was used for detecting and annotating the motifs with the Tomtom tool. We screened the DE PCGs

matched to TFs with the Find Individual Motif Occurrences (FIMO) tool, in which, the threshold was p-

value < 1E�04.
The prediction of target genes of DE lncRNAs and miRNAs

By the BEDTools,45 the cis-targets (PCGs within 100 kb up- and downstream regions of lncRNAs) of DE

lncRNAs were identified. The Pearson correlation between the DE lncRNAs and the identified PCGs was

calculated to detect the trans-targets with Pearson coefficient of correlations >0.9 and p-values < 0.05.

In addition, by the miRanda46 with energy < �10 and TargetScan46 with context score percentile >50,

the target genes of miRNAs were identified simultaneously. Then the Pearson correlation between the

DE miRNAs and their target genes was calculated to confirm the final target genes with a negative corre-

lation and p-values < 0.05.
Construction of ceRNA regulatory networks and WGCNA

As the method of target genes prediction of DE miRNAs, we predicted the target lncRNAs for the DE miR-

NAs, in which, pairs with the negative Pearson coefficient were selected. The ceRNA was created by all the

DE miRNAs and their target PCGs and lncRNA. The ceRNA network was visualized by Cytoscape

software.47

A gene co-expression network was created by the R packageWGCNA, where 13,295 genes, 4,209 lncRNAs,

and 1,242 miRNAs were identified in all six stages. The significant modules with Bonferroni p-values <0.05

were defined as the functional modules for the developmental stages of pigs from oestrus to lactation.
Integrated analysis of transcriptome and metabolome

The DE, stage-specific, and significant module molecules were used for the integrative analysis of different

development stages. The integrations of metabolome and transcriptome were conducted through the

Spearman method. Only the detected correlations with a Pearson’s correlation coefficient value R0.7 or

% �0.7 and p < 0.05 were selected. Heat plots were used to show the connections between RNAs and

metabolites.
Pathway analysis

In this study, we performed the functional annotation of RNAs and metabolites by the KOBAS (http://

kobas.cbi.pku.edu.cn/kobas3/genelist/) and MetaboAnalyst5.0 (https://www.metaboanalyst.ca/faces/

home.xhtml), respectively. The enrichments with p-values less than 0.05 were regarded as significant.
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Construction of pathways regulated the human and pig common metabolic marker

We compared the results of the pig with that of humans previously reported to identify the common meta-

bolic marker. Further, combining transcriptome results and functional analysis, we constructed the path-

ways that regulated the common metabolic marker.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R. Details for specific analyses were described in the figure leg-

ends, results, and method details.
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