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A Deep Learning Model for Screening Multiple Abnormal
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Purpose: The purpose of this study was to construct a deep learning system for rapidly
and accurately screening retinal detachment (RD), vitreous detachment (VD), and vitre-
ous hemorrhage (VH) in ophthalmic ultrasound in real time.

Methods: We used a deep convolutional neural network to develop a deep learn-
ing system to screen multiple abnormal findings in ophthalmic ultrasonography with
3580 images for classification and 941 images for segmentation. Sixty-two videos were
used as the test dataset in real time. External data containing 598 imageswere also used
for validation. Another 155 images were collected to compare the performance of the
model to experts. In addition, a study was conducted to assess the effect of the model
in improving lesions recognition of the trainees.

Results: The model achieved 0.94, 0.90, 0.92, 0.94, and 0.91 accuracy in recognizing
normal, VD, VH, RD, and other lesions. Compared with the ophthalmologists, the modal
achieved a 0.73 accuracy in classifying RD, VD, and VH, which has a better performance
than most experts (P < 0.05). In the videos, the model had a 0.81 accuracy. With the
model assistant, the accuracy of the trainees improved from 0.84 to 0.94.

Conclusions: Themodel could serve as a screening tool to rapidly identify patients with
RD, VD, and VH. In addition, it also has potential to be a good tool to assist training.

Translational Relevance:Wedeveloped a deep learningmodel tomake the ultrasound
work more accurately and efficiently.

Introduction

This study showed that 10.8 million people who are
blind and 35.1million people who are visually impaired
were caused by cataract. Cataract remains a major
public health problem in the world.1 With opaque
dioptric media, ultrasonography has been the first-
choice tool to evaluate the posterior segment and assess
the structural changes in eyes.2,3 Thus, using ultra-
sound to assess the posterior segment of all patients

with dense cataract prior to surgery is large examina-
tional volumes.

Retinal detachment (RD) has been reported to had a
incidence ranged from 6.3 to 17.9 per 100,000 people.4
Rapid diagnosis is critical in these patients, as an
irreversible loss of vision may be caused if diagno-
sis is delayed.5 Vitreous hemorrhage (VH) with vitre-
ous detachment (VD) also should be timely diagnosed
to avoiding further serious consequences, which are
associated with a high incidence of retinal tears and
detachment.6 The ability to accurately recognize VD
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and VH processes is associated with the urgency of
the patients who would need an ophthalmologist for
further examination. Therefore, prompt recognition
and appropriate treatment of these three symptoms are
essential in the primary care setting.7 Use of ocular
ultrasonography may be effective for early detection
of them.8 However, a prospective study conducted by
Kim et al. showed that the sensitivity and specificity
in diagnosing RD were 75% and 94%.9 Although the
result of the study conducted by Shinar et al. found
a 97% sensitivity and a 92% specificity.10 Studies also
reported the accuracy of VD and VH varied from
91% to 99%11,12 and 84% to 100%.12,13 The accuracy
of using ultrasound in diagnosing ocular diseases
seems to vary among ophthalmologists. Additionally,
an ophthalmologist may not be available on call in
rural settings. The use of ultrasound to accurately and
efficiently identify ocular emergencies in these settings
is urgent.

Deep learning has greatly improved the diagnostic
accuracy and efficiency of some medical diseases. An
artificial intelligence (AI) systemwas used to accurately
classifying the presence of any diabetic retinopathy in
fundus images and has dramatically reduced the time-
consuming in diagnosing diabetic retinopathy.14 Ding
et al. used a deep learning model to help gastroen-
terologists analyzing small bowel capsule endoscopy
images more efficiently and more accurately.15 Even
with the large volumes and poor consistency among the
ophthalmologists, there is still a lack of reliable deep
learning ophthalmic ultrasound screening systems to
rapidly diagnose patients with RD, VD, and VH. An
efficient and accurate AI-assisted diagnostic system has
the potential to reduce visual impairment due to misdi-
agnosis and delayed diagnosis in clinical practice.

In our present study, we used a deep learning
model to screen RD, VD, and VH in ultrasound
images, which should be referred to an ophthalmol-
ogist for further evaluation and treatment. We evalu-
ated the model in both internal and external datasets.
In addition, a study was used to assess the effect of
the model in improving lesions’ recognition of the
trainees.

Methods

The study was approved by the Ethics Commit-
tee of Renmin Hospital of Wuhan University and
under trail registration number ChiCTR2000036326 of
the Primary Registries of the World Health Organi-
zation (WHO) Registry Network, and adherence to
the Declaration of Helsinki. The training ultrasonic

imageswere collected fromRenminHospital of Wuhan
University from June 2017 to August 2020. The instru-
ment used in this study was the SW-2100 (Tianjin
Sauvy Electronic Technology Co. LTD, China). The
model had five functions. First, the deep convolu-
tional neural network 1 (DCNN1) was used to filter
out unqualified images; the DCNN2 to segment the
eyeball; and the DCNN3 to classify abnormal and
normal images. Then, the DCNN4 was used to recog-
nize VD.Meanwhile, DCNN5, DCNN6, and DCNN7
were used to recognize VH, RD, and others, respec-
tively. Figure 1 shows the workflow of the model.

Datasets and Preprocessing

Five hundred ninety-three images from 326 eyes of
244 patients from Renmin Hospital of Wuhan Univer-
sity were collected to filter out unqualified images.
Another 941 images from 607 eyes of 532 patients were
annotated using image labeling software (VGG, Visual
Geometry Group Department of Engineering Science,
University of Oxford) by one experienced expert and
used to segment the eyeball. There were 3580 images
(train:test = 2812:768) from 1668 eyes of 1416 patients
that were used to train and test DCNN3 to distin-
guish normal and abnormal images. The 1980 training
images from 1012 eyes of 853 patients and 594 testing
images from 293 eyes of 275 patients were collected
to recognize VD. As the DCNN5 was used to recog-
nize VH, 2436 images (train:test= 1842:594) from 1210
eyes of 1032 patients were used. In order to train the
DCNN6 to recognize RD, 511 RD images (train:test=
421:90) from 269 eyes of 261 patients and 2004 not-RD
images (train:test = 1500:504) from 1008 eyes of 834
patients were collected. For recognizing other lesions,
1574 not-other lesion images (RD, VD, and VH) from
746 eyes of 672 patients and 1275 other lesions’ images
from 667 eyes of 567 patients were collected to train
and test DCNN7. We also used an external dataset
of 598 images from 215 eyes of 154 patients from
Zhongnan Hospital of Wuhan University to evaluate
the performance of the system under different environ-
ments (Fig. 2). Supplementary Table S1 showed the
baseline information and sample distribution. Supple-
mentary Figure S1 showed the representative images
predicted by the system. Images from the same eyes or
same patients were not split among the data sets, and
were placed independently in the testing set or training
set. And all images were reviewed by two experts with
discussion. In order to train themodel to recognizeRD,
VD, VH and other lesions, the following images were
excluded: two ormore of RD, VD, VH, or other lesions
co-exist in one image.
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Figure 1. The flowchart of the model. Images from videos were put into the proposed architectures, and firstly screened by DCNN1 to
obtain clear images, and then segmented the eyeball by DCNN2. Next, the images would be classified to abnormal and normal by DCNN3.
Finally, the abnormal images will be further classified to VD, VH, RD, and others by DCNN4 to DCNN7, respectively.

Figure2. Flowchart of themodel development andvalidation. RD, Retinal detachment; VD, vitreousdetachment; VH, vitreoushemorrhage.

Development of the Model

We used U-net++16 to segment the eyeball and
ResNet-5017 for image classification. First, with trans-
fer learning,18 we used our data to retrain and
replace the final classification layer of the architec-
tures. Dropout,19 early stopping,20 and data augmen-
tation21 were used to minimize the overfitting risk in
our model. During the training phase, the input images
were randomly resized to 224 degrees × 224 degrees
pixels in classification and 512 degrees × 512 degrees
pixels in segmentation.

The flow of the system was: (1) images were put
into the proposed architectures, and first filtered out
unqualified images by DCNN1; (2) then it segmented
the eyeballs by DCNN2; (3) then images would be
classified to abnormal and normal by DCNN3; and (4)
next, the abnormal images will be further recognized
by DCNN4 to DCNN7. Models 4 to 7 were parallel
in the system. Images from DCNN3 will be recognized
by models 4 to 7, respectively. In doing so, the inputs
to each DCNN were dependent on the outputs of the
previous DCNNs (e.g. DCNN1 to DCNN4). Supple-
mentary Figure S2 showed the confusion matrices
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of each DCNN. Supplementary Figure S3 shows the
receiver operating characteristic (ROC) of theDCNNs.

Meanwhile, we also established class activation
maps22 (CAMs) to indicate suspicious lesion regions.
A global average pooling was performed on the convo-
lutional feature map, which was used as the feature of
the full connection layer to produce the desired output.
The confidence of the prediction is positively correlated
with the color depth of the CAMs.

The parameters of segmentation were: 2 batch size,
0.0001 learning rate, and 0.5 threshold to distinguish
between background and positive samples. For the
parameters of classification models, the batch size was
64, the learning rate was 0.0001, and the convergent
epochs was 30.

Python software (version 3.6.5) was used to write
the algorithms. The open-source Keras (version 2.1.5)
library and TensorFlow (version 1.12.2) library were
used as the backend. A server with four NVIDIA
Geforce GTX 1080 (with 8 GB GPU memory) was
used to train the model.

Evaluation of the Model

The internal test dataset (Renmin Hospital of
Wuhan University) and one external dataset from
Zhongnan Hospital of Wuhan University were used to
evaluate the performance of our model.

Testing the DCNNs on Videos

The time per frame in the videos to output a predic-
tion (including segmentation and classification) was
240 ms on a GPU. Sixty-two videos from 68 eyes of
62 patients from Renmin Hospital of Wuhan Univer-
sity were collected to test the performance of the
model. These videos were cut into images with one
frame per second (fps) and reviewed by two experts
with discussion. The accuracy of these videos was
defined as the number of correctly identified frames
divided by the total number of frames. In addition, in
Supplementary Visualization S1, images were captured
at 5 fps. The rule - “the prediction of the most frames
in consecutive 12 frames as the final result of this
fragment” - was used to smoosh noises. Thus, each
12 frames will give a result.

Comparison Between DCNNs and
Ophthalmologists in Still Images

A set of test images (155 images of RD, VD, VH,
others, and normal) from 131 eyes of 124 patients were
prepared to assess the classified ability of the DCNNs

and the ophthalmologists. We compared the classifica-
tion performance of the model to three experts from
Renmin Hospital of Wuhan University. All of them
were asked to classify images into RD, VD, VH, others,
and normal. The three experts had at least 10 years of
experience in ophthalmic ultrasound.

Comparison the Performance of the
Ophthalmologists With andWithout
Assistance of Deep Learning

In order to assess the effect of the model in improv-
ing lesions recognition of the trainees, we included 10
trainees, none who had any prior experience or train-
ing in ultrasound in this study. First, the trainees were
asked to read the images without the model assistant.
Then, after 2 weeks to washout, the trainees were asked
to read the images with the model assistant in the
same images. Two hundred images from 143 eyes of
134 patients were collected (RD = 40; VD = 40;
VH = 40; normal = 40; and others = 40) to assess.

Statistical Analysis

Accuracy, sensitivity, specificity, positive predictive
value, negative predictive value, and areas under the
ROC curve (AUC) with 95% confidence interval (CI)
were described. The criteria for evaluating the perfor-
mance of each model were optimized from 0 to 1
with values greater than 0.90, ranging between 0.8 and
0.9, between 0.5 and 0.79, and less than 0.5 defined
as the highest, good, moderate, and poor perfor-
mance in the present study.23 A χ2 test was performed
to analyze the difference in accuracy between the
model and experts. The Mann-Whitney U test was
applied to compare the accuracy of the trainees with
or without model assistant. A value of P < 0.05
was considered a statistically significant difference. All
results were analyzed with SPSS software, version 23.0
(IBM, Chicago, IL) and MedCalc, version 19.1-64 bit
(MedCalc Software Ltd., Ostend, Belgium).

Results

Test in Both Internal and External Datasets

DCNN1 achieved a 0.95 (95% CI = 0.91–0.99)
accuracy to filter out unqualified images. The Inter-
section over Union (IoU) of DCNN2 was 0.93. In
classifying the abnormal and normal images, DCNN3
achieved both highest accuracy of 0.94 (95% CI =
0.92–0.96) in the internal dataset and 0.97 (95% CI =
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Table 1. Performance of the DCNNs in Classification
Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) AUC (95% CI)

DCNN3 Internal 0.94 (0.93–0.96) 0.94 (0.92–0.96) 0.95 (0.91–0.98) 0.99 (0.97–0.99) 0.82 (0.76–0.87) 0.95 (0.93–0.96)
External 0.97 (0.95–0.98) 0.99 (0.97–0.99) 0.89 (0.81–0.94) 0.98 (0.96–0.99) 0.93 (0.86–0.97) 0.94 (0.92–0.96)

DCNN4 Internal 0.90 (0.88–0.93) 0.88 (0.79–0.94) 0.91 (0.88–0.93) 0.64 (0.55–0.72) 0.98 (0.96–0.99) 0.89 (0.87–0.92)
External 0.81 (0.77–0.84) 0.91 (0.80–0.97) 0.79 (0.75–0.83) 0.36 (0.28–0.45) 0.99 (0.96–0.99) 0.88 (0.86–0.91)

DCNN5 Internal 0.92 (0.89–0.94) 0.79 (0.69–0.86) 0.94 (0.92–0.96) 0.73 (0.63–0.81) 0.96 (0.93–0.97) 0.86 (0.83–0.89)
External 0.88 (0.85–0.91) 0.73 (0.65–0.81) 0.93 (0.90–0.95) 0.79 (0.71–0.86) 0.91 (0.87–0.93) 0.91 (0.88–0.93)

DCNN6 Internal 0.94 (0.93–0.96) 0.92 (0.84–0.96) 0.95 (0.92–0.96) 0.76 (0.67–0.84) 0.99 (0.97–0.99) 0.93 (0.91–0.95)
External 0.88 (0.85–0.91) 0.79 (0.72–0.85) 0.93 (0.89–0.95) 0.85 (0.79–0.90) 0.89 (0.85–0.92) 0.91 (0.89–0.93)

DCNN7 Internal 0.91 (0.89–0.94) 0.92 (0.88–0.95) 0.91 (0.87–0.94) 0.92 (0.88–0.94) 0.91 (0.87–0.94) 0.91 (0.89–0.93)
External 0.92 (0.89–0.94) 0.79 (0.71–0.86) 0.96 (0.93–0.98) 0.88 (0.81–0.93) 0.93 (0.89–0.95) 0.94 (0.91–0.95)

DCNN3, normal and abnormal classificationmodel; DCNN4, VD recognitionmodel; DCNN5, VH recognitionmodel; DCNN6,
RD recognition model; DCNN7, other lesion recognition model; RD, retinal detachment; VD, vitreous detachment; VH, vitre-
ous hemorrhage. CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; AUC, areas under the
receiver operating characteristic curve.

Table 2. Comparison Between the Model and Ophthalmologists in Still Images

Accuracy of Classification (95% CI)

Model Expert A Expert B Expert C

VD 0.97 (0.90–1.03) 0.29 (0.12–0.46) 0.29 (0.12–0.46) 0.61 (0.43–0.80)
VH 0.45 (0.27–0.64) 0.52 (0.33–0.70) 0.55 (0.36–0.73) 0.61 (0.43–0.80)
RD 0.58 (0.40–0.77) 0.87 (0.75–1.00) 0.81 (0.66–0.95) 0.81 (0.66–0.95)
Others 0.87 (0.75–1.00) 0.93 (0.43–1.03) 0.52 (0.33–0.70) 0.81 (0.66–0.95)
Normal 0.77 (0.62–0.93) 0.90 (0.79–1.01) 1.00 0.93 (0.43–1.03)
Average 0.73 (0.66–0.80) 0.70 (0.63–0.78) 0.63 (0.56–0.71) 0.75 (0.69–0.82)

RD, retinal detachment; VD, vitreous detachment; VH, vitreous hemorrhage. CI, confidence interval.

0.95–0.98) in the external dataset. To recognize VD,
VH, RD, and other lesions, the DCNN4, DCNN5,
DCNN6, and DCNN7 all had the highest accuracy
with 0.90 (95% CI = 0.88–0.93), 0.92 (95% CI =
0.89–0.94), 0.94 (95% CI = 0.93–0.96), and 0.91 (95%
CI = 0.89–0.94). As the AUCs of the model, DCNN3,
DCNN6, andDCNN7 had the highest values with 0.95
(95% CI = 0.93–0.96), 0.93 (95% CI = 0.91–0.95), and
0.91 (95% CI = 0.89–0.93). In addition, DCNN4 and
DCNN5 also had good AUCs (0.89 and 0.86). These
results demonstrated our model had a high poten-
tial for accurately detecting these lesions in the future
(Table 1).

Testing on the Videos

Sixty-two videos were used to test the performance
of the model. On these videos, the model achieved an
accuracy of 0.81 (95% CI = 0.79–0.83). The accuracy
of the model to recognize RD, VD, VH, others, and
normal were 0.79 (95% CI = 0.80–0.92), 0.80 (95% CI
= 0.80–0.88), 0.77 (95% CI = 0.70–0.84), 0.82 (95% CI

= 0.78–0.86), and 0.88 (95% CI = 0.83–0.93), respec-
tively.

Comparison Between the DCNNs and
Ophthalmologists in Still Images

Three experts classified the images into RD, VD,
VH, others, and normal with an average accuracy of
0.70 (95% CI = 0.63–0.78), 0.63 (95% C =: 0.56–0.71),
and 0.75 (95%CI= 0.69–0.82), respectively. Themodel
achieved an accuracy of 0.73 (95% CI = 0.66–0.80),
which has a higher accuracy than 2 of the experts (both
P < 0.05; Table 2).

Comparison of the Performance of the
Ophthalmologists With andWithout the
Assistance of Deep Learning

The trainees had an accuracy of 0.84 (95% CI =
0.83–0.86) without the model assistant and a 0.94 (95%
CI = 0.93–0.95) accuracy with the assistant. More
details about the performances of individual trainees
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Figure3. Thechangesof theaccuracy in the trainees.Horizontal
lines depict the change in accuracy for each traineewith andwithout
model assistant. The orange dot represents performance without
model assistant, and the red dot represents performance with the
model assistant.

are shown (Supplementary Table S2). In addition, the
accuracy of our model was 0.91 (95% CI = 0.86–
0.95). With the model assistant, we could see the mean
accuracy of the trainees had a statistically significant
increase (0.10, 95% CI = 0.01–0.21, P < 0.05). The
changes of the accuracy in the trainees ae shown
in Figure 3.

Discussion

We introduced a system using deep learning to
screen the abnormal findings and highlight the location
of the lesions in ultrasonic images. The model achieved
a good accuracy in recognizing RD, VD, VH, other
lesions, and normal patients, which has a better perfor-
mance than most experts.

The number of the patients with cataract was large
in recent years. Ultrasound as an advisable and impor-
tant tool has been widely used to screen patients with
cataract prior to surgery.2 However, this study showed
that more than 30% patients were normal in the ultra-
sound examinations.24,25 If we can screen out this
subset of normal patients, the workload of ophthal-
mologist will be greatly reduced. In the present study,
our model had a 0.94 accuracy in classifying abnormal
and normal images, which supplied that the model can
be a good tool to screen out most normal patients.

RD, VD, and VH are three common diagnoses
encountered in the emergency department (ED).26
Timely diagnosis and treatment of these lesions means
less prevalence of blindness.27 In our present study,
the accuracy of our model to recognize RD, VD,

and VH were 0.94, 0.90, and 0.92, respectively. The
highest accuracy suggested that this model may be a
good choice to assist screening these parts of patients,
which were the major patients in the ED. Meanwhile,
the performance of our model in recognizing patients
with RD, VD, VH, others, and normal was better
than most experts. In the area of limited resources
or experts, the model had a good ability to screen
these lesions accurately and rapidly. Furthermore, our
model had a highest 0.94 accuracy in recognizing RD.
It was important to rapidly and accurately detect RD,
as an irreversible vision loss may be caused by it.28
Thus, the ability to rapidly detect RD can help these
patients to receive timely consultation. Furthermore,
VD often present with symptoms similar to those of
RD.29 In addition, VD can co-exist with RD,30 making
a definitive diagnosis more challenging. The highest
accuracy of our model to differentiate RD and VD
can assist the ophthalmologists to distinguish more
accurately.

Ultrasound has become a reasonable and readily
available tool in the ED, which can help bridge the
ophthalmologic screening skills gap.31 However, across
the country, ultrasound training is not uniform.32 One
study showed that a highest confidence in ultrasound
skills was associated with much higher accuracy of an
emergency ultrasound diagnosis.33 Thus, those using
ultrasound in emergent situations should been trained
to achieve a proper level to avoid making critical
mistakes in the diagnosis.34 In the present study, our
model can rapidly recognize lesions and showed the
locations of the lesions with a heatmap. With the assis-
tance of the model, the accuracy of the trainees had
improved from 0.84 to 0.94. The effectiveness of the
model implied that it may be a good assistant training
tool in the future. Furthermore, the prompt use of the
heatmap could show the diagnostic basis of the model,
which may give a good tip to the trainees.

Our model achieved a good accuracy on the videos.
In addition, the time of per frame in the videos to
output a prediction was 240 ms, which meant that the
model may have potential to achieve real-time applica-
tion in clinical practice.

As for the limitation, ophthalmologists do not
incorporate patient clinical features and history in
reviewing the images, which may have a slight effect on
the accuracy.

In conclusion, we constructed a deep learning
ophthalmic ultrasound screening system. The system
could serve as a screening tool to exclude most normal
patients and recognize RD, VD, and VH, which should
be referred to an ophthalmologist for further evalua-
tion and treatment. In addition, the system may be a
good tool to assist training in the future.
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Supplementary Material

Visualization 1. A representative video shows how
the model screen lesions. This video shows how the
model recognize lesions in five cases (RD, VH, VD,
other, and normal, respectively). Begin the model to
detect the lesions, the five diagnosis in the left of the
videos were gray. In case 1, when the model recognizes
the lesion, the diagnosis of “retinal detachment” was
activated and lighted. Meanwhile, the red rectangular
box highlighted the location of the RD using heatmap.
The time of the examination also was shown. The other
four cases were similar. According to the risk level of
the lesions, we give different colors to the diagnosis
of “retinal detachment, vitreous hemorrhage, posterior
vitreous detachment, others and normal.” When the
model recognizes a lesion, the corresponding color will
be activated.


