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Abstract. Interleukin‑10 (IL10), a pleiotropic cytokine 
secreted by type‑2 helper (Th2) T cells, contributes to the 
oncogenic activation or inactivation of tumor‑suppressor 
genes. The present study investigated whether hypomethyl‑
ation of IL10 CpG island (CGI) was associated with the risk of 
developing gastric cancer (GC) and the prognosis of patients 
with GC. A fragment (hg18, chr1: 206945638‑206945774) at 
the CGI of IL10 was selected for the present methylation assay. 
Quantitative methylation‑specific PCR was used to evaluate the 
methylation of IL10 CGI in 117 tumor samples from patients 
with GC. The results demonstrated that IL10 CGI methylation 
was significantly lower in the tumor tissues compared with that 
in the paired adjacent non‑tumor tissues (median percentage of 
methylated reference, 29.16 vs. 42.82%, respectively; P=4x10‑8). 
Furthermore, results from receiver operating characteristic 
curve analysis identified a significant area under the curve of 
0.706, with a sensitivity and a specificity of 77.8 and 58.1%, 
respectively, between cancer tissues and paired adjacent 
non‑tumor tissues. Furthermore, the methylation of IL10 CGI 
was significantly associated with patients' age at diagnosis 
(r=‑0.201; P=0.03). Subgroup analyses demonstrated that 

the association between IL10 CGI hypomethylation and the 
risk of GC was specific for patients with low differentiation 
(P=1x10‑7) and Borrmann types III+IV (P=1x10‑7). In addition, 
IL10 CGI hypomethylation was significantly associated with 
the risk of GC for patients without smoking history (P=3x10‑7) 
or a family history of cancer (P=2x10‑7). The results from 
Kaplan‑Meier survival analysis demonstrated that IL10 CGI 
hypomethylation was associated with a significantly shorter 
overall survival of patients with GC (P=0.041). Similar results 
were identified for patients with GC who did not have smoking 
history (P=0.037) or a family history of cancer (P=0.049). The 
results from this study demonstrated that IL10 CGI hypometh‑
ylation may be considered as a potential biomarker for the 
diagnosis and prognosis of patients with GC in the Chinese 
population.

Introduction

Although the incidence of gastric cancer (GC) is declining, 
GC caused ~1 million new cases and 781,000 deaths in 2018 
and remains the third leading cause of death in the world (1). 
Numerous types of cancer, including GC have a background 
of chronic inflammatory processes caused by infection or 
exposure to environmental factors (2). Understanding the 
molecular mechanisms of inflammation during GC is there‑
fore crucial for the development of novel therapeutic strategies 
against GC (1). H. pylori infects >50% of the world population 
and may affect gastric physiology, via triggering gastritis and 
canceration processes (3). Treatment of H. pylori infection 
may therefore help prevent GC in the general population (4,5); 
however, this treatment appears to be unrelated to the prog‑
nosis of patients with early GC (5,6). Gastric biopsy of patients 
with gastrointestinal‑related symptoms demonstrated that in 
addition to the common H. pylori‑related gastritis, several 
other modes of mucosal damage are also increasing (7).

Interleukin‑10 (IL10) is one of the most important 
anti‑inflammatory cytokines (8). IL10 is associated with 
oncogenic activation or inactivation of tumor‑suppressor 
genes (9). High levels of circulating IL10 were identified in 
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patients with digestive cancers (10‑12). In addition, the persis‑
tence of circulating IL10 in patients with colorectal cancer 
following surgery could predict a high tendency to relapse in 
these patients (13). High levels of circulating IL10 were also 
reported to be associated with an unfavorable prognosis for 
patients with GC (14,15). In addition, a meta‑analysis demon‑
strated that a high level of circulating IL10 resulted in poor 
survival in patients with various types of cancer (16).

IL10 tends to be hypomethylated in several cancer 
types (17), including pancreatic (18), breast (19) and cervical 
cancer (20), as well as chronic lymphocytic leukemia (12). 
TET‑2 catalyzes the conversion of 5‑methylcytosine to 
5‑hydroxymethylcytosine (21), which is an important interme‑
diate in the process of active DNA demethylation in primary 
human monocytes (22). The expression of IL10 and TET‑2 was 
found to increase in Vicenin‑2 treatment (23), which indicated 
that IL10 expression is increased during active DNA demeth‑
ylation. Demethylation with 5'‑AZA‑deoxycytidine (5‑AZA) 
results in an upregulation of IL10 expression in CD4+ T cells, 
and CpG‑DNA methylation of the DNA methyltransferase 3α 
gene was demonstrated to silence IL10 transcription in macro‑
phages, indicating the crucial role of CpG methylation in the 
regulation of IL10 expression (24‑26).

According to these previous findings, the present study 
determined the association between IL10 CpG island (CGI) 
methylation and the risk of GC. This study aimed to evaluate 
the diagnostic and prognostic value of IL10 CGI methylation 
for Chinese patients with GC.

Materials and methods

Subjects. A total of 117 patients with GC (mean age, 56.40 years; 
age range, 21‑83 years) treated at the Taihu Hospital of Wuxi, 
China, between January 2008 and February 2015 were included 
in the present study. Gastric tumor and adjacent non‑tumor 
tissues (5 cm from the tumor) were collected. Patients were 
diagnosed by pathologists' histological diagnosis, and none 
had received radiation or chemotherapy prior to sample collec‑
tion. The time between primary surgery and the death of the 
patient or the last follow‑up was defined as the overall survival 
(OS) (27). This study was approved by the Ethics Committee of 
Taihu Hospital of Wuxi (approval number: 20160026) (Wuxi, 
China). All patients provided written informed consent.

Sanger sequencing, capillary electrophoresis and DNA 
methylation assay. Genomic DNA extraction (QIAamp DNA 
mini kit; Qiagen GmbH) and subsequent bisulfite conversion 
(EpiTech Bisulfite kits; Qiagen Benelux B.V.) were performed 
as previously described (28,29). The program of qMSP was 
as follows: Pre‑denaturation at 95˚C for 10 min; 45 cycles of 
denaturation at 95˚C for 20 sec, annealing at 58˚C for 20 sec 
and extension at 72˚C for 30 sec. Sanger sequencing (BGI 
Biotech Co., Ltd) was used to determine randomly selected 
sodium bisulfite‑modified DNA sequences, as previously 
described (30). A fully automated high‑resolution capillary 
electrophoresis apparatus (Qsep100; BIOptic Inc.) was used 
to conduct the fragment size of the quantitative methyla‑
tion‑specific PCR (qMSP) product. This fragment size was 
compared with the theoretical fragment length to verify the 
uniqueness of IL10. The methylation level of IL10 CGI was 

assessed by qMSP as previously described (12,31). The qMSP 
primer sequences of IL10 were as follows: Forward 5'‑AAG 
GTA TTT CGG AGA TTT C‑3' and reverse 5'‑AAC TCA ACA 
CTA CTC TAT TAC‑3'. The qMSP primer sequences of actin β 
(ACTB) were as follows: Forward 5'‑TGG TGA TGG AGG AGG 
TTT AGT AAG T‑3' and reverse 5'‑AAC CAA TAA AAC CTA 
CTC CTC CCT TAA‑3'. The percentage of methylated reference 
(PMR) was applied to quantitatively represent the methylation 
level (28). The PMR in each sample was calculated by the 
2‑ΔΔCq quantification method to represent the methylation 
level of IL10 CGI, and the ΔΔCq equation was as follows: 
ΔΔCq=sample DNA (CqIL10 ‑CqACTB control)‑fully methylated 
DNA (CqIL10‑CqACTB control) (32).

Data mining study. To evaluate the association between 
mRNA expression and IL10 methylation, the gene expres‑
sion and methylation data from 371 stomach adenocarcinoma 
samples were collected from the stomach adenocarcinoma 
dataset (TCGA, PanCancer Altas) (33) through cBioPortal 
(http://www.cbioportal.org/). Furthermore, the data of the 
relative mRNA expression of IL10 in 4 oral squamous cell 
carcinoma cell lines (OC3, SAS, SCC and HSC3) before and 
after treatment with 10 µm 5‑AZA for 4 days was retrieved from 
the Gene Expression Omnibus (GEO) database (GSE38823; 
https://www.ncbi.nlm.nih.gov/geo).

Statistical analysis. Wilcoxon rank sum test was used to 
compare the methylation level of IL10 CGI obtained from 
Chinese cohort and TCGA cohort in tumor tissues with 
adjacent non‑tumor tissues. A Spearman correlation test was 
used to evaluate the correlation between IL10 methylation and 
patients' age, and between IL10 methylation and IL10 expres‑
sion from TCGA dataset. A χ2 test was used to investigate 
whether IL10 CGI methylation of cancer tissues was associ‑
ated with other clinical parameters. Independent t‑test was 
used to compare mRNA expression of IL10 in 4 carcinoma 
cell lines before and after treatment with 10 µm 5‑AZA for 
4 days. Receiver operating characteristic (ROC) analysis was 
used to determine the diagnostic value of IL10 CGI methyla‑
tion in GC. With the mean methylation value (PMR=32.0%) 
as the cutoff value, the OS of TCGA patients with gastric 
adenocarcinoma was divided into 2 groups according to the 
IL10 CGI methylation status. Subsequently, the Kaplan‑Meier 
method and log‑rank test was used to test whether IL10 CGI 
methylation status could affect patients' OS. Two‑sided P<0.05 
was considered to indicate a statistically significant difference.

Results

DNA methylation analysis. As shown in Fig. 1A, the amplified 
fragment is located on chr11:206945637‑206945773 based on 
the genomic region from the University of California Santa Cruz 
genome browser according to Human 2013 (GRCh38/hg38) 
assembly (34). The methylation of CpG sites on the amplifica‑
tion fragment of IL10 CGI was measured (Fig. 1A). The results 
from capillary electrophoresis demonstrated that the qMSP 
product was unique and its length was 137 bp, as expected 
(Fig. 1B). In addition, the qMSP product was sequenced with 
the expected bisulphite‑converted sequence according to the 
Sanger sequencing result (Fig. 1C).
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Association between IL10 CGI hypomethylation and the 
risk of GC and patients' clinicopathological characteristics. 
The results demonstrated that IL10 CGI methylation was 
significantly lower in tumor tissues compared with that in 
adjacent non‑tumor tissues (median PMR, 29.16 vs. 42.82%; 
P=4x10‑8; Fig. 2). Furthermore, results from ROC curve 
analysis confirmed that IL10 CGI hypomethylation may be a 
potential marker of GC diagnosis. In particular, a significant 
AUC of 0.706 with a sensitivity of 77.8% and a specificity of 
58.1% was identified between cancer tissues and para‑tumor 

tissues (Fig. 3). In addition, IL10 CGI methylation in tumor 
tissues was significantly associated with patient's age at 

Figure 1. Target sequence on IL10 promoter region. (A) Genomic position and functional annotation of the amplified fragment. The primers for the quantitative 
methylation‑specific PCR were underlined, and five CpG sites were identified (in grey). (B) Capillary electrophoresis of the amplified fragment (137 bp). (C) Sanger 
sequencing results. Top row of the sequence represents the original sequence of the fragment. Second row of the sequence represents the converted sequences. 
C nucleobase with corresponding converted T were in black boxes. A, adenine; C, cytosine; F, forward; G, guanine; IL10, interleukin 10; R, reverse; T, thymine.

Figure 2. Comparisons of IL10 CpG island methylation between tumor tissues 
and paired adjacent normal tissues. IL10, interleukin 10, PMR, percentage of 
methylated reference. GC, gastric cancer.

Figure 3. Diagnostic value of IL10 CGI hypomethylation between gastric 
cancer tissues and paired para‑tumor tissues. ROC curve analysis confirmed 
the potential diagnostic value of IL10 CGI hypomethylation, and yielded 
a significant AUC of 0.706 with a sensitivity of 77.8% and a specificity of 
58.1% between cancer tissues and para‑tumor tissues. AUC, area under the 
curve; CGI, CpG island; IL10, interleukin 10; ROC, receiver operating char‑
acteristic; Sens, sensitivity; Spe, specificity.
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diagnosis (r=‑0.201; P=0.03; Fig. 4). Using the average 
IL10 CGI methylation level as the cutoff value, 117 patients 
were divided into either IL10 CGI hypermethylated patients 
(n=48) or IL10 CGI hypomethylated patients (n=69). Next, 
c2 test was used to investigate whether IL10 CGI meth‑
ylation of cancer tissues was associated with other clinical 
parameters. It was found that IL10 CGI methylation was not 
associated with other parameters, including gender, surgical 
procedures, differentiation, lymph node metastasis, TNM 

stage, Borrmann type, disease recurrence, nerve invasion, 
family history of cancer, drinking history or smoking history 
(P>0.05; Table SI).

Stratified analyses by clinical phenotypes. Stratified analyses 
demonstrated that the association between IL10 CGI hypo‑
methylation and the risk of GC was specific for patients with 
low differentiation (P=1x10‑7; Fig. 5) and III+IV Borrmann 
types (P=1x10‑7; Fig. 5), but not in high and medium differ‑
entiations (P=0.12) or in I+II Borrmann types (P=0.35). In 
addition, IL10 CGI hypomethylation was significantly associ‑
ated with the risk of GC for patients without smoking history 
(P=3x10‑7; Fig. 5) or a family history of cancer (P=2x10‑7; 
Fig. 5).

IL10 CGI hypomethylation is correlated with poor prognosis 
in patients with GC. OS analysis was performed among the 
117 patients. As presented in Fig. 6A, the 5‑year OS rate and 
the median survival time were 25.0% and 36.0 months for the 
these patients, respectively (Fig. 6A). By using the average IL10 
CGI methylation level as a cut‑off value (PMR=32.0%), the 
117 patients were divided into patients with IL10 CGI hyper‑
methylation (n=48) or patients with IL10 CGI hypomethylation 
(n=69). The results from Kaplan‑Meier survival analysis demon‑
strated that IL10 CGI hypomethylation was associated with a 
significantly shorter OS of patients with GC (P=0.041; Fig. 6B). 
Furthermore, Kaplan‑Meier survival analysis of patients with 
GC and no and low differentiation demonstrated that IL10 CGI 
hypomethylation was associated with a significantly worse 

Figure 4. Association of IL10 CGI methylation with age of patients with GC. 
An inverse correlation was found between IL10 methylation in tumor and age 
of patients with GC. The P‑value was calculated by Spearman correlation 
test. GC, gastric cancer.

Figure 5. Stratified comparisons of IL10 CpG island methylation between tumor tissues and paired para‑tumor tissues. P‑values were calculated using Wilcoxon 
rank sum test. Stratified tests were performed according to tumor differentiation, Borrmann type, smoking history and family history of cancer. Plots are 
presented as median with interquartile range. A significant P‑value was identified in the following subgroups: Low differentiation, III+IV Borrmann types, 
non‑smoker patients and patients with no family history of cancer. IL10, interleukin 10; N, normal adjacent tissue; PMR, percentage of methylated reference; 
T, tumor tissue.
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prognosis (P=0.037; Fig. 6C). Kaplan‑Meier survival analysis 
of non‑smoker patients with GC demonstrated that IL10 CGI 
hypomethylation was associated with a significantly worse 
prognosis (P=0.049; Fig. 6D).

Data mining of public databases. The analysis of data 
from 372 GC tissues from TCGA dataset demonstrated a 

significantly negative correlation between IL10 methylation 
and gene expression (r=‑0.348; P=5x10‑12; Fig. 7A), suggesting 
a pivotal role of IL10 methylation in the regulation of IL10 
gene function. In addition, the results from GEO data analysis 
demonstrated that the relative expression level of IL10 signifi‑
cantly increased in cell lines treated with the demethylation 
agent 5‑AZA (fold‑change=2.34; P=0.023; Fig. 7B). As shown 

Figure 6. Association between aberrant IL10 CGI methylation and the prognosis of patients with GC. (A) Cox regression model of OS analysis demonstrated 
that the median OS time was 36.0 months. (B) Kaplan‑Meier and log‑rank analysis of the OS of patients with GC. (C) Kaplan‑Meier and log‑rank analysis of 
the survival in patients with GC with no and low differentiation. (D) Kaplan‑Meier and log‑rank analysis of the survival in non‑smoker patients with GC. The 
cut‑off value of IL10 CGI hypermethylation was set at 32.0%. GC, gastric cancer; OS, overall survival; CGI, CpG island; IL10, interleukin 10.

Figure 7. Association between IL10 methylation and IL10 expression. (A) An inverse correlation was found between IL10 methylation and mRNA expression 
in 372 samples of the stomach adenocarcinoma dataset (TCGA, PanCancer Altas) (r=‑0.348, P=5x10‑12). (B) Gene Expression Omnibus data mining results 
showed that the relative expression level of IL10 increased when OC3, SAS, SCC and HSC3 (oral squamous cell carcinoma cell lines) cells were treated with 
the demethylation agent 5'‑AZA.
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in Fig. 8, the analysis of the TCGA dataset demonstrated 
that the methylation levels of the seven CpG sites among 372 
TCGA GC tissue samples were positively correlated with 
each other (r>0.13; P<0.006) especially for the two CpG sites 
cg17067005 and cg10978799 that are near the two ends of the 
qMSP product (r=0.33; P<0.0001).

Discussion

The present study demonstrated for the first time that IL10 
CGI hypomethylation was associated with the risk of GC and 
with worse OS in patients with GC. IL10 CGI methylation in 
tumor tissues was significantly associated with patient's age 
at diagnosis Furthermore, the results from this study demon‑
strated that the contribution of IL10 CGI hypomethylation to 
GC was specific to patients with low differentiation, patients 
with Borrmann types III and IV, non‑smoker patients or 
patients with no family history of cancer.

As an essential anti‑inflammatory cytokine, IL10 can 
be produced in response to pro‑inflammatory signals in 
most immune cells, including macrophages, and T, B and 
dendritic cells (35). IL10 expression is highly dynamic and 
requires strict regulation (36). High level of IL10 is observed 
in the human monocytic cell line following stimulation by 
coagulation factors, leading to GC cell migration and inva‑
sion via transformation of macrophages into tumor‑associated 
macrophage‑like cells (37). It was also reported that IL10 can 
stimulate MCF‑7 breast cancer cell proliferation by activating 
the IL10‑signal transducer and activator of transcription 
3‑neutrophil gelatinase‑associated lipocalin axis, which may 
contribute to tumor progression (38).

A previous study demonstrated that increased IL10 
production in chronic lymphocytic leukemia cells was associ‑
ated with decreased DNA methylation at the IL10 locus (12). 
Another study also reported that IL10 hypomethylation in 
cancerous tissues from patients with breast cancer can activate 
IL10 gene expression (19). It was demonstrated that DNA 
methylation of the IL10 promoter can inhibit IL10 expression 
in Th1 cells (39), CD4+ T lymphocytes, macrophages (39), 
blood cells and gingival tissues (25). In addition, transfection 
of 1 and 0.6‑kb non‑CpG methylated IL10 proximal promoter 
fragments into HeLa cells cannot increase the reporter gene 
expression, which can be reversed by cassette methylation 
of these promoter fragments (20). Furthermore, upregulation 
of IL10 expression in tumor tissues is associated with poor 
prognosis in patients with breast cancer (40) and laryngeal 
squamous cell carcinoma (41).

IL10 acts as a cellular molecule with broad‑spectrum 
antiinflammatory activity (42). IL10 overexpression inhibits 
the phagocytosis of effector cells by macrophages, therefore 
promoting cancer progression (43). Due to the limited sample 
size, the present study did not perform correlation analysis 
between IL10 CGI methylation and IL10 expression level. 
Therefore, the data from a TCGA dataset were analyzed to deter‑
mine the association between IL10 methylation and expression 
level. The data mining in 372 GC tissues from TCGA confirmed 
that IL10 methylation was negatively correlated with IL10 
expression. IL10 hypomethylation may therefore serve a crucial 
role in the development and progression of GC by upregulating 
IL10 expression level. The present study demonstrated that IL10 
hypomethylation was associated with poor OS in patients with 
GC, in particular in non‑smoker patients and those with poorly 

Figure 8. Association of CGI methylation with other 7 CpG sites at the IL10 locus based on bioinformatics analysis. (A) The genomic positions (GRCh38/hg38 
version) of 7 CpG sites at the IL10 locus. (B) The table shows the association analysis of 7 CpG loci on the IL10 locus. The top table represents the correlation 
coefficients between 7 CpG sites at the IL10 locus, while the bottom table represents the P‑values between 7 CpG sites at the IL10 locus.
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differentiated tumor tissues. This study demonstrated that IL10 
CGI hypomethylation was associated with the risk of developing 
GC and the worse prognosis of GC, suggesting its potential role 
as a diagnostic and prognostic biomarker.

It was previously reported that smoking was associated 
with increased methylation of microRNA‑124a‑3 in the gastric 
mucosa of healthy Japanese volunteers (44), and with increased 
methylation of transmembrane protein 106A gene (45), mutL 
homolog 1 gene (46,47), O‑6‑methylguanine‑DNA methyltrans‑
ferase gene (47), methylated in tumors 25 (MINT25) CGI (47), 
tumor‑suppressor candidate 3 gene (48) and cadherin 1 gene (49) 
in patients with GC. The present study demonstrated that IL10 
CGI hypomethylation was associated with the risk of GC and 
worse OS in non‑smoker patients with GC. The findings from 
the present study suggested that IL10 CGI methylation may 
be considered as a biomarker independent of smoking. In this 
study, 87 patients had no family history of cancer. The results 
demonstrated that the association between IL10 CGI methyla‑
tion and the risk of GC was specific to patients with no family 
history of cancer. These findings suggested that epigenetics may 
serve a crucial role in the development of cancer for individuals 
with no family history of cancer (50).

The present study only examined the CpG site within the 
qMSP product of IL10. Further investigation is therefore required 
to confirm whether the results from this study corresponded to 
the methylation of the CpG sites in other IL10 regions. There 
are seven CpG sites at the IL10 locus in the Infinium Human 
Methylation 450K BeadChip (Illumina, Inc.). The analysis of 
the TCGA dataset further demonstrated that the methylation 
levels of the seven CpG sites among 372 TCGA GC tissue 
samples were positively correlated with each other, especially 
for the two CpG sites cg17067005 and cg10978799 that are near 
the two ends of the qMSP product. However, further investiga‑
tion is required to verify whether the IL10 CGI methylation 
corresponds to the promoter methylation of IL10.

In conclusion, the present study provided a potential 
epigenetic cause for the contribution of IL10 to the risk of 
developing GC and the OS of patients with GC. Future work 
may confirm that IL10 CGI hypomethylation is specific to 
patients with low differentiation, Borrmann types III and IV, 
a family history of cancer, and non‑smokers.
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