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Abstract
Intensity variations over time in resting BOLD fMRI exhibit spatial correlation patterns con-

sistent with a set of large scale cortical networks. However, visualizations of this data on the

brain surface, even after extensive preprocessing, are dominated by local intensity fluctua-

tions that obscure larger scale behavior. Our novel adaptation of non-local means (NLM) fil-

tering, which we refer to as temporal NLM or tNLM, reduces these local fluctuations without

the spatial blurring that occurs when using standard linear filtering methods. We show

examples of tNLM filtering that allow direct visualization of spatio-temporal behavior on the

cortical surface. These results reveal patterns of activity consistent with known networks as

well as more complex dynamic changes within and between these networks. This ability to

directly visualize brain activity may facilitate new insights into spontaneous brain dynamics.

Further, temporal NLM can also be used as a preprocessor for resting fMRI for exploration

of dynamic brain networks. We demonstrate its utility through application to graph-based

functional cortical parcellation. Simulations with known ground truth functional regions dem-

onstrate that tNLM filtering prior to parcellation avoids the formation of false parcels that can

arise when using linear filtering. Application to resting fMRI data from the Human Connec-

tome Project shows significant improvement, in comparison to linear filtering, in quantitative

agreement with functional regions identified independently using task-based experiments

as well as in test-retest reliability.

Introduction
Low frequency fluctuations in BOLD activity during resting functional MRI (rfMRI) exhibit
correlations between cortical regions that are known to be physiologically related, as first
shown by Biswal et al. [1, 2]. These correlations are the basis for identification of functional
networks from rfMRI in individuals and groups [2–5]. These rfMRI data are typically
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preprocessed prior to network analysis with a pipeline that includes compensation for suscepti-
bility-induced distortion, slice timing and subject motion, as well as high-pass filtering of indi-
vidual time series and removal of ICA-identified temporal noise components [6–8]. Even after
this extensive preprocessing, when visualized as a time series or movie of cortical activity, cor-
related patterns of BOLD variation reflecting time-varying brain activity are not readily visible
in the data. Local variations in network-related BOLD activity and unrelated physiological and
other noise in the data mask these underlying patterns.

To reduce noise in fMRI it is common to spatially smooth the data, typically with an isotro-
pic kernel applied in the volumetric space [4–6, 9]. Isotropic 3D linear smoothing will inevita-
bly mix signals from areas that are not directly adjacent with respect to cortical geometry, for
example blurring across the void from one side of a sulcal bank to the other. To avoid this
problem, data can be smoothed directly in the 2D manifold of the cortical surface. This is
achieved using the Laplace-Beltrami operator that accounts for local surface curvature to gen-
eralize the 2D Gaussian smoothing kernel to an arbitrary smooth manifold [10].

While Laplace-Beltrami (LB) smoothing can avoid blurring across sulcal banks, the smooth-
ing is still linear and isotropic so that sharp spatial features in the functional data are smoothed,
blurring boundaries on the cortical surface between distinct functional regions. As we demon-
strate in our simulations below, the resulting signal mixing can also confound cortical parcella-
tion methods, introducing artifactual parcels purely as a result of isotropic smoothing. The
primary contribution of this paper is to describe an alternative nonlinear filtering method
based on a novel adaptation of non-local means that reduces noise while also respecting func-
tional boundaries. The results presented below all use rfMRI data resampled onto the cortical
surface, but the filtering method we describe can also be applied directly to volumetric data.

Non-local means (NLM) is an edge-preserving filtering method that uses the weighted aver-
age of pixels in a large neighborhood where these weights are chosen adaptively depending on
the structural similarities in the local neighborhoods of each pixel [11]. As a result NLM
reduces noise while simultaneously retaining spatial structure by averaging only over pixels
that have similar local structure. NLM filtering has previously been applied to structural [12–
14], functional [15–17], and diffusion [18, 19] MRI data. Modified NLMmethods tailored to
MRI data have also been developed including block-wise filtering and automatic adaption of
weights based on SNR [12, 13, 19], multi-component extensions [14], and use of multiple
angular components for HARDI MRI [18]. All of these approaches use spatial similarity over
one or more images as the basis for NLM smoothing. While this approach can be applied to
fMRI time series [15–17], filtering each temporal frame separately with NLM will produce a
time-varying smoothing kernel, confounding subsequent time-series analysis.

We have developed a novel variation on NLM which we refer to as temporal NLM (tNLM).
Our method directly exploits the temporal information in the data by replacing the standard
spatial similarity weighting in NLM with a weighting that is based on the correlation between
time series. As a result we reduce noise by averaging only those pixels that have similar time
series. This prevents smoothing across functional boundaries, since the time series within dis-
tinct functional regions will be more strongly correlated than those in different functional
areas. A related approach was used by one of the authors for denoising dynamic PET data by
combining local spatial and temporal information to compute NLM weights [20].

In addition to demonstrating the impact of tNLM in terms of revealing spatio-temporal
structure in rfMRI data, we also illustrate its utility through one application: functional cortical
parcellation. A number of parcellation methods have recently been described that include spec-
tral clustering, hierarchical clustering, edge detection, and snow-balling [3–5, 9, 21]. Our goal
here is to investigate the effect of tNLM filtering on cortical parcellation of rfMRI data and
compare performance with unfiltered and isotropically filtered data. For this purpose we use a
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spectral clustering method based on normalized cuts [22, 23], although other parcellation
methods could also be used [3, 21]. Our evaluations with simulations and experimental in vivo
human data demonstrates meaningful subdivisions, significantly improved consistency in test-
retest evaluations and better agreement with regions identified with independent task-based
experiments.

Materials and Methods

Dataset and preprocessing
All of the results in this report and the supporting information used the minimally prepro-
cessed (ICA-FIX denoised) rfMRI data from 40 unrelated subjects, which are publicly available
from the Human Connectome Project (HCP) [24]. The data were resampled onto the individu-
als’ cortical surfaces. All analysis we describe was performed with respect to these surface repre-
sentations. Here we briefly describe the HCP dataset and preprocessing; more details can be
found in references [6, 7, 24–26] and in section A in S1 Text. The functional MRI data sets
were acquired for four independent resting state sessions of 15 minutes each (TR = 720ms,
TE = 33.1ms, 2 × 2 × 2 mm voxel). The subjects were asked to relax and fixate on a projected
bright cross-hair on a dark background [24]. HCP’s minimal preprocessing primarily corrects
the rfMRI data for acquisition artifacts, resamples the data onto the cortical surface and per-
forms a non-aggressive spatio-temporal cleanup [6, 7]. The artifact correction step allows com-
pensation for head motion and spatial distortion caused by gradient non-linearity and B0 field
inhomogeneity. The corrected functional data is then co-registered with the corresponding
structural images and resampled onto the 32K Conte-69 cortical mesh in the native subject
space [6, 27]. Next, spatio-temporal processing is used to remove the residual effect of scanner
and motion artifacts and non-neuronal physiological artifacts, this includes a weak high-pass
temporal filtering (no low-pass filtering) followed by regressing out the artifactual temporal
time-courses identified using ICA-FIX on the volumetric data [6]. The only additional prepro-
cessing step we introduced prior to tNLM or LB filtering was to normalize the time series asso-
ciated with each cortical vertex to zero mean and unit variance.

The functional parcellation results presented below are also evaluated using the task-locali-
zer data made available by the HCP. Task-based fMRI data were obtained for the same 40 sub-
jects and included six major task domains: somatosensory and motor systems, language
processing, social cognition, relational processing, emotion processing and decision making
[25, 26]. We used HCP’s pre-processed and analyzed task-fMRI data resampled onto the corti-
cal surface, with different levels of Gaussian smoothing (described below), which yielded a total
of 17 statistical task-pair activation maps [25, 26]: (1) Faces vs. Shapes, (2) Shapes vs. Faces, (3)
Punish vs. Reward, (4) Reward vs. punish, (5) Math vs. Story, (6) Story vs. Math, (7) Left foot,
(8) Left hand, (9) Right foot, (10) Right hand, (11) Tongue, (12) Match vs. Rel., (13) Rel. vs.
Match, (14) Random vs. Tom, (15) Tom vs. random, (16) 0-back vs. 2-back, and (17) 2-back
vs. 0-back. Additional comparisons of our rfMRI parcellation results with probabilistic Brod-
mann areas are included in S1 Text.

Temporal non-local means (tNLM)
Non-local means (NLM) is a widely used technique for edge-preserving filtering of images
[11]. In common with conventional linear filtering, NLM uses weighted spatial averaging to
reduce noise. However rather than using a set of spatially invariant weights applied to pixels in
a local neighborhood, the NLM weights are based on a measure of similarity of a small neigh-
borhood, or a patch, surrounding each pixel [11]. When the patches around two pixels are
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similar the weight is large; and when they are dissimilar, the weight is low. In this way, the
weighted averaging tends to reinforce spatial structure while removing noise.

In this work, we are interested in identifying functional regions that share common tempo-
ral variations. For this reason tNLM uses a weight based on the similarity of the time series,
rather than a spatial patch, to filter the data. Specifically, let d(s, τ) denote the rfMRI data at
surface vertex s at time τ. Then the corresponding tNLM-filtered rfMRI is given by

f ðs; tÞ ¼ 1P
r2N ðsÞwðs; rÞ

X
r2N ðsÞ

dðr; tÞwðs; rÞ ; ð1Þ

whereN ðsÞ denotes a set of vertices on the tessellated cortical surface lying in a large neighbor-
hood surrounding vertex s and w(s, r) is the weight applied to vertex r 2 N ðsÞ when filtering
the rfMRI data at vertex s. We parameterize the neighborhood of a vertex on the cortical mesh
by the linked distance parameter D such that the setN ðsÞ contains all vertices, including itself,
which are at a linked distance of D or less from the vertex s (we use D = 11 in all our results as
it shows empirically good results with reasonable computational cost). The weights w(s, r) are
given by

wðs; rÞ ¼ exp �
1
T
jjdðsÞ � dðrÞjj2

h2

 !
ð2Þ

where dðsÞ ¼ ½dðs; 1Þ; � � � ; dðs;TÞ�> is a vector of length T representing the time series at vertex
s and h is scalar parameter which determines the rate at which the weights decrease with
decreasing similarity between the two time series. Because we pre-process the time series at
each vertex to have zero mean and unit variance, the weights in Eq (2) are equivalent to using
Pearson’s correlation coefficient corrðdðsÞ; dðrÞÞ between dðsÞ and dðrÞ, since
1
T
jjdðsÞ � dðrÞjj2 ¼ 2� 2� corr dðsÞ; dðrÞð Þ.
In the following, we compare tNLM with linear filtering on the cortical surface. As noted in

the introduction, linear filtering directly on the cortical surface is preferable to volumetric
smoothing (prior to resampling on the cortical surface) as this avoids blurring of data across
sulcal banks. We use the Laplace-Beltrami (LB) operator for filtering, which is a generalization
of 2D Gaussian filtering that accounts for surface curvature to perform isotropic smoothing of
data defined on that surface [10]. A single parameter t controls the degree of smoothing and
we use a truncated eigenfunction expansion to efficiently perform LB filtering [28–30] (see S1
Text for details).

Identification of cortical networks
To explore the impact of LB and tNLM filtering on cortical parcellation we used a graph-based
spectral clustering method to identify a set of functional networks for each subject. We repre-
sent the spatio-temporal rfMRI data as a graph G = (V, A) where the set of vertices of the corti-
cal tessellation are the nodes v 2 V of the graph and A is the adjacency (edge) matrix such that
any two vertices u, v 2 V are connected by an undirected edge of strength

Aðu; vÞ ¼ exp ðd>ðuÞdðvÞ=TÞ.
The normalized-cuts (N-cuts) algorithm [22] subdivides the graph G into K sub-graphs by

subdividing the nodes (or vertices on the tessellated cortical surface), V, into K disjoint subsets

V1, V2, � � �, VK so that [K
i¼1Vi ¼ V and 8i 6¼ j; Vi \ Vj ¼ �= . N-cuts partitions the graph to

maximize the average “normalized association” within each of the K sub-graphs, which can be
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expressed as the cost function:

Nassoc fV1; � � � ;VKgð Þ ¼ 1

K

XK
i¼1

P
u;v2Vi

Aðu; vÞP
u2Vi ;v2VAðu; vÞ

 !
ð3Þ

Yu and Shi [22, 23] show this cost is equivalent to minimizing the average normalized cut cost.
N-cuts therefore finds the set of K sub-graphs that have the weakest normalized average con-
nectivity between sub-graphs and the maximum connectivity within each sub-graph. In this
paper, we use the implementation of N-cuts provided by the authors (from http://www.cis.
upenn.edu/~jshi/software).

Note that the graph definition described above produces a fully connected graph that con-
tains no explicit spatial information about each vertex’s neighborhood structure. It is common
to explicitly introduce spatial neighborhood information for functional clustering of rfMRI
data, typically by restricting the graph-edges to pairs of spatially neighboring vertices, making
the adjacency matrix A sparse [3–5]. In preliminary evaluations (not shown) we found that the
fully connected graph produced more reliable parcellation with tNLM, presumably because the
fully connected graph contains far more information about functional similarity of nodes/verti-
ces than the sparser spatially constrained graph.

The final result of the N-cuts partitioning of the graph is a disjoint set of subgraphs, each
containing a subset of cortical vertices that can be interpreted as jointly participating in a single
functional network or subnetwork. Since the subgraphs are not constrained to be spatially adja-
cent, each subgraph can contain multiple disjoint cortical regions or patches that make up the
network. The boundaries of these regions form the cortical parcellations we show below.

Performance evaluation
We compare the performance of tNLM and LB filtering using a variety of qualitative and quan-
titative methods. In this section, we describe the technical details for different approaches for
evaluating the effect of filtering on rfMRI. The corresponding results are presented in the next
section.

N-cuts networks: parameters, visualization and boundaries. We studied the effect of fil-
tering rfMRI data on cortical parcellation by comparing the classification of cortical networks
using N-cuts with a large range of parameters. The N-cuts clustering approach sub-divides all
the vertices into K disjoint sets as described previously. We assign a unique label ID to all verti-
ces which are clustered in the same set and visualize them with a unique color on the cortical
surface (so that a clustering result with K classes will have K unique colors). We performed N-
cuts classification, with several values of K, on a total of 160 in vivo rfMRI dataset (40 sub-
jects × 4 sessions) without filtering and with LB and tNLM filtering. For both filtering types, we
present results with three different level of smoothing: h = 0.60, 0.72, 1.73 for tNLM and t = 2,
4, 10 for LB filtering. The range of parameter h for tNLM was chosen based on visual inspec-
tion of the resulting smoothed data and a preliminary performance study. For qualitative com-
parisons of tNLM and LB filtering, we choose values of the LB parameter t by approximately
matching the mutual information of LB filtered results with tNLM results for each value of h.
Based on the preliminary study we chose a value of h = 0.72 for tNLM filtering for the majority
of the qualitative results presented below (the corresponding LB parameter was found to be
t = 4). We note that the nature of smoothing with tNLM and LB is very different and hence
matching of smoothing levels/parameters across tNLM and LB only serves qualitative pur-
poses. Our quantitative evaluations, described later, compare parcellation performance across
all parameter values.
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In order to enable color-coded visualization and comparisons of cortical parcellations
obtained with a fixed value of K but with different filtering approaches or subjects, we first
identify equivalent sub-networks by using the parcellation matching method described in Sec.
C in S1 Text, which is based on the Gale-Shapley stable matching algorithm [31]. The matching
method establishes a one-to-one matching between two parcellations allowing us to use the
same color to represent equivalent parcels across subjects or methods.

We also investigated how the boundaries of functional regions changed with the number of
networks K and the filtering approach used. For each parcellation, we obtained a binary bound-
ary map by defining a triangle on the tessellated cortical mesh as a ‘boundary’ triangle if its ver-
tices lie in more than one subgraph. We summarized the boundaries across values of K = 2, 3,
4, 5, 6, 7, 8, 9, 10, 15, 30, 40, 50, 60, 80 by computing the cumulative boundary map across par-
cellations obtained with these values of K for each filtering approach and each subject. In the
cumulative boundary map, the value at each triangle represents the number of times that trian-
gle has been identified as a boundary triangle across all values of K. We also summarized the
cumulative boundary maps across population by computing the population average across 40
subjects for both tNLM and LB filtering.

Agreement with task activation labels. As no ground-truth parcellation is available for in
vivo data, we evaluated the quality of the functional parcellations through quantitative compar-
isons with task activations for each subject. Task-based experiments allow delineation of differ-
ent functional areas in cortex and have previously been shown to have close correspondence to
those identified using rfMRI [1, 2]. Hence, a “good” resting fMRI parcellation should obtain
high agreement with task-labels identified using independent task-based fMRI. We used statis-
tical activation maps for each of the 17 different task-pairs described earlier, which are available
for all 40-subjects from HCP, to obtain a discrete task label map for each subject.

We first thresholded each task-pair activation map at Z-score� 3.0 (one-tailed uncorrected
p-value� 0.00135) and merged them into a single cortical map with a unique label for each
task-pair. If a vertex has Z-score� 3.0 in more than one task-pair activation map then we
assigned the task label corresponding to the most significant activation. The labeled map was
then cleaned by removing isolated labeled patches of size 40 vertices or less to obtain the final
task label map for each subject, which was used as the comparison reference for rfMRI parcels.
Only nine task-pairs survived statistical and spatial thresholding and hence we only present
results with these task-pairs. Also note that the task-fMRI data was pre-analyzed with different
levels of Gaussian smoothing (FWHM of 2mm, 4mm, and 8mm) to produce three different
task-activation maps. Here, we present results with FWHM of 4mm, however results with all
other levels of smoothing are included in S1 Text.

We computed label-wise agreement between the task label maps and N-cuts parcellation
using the matching method described in section C in S1 Text (we use task label as A and N-
cuts parcellation as B). The agreement measure is defined as the fraction of vertices for each
task label that correspond to the N-cuts parcel to which that task is matched. We computed the
label-wise agreement measure separately for each parcellation, and used these measures to
compare across filtering methods and parameters.

Results

Visualization of brain activity from rfMRI signal
The qualitative impact of tNLM filtering on rfMRI data is best seen in the accompanying
movie (S1 Video) from which we also show a series of still frames in Fig 1. For reference we
also include videos of the unfiltered (S2 Video), and LB filtered (S3 Video) data, as well as a
comparison of sample frames in Fig 2.
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The movies represent the BOLD signal intensities mapped onto a smoothed representation
of the cortical surface and were made by concatenating individual images spaced by
TR = 720ms and linearly interpolated to 10 frames per second. The movies are generated at a
real-time frame rate, i.e. they show 2.5 minutes of BOLD activity played back over 2.5 minutes,
and were encoded using the mp4 H.264 codec. The signal intensities in the movies and Fig 1
use the same color map as Fig 2, with transitions from blue (negative) to white (zero) to red
(positive). As noted above, the BOLD time series at each surface vertex were normalized to
zero mean, unit variance before filtering, resulting in the dynamic range shown of approxi-
mately ±2.

In Fig 1 we show examples of images obtained at different time points with tNLM filtering
with detailed descriptions in the legends. Images at corresponding time points are shown in Fig
A in S1 Text for unfiltered data and LB smoothing. In Fig 2 we show the cortical BOLD signal

Fig 1. Representative frames, taken from S1 Video, illustrating dynamic brain activity at “rest”, as
seen with tNLM filtering (h = 0.72). See S1 Video for the complete 2.5 min movie. Each subfigure shows the
BOLD intensity in left-hemisphere at a particular time-point after tNLM filtering of a 15-minutes long minimally
processed rfMRI data. The brain activation regions shift dynamically from one network to another, which can
be most easily noticed around the default mode network (DMN) and anti-correlated DMN. These networks
consist predominantly of large regions distributed throughout the brain that are spatially separate but have
near synchronous temporal activity. At 01:05, we see activity below the mean in the DMNwith the rest of the
brain showing mostly activity above the mean. By 1:14 we see the opposite brain activity pattern where the
DMN is now above the mean. The rest of the brain shows mostly activity below the mean, with the exception
of the upper half of the sensory-motor cortices (SMC) which, on the right, show some activity above the
mean, mostly mesially. Only 2 seconds later, at 01:16, the lateral temporal and parietal nodes of the DMN
show activity clearly below the mean, while the activity in the PMC is still above the mean, but less so, and the
activity in the mesial frontal regions is nowmostly below the mean; another 2 seconds later, at 01:18, all of the
DMN nodes are clearly below the mean, while mesial occipital regions are above the mean; five more second
have passed (01:23) and the image is almost the reverse of what was seen at 01:14; the DMN nodes show
clear negativity, as does SMC, while the rest of the brain, including the insulae, is above the mean; after 10
seconds, at 01:33, the frontal lobe, a small area of the SMC and the insula are above the mean, while the
remainder of the hemisphere is below the mean; after another 3 seconds, at 01:36, the DMN nodes are well
above the mean (more so than at 01:45), the occipital lobe below the mean, and the insula and dorsolateral
SMC close to the mean, but the mesial motor cortices well above the mean; at 01:49 the DMN nodes are
negative while the SMC shows activity clearly above the mean, and so do the occipital lobe and the insula;
two seconds later, at 01:51, the brain activity is in general above the mean with three interesting exceptions:
the PMC, the angular gyrus and the insula show activity below the mean; five seconds later, at 01:56, the
brain is massively negative with a few exceptions where the activity approximates the mean; and at 01:59 the
DMN nodes again start to show activity above the mean.

doi:10.1371/journal.pone.0158504.g001
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for a single subject before and after smoothing using LB and tNLM. The effect of different
degrees of smoothing (varying parameters h in tNLM and t in LB) is shown in Fig B in S1 Text.
As described in the legends, Figs 1 and 2 illustrate the qualitative differences between unfiltered
and tNLM and LB filtered data. LB filtering does not use information about the time course to
filter at each point in time and so can mix signals across neighboring vertices with very dissimi-
lar time courses; tNLM filtering on the other hand uses weights based on similarity of the time
series and so can avoid mixing of signals from dissimilar vertices. These differences are
reflected qualitatively in both the movies and figures, with the tNLM images showing more
apparent consistency over time in the location of boundaries between regions exhibiting differ-
ing dynamic behavior. In contrast LB movies and images show smaller scale time-varying fea-
tures (indicated by arrows in Fig 2)that are consistent with mixing of functionally distinct
regions. We explore this issue further in the following simulation.

Fig 2. Illustration of smoothing effects on cortical BOLD signal intensity in rfMRI in a single subject,
shown at a single time point: (a) no filtering, (b) LB filtering (t = 4) and (c) tNLM filtering (h = 0.72).Color
scale shows positive (red), negative (blue) and zero (white) BOLD signal intensity. 2.5 minute real-time
movies showing the un-filtered, LB- and tNLM-filtered rfMRI data can be found in the Supplemental
Information (S1–S3 Videos). It is difficult to detect spatial structure in the original unfiltered data, even if there
are hints that can be discerned. By applying either LB or tNLM filtering, however, the noise is reduced and
coherence in local activation/deactivation with respect to the underlying anatomy of the cerebral cortex is
revealed. We see synchronous bilateral activity (in red) for both filtering methods in brain regions associated
with the anterio-medial, posterio-medial and dorso-lateral regions of the DMN. LB filtering (b) however, shows
some additional small isolated patches in the fronto-lateral cortex, anterior insula, and the post-central gyri
and the mesial motor regions, as indicated by the arrows. Interestingly, most of these isolated patches lie in
regions that have been reported to show strong negative correlations to the DMN [32–35], and so are unlikely
to be synchronous with DMN regions. Similar behavior can be observed at another time point when (d) the
original rfMRI data is filtered with (e) LB and (f) tNLM, where most of the DMN regions again show
synchronous BOLD signal intensity in red. The tNLM results appear clearer in the sense that contrast in the
images and movies appears to more closely follow discrete anatomical regions than do the LB results. The
arrows in (e) show small regions of activation/deactivation in the LB filtered data that may result from
smoothing across distinct functional areas. These may subsequently give rise to erroneous parcellation
results as described in the text. The differences between the two methods is more readily evident in the
movies of continuous resting state recording (see S1–S3 Videos). Note in particular the different dynamic of
the changes in brain activity—LB filtered images change smoothly from one brain state to the next while the
tNLM images depict a more burst like change across consecutive brain states.

doi:10.1371/journal.pone.0158504.g002

Temporal Non-Local Means (tNLM) Filtering for Functional MRI

PLOS ONE | DOI:10.1371/journal.pone.0158504 July 8, 2016 8 / 22



Simulation: Effect of smoothing on clustering
We used a simulated data set to investigate the effect of tNLM and LB filtering on N-cuts based
identification of functionally distinct cortical regions. We generated a square surface patch
with four quadrants, where each quadrant was simulated to correspond to a different function-
ally distinct region. Vertices in each quadrant were assigned a set of rfMRI time series data
drawn from an equal number of vertices in small cortical regions in one of the HCP rfMRI data
sets from a single subject. These regions were chosen to lie in well-known prominent networks
(visual, motor, default mode and task positive) such that each region was functionally distinct
from other regions and was locally homogeneous, based on the mean correlation with neigh-
boring vertices. The correspondence between the four quadrants of the simulated surface and
the locations on the cortex from which each quadrant was sampled are shown in Fig 3(a) and 3
(b). This simulated surface, with known location of functional regions, provides an avenue to
study the effect of filtering on the accuracy of parcellation.

We identified networks in the four quadrant rfMRI data using N-cuts based parcellation, as
described earlier, to find K = 4 and K = 8 networks in the original data and after filtering with
LB and tNLM. Note that the N-cuts parcellation method described above uses a fully connected
graph with edge strength based on time-series similarity and therefore spatial proximity
between vertices is not directly encoded in the graph structure. The parcellation results are
almost perfect for K = 4 in both cases (Fig 3(c) and 3(e)) and, indeed, also were for the unfil-
tered data (not shown) since the four regions were chosen to be internally homogeneous with
respect to their time series and with a low or negative correlation between the time series in dif-
ferent regions. However, the clustering with K = 8 produces very different results as shown in
Fig 3(d) and 3(f). The linear mixing across quadrant boundaries using LB filtering produces
intermediate regions that internally have a higher correlation than they do with the two regions
from which the data originated. The resulting parcellation therefore includes new contiguous

Fig 3. Effect of smoothing on simulated surface with known functional regions. (a) The square surface
on which smoothing and parcellation is performed. The four quadrants are color-coded for easy identification
and represents functionally distinct regions. (b) The location of the four regions on cortex from which the time
series for each quadrant are drawn. The result of N-cuts parcellation of LB filtered data into (c) K = 4 and (d)
K = 8 clusters are also shown on the simulated square surface as well as on the original cortex, on the right,
by mapping back the color-coded vertices from the square mesh to its original location on the cortex.
Similarly, the results of N-cut parcellation for tNLM filtered data into (e) K = 4 and (f) K = 8 clusters are shown
on square surface and on the original surfaces.

doi:10.1371/journal.pone.0158504.g003
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regions at the boundaries between quadrants that were not present in the original data (Fig 3
(d), clusters in light-green, yellow and violet). When these clusters are mapped back to the sur-
face vertices on the cortex from which they were drawn, we see they appear distributed across
more than one functional area (for example elements in the light-green parcel appear in DMN,
visual and motor areas). This clearly demonstrates that the contiguous regions at the bound-
aries between quadrants found in the LB filtered data are solely an artifact of mixing from LB
smoothing and do not reflect true underlying patterns of functional similarity in the rfMRI
time series. We believe this in an important observation as the creation of false parcels resulting
from LB smoothing could lead to erroneous interpretation of parcellations in in vivo data.

In contrast, tNLM filtering shows a strong pattern of sub-division of functionally distinct
areas when K = 8 class clustering was used, Fig 3(f): vertices in the top right quadrant (corre-
sponding to DMN) are sub-divided into two parcels (light and dark green) and vertices in the
bottom right quadrant (task positive network, TPN) are sub-divided into four parcels which
are distinct from those in the top right quadrant. While the spatial organization of these clus-
ters in the square image appears random, when they are mapped back to the area on the cortex
from which they were drawn, we see that the clustering result actually sub-parcellates the
DMN and TPN regions. This result demonstrates the “non-local” nature of tNLM—smoothing
is performed based on similarity in time series rather than spatial proximity. For this reason,
partitioning of tNLM-filtered data based on a fully connected graph can identify groups of pix-
els with similar time-series in the original data rather than producing false parcels as a result of
local mixing of signals across functional areas as seen with LB filtering. This edge preserving
nature of tNLM also allows accurate sub-division of functional regions when clustering is per-
formed with larger value of K, as seen in the cortical map in Fig 3(f).

We do not include results for unfiltered data for the simulation since they are qualitatively
very similar to those obtained using tNLM for both K = 4 and K = 8. Since each quadrant was
selected to have clearly distinct time series from all other quadrants, the N-cuts algorithm, even
without smoothing, was able to reliably partition the data for K = 4. Further, the unfiltered data
produced a very similar sub-parcellation for K = 8 to that shown for tNLM in Fig 3(f), which
indicates that there is evidence for these sub-parcellations in the data and these results are not
an artifact of the nonlinear tNLM smoothing. As we show below, this similarity between tNLM
and unfiltered data does not occur when N-cuts is applied to in vivo over the full cerebral
cortex.

Fig 4. Cortical parcellations using N-cuts on a fully connected cortical surface graph for a single
subject to partition cortex into K = 6 networks with (a) unfiltered data, (b) LB filtering (t = 4), and (c)
tNLM filtering (h = 0.72). In each case a distinct color represents one of the K = 6 networks. Arrows in (b)
illustrate regions lying between two large parcels that are classified as a separate network and appear similar
to the false regions resulting from linear smoothing shown in the simulation in Fig 3(b).

doi:10.1371/journal.pone.0158504.g004
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Qualitative evaluation of cortical networks
Fig 4 shows the result of N-cut clustering with six classes for a single subject. Clusters obtained
from the original unfiltered in vivoHCP data, Fig 4(a), yields default mode (pink), visual (yel-
low/green), and somatomotor (dark blue) networks. However, the clusters are noisy and dis-
jointed. In contrast, tNLM smoothed data shows networks with large contiguous regions, Fig 4
(c). In addition to the networks identified in the original data we can also identify the visual
system (dark green) and and the cingulo-opercular (dark red) networks. We can also identify
the fronto-parietal network, often described as anti-correlated to the default mode network
(light blue), which includes the frontal eye field, left middle frontal gyrus, superior parietal lob-
ule, and the lateral-posterior regions of the temporal lobe [32–36]. It is also noticeable that the
DMN seems to be sub-divided in two clusters (in yellow and pink) in the tNLM parcellation.
At smaller values of K, we do expect both hemispheres of the DMN to be grouped into a single
label, as seen in tNLM N-cuts clustering with four classes, Fig C in S1 Text. With progressive
increases of N-cut classes, K, we see the network systems continue to subdivide.

LB filtering, Fig 4(b), produces similar networks to those identified by tNLM, however some
of the networks separate into a larger number of non-contiguous parcels, which appear as
patches of small parcels throughout the cortex. Notice in the lateral surface of the frontal lobe,
we see a mix of smaller patches of the yellow, pink, light blue, and dark blue labels which are
isolated away from the large, spatially contiguous portion of each label. We also see that the
inferior frontal gyrus (part of the language network) is fragmented into five different labels. At
a coarse parcellation of the cortex into only six labels, we do not expect this system to be sub-
divided. In contrast, tNLM seems to preserve the area as a part of larger cluster. Further, it can
be also be noticed that several regions between two large networks are classified as a separate
network as indicated by the arrows. A greater number of patchy regions in the LB result, partic-
ularly near boundaries of known networks, is consistent with the formation of additional false
parcels in the simulation study in the previous section.

As the number of subgraphs increases with (a) K = 15, (b) K = 30, and (c) K = 60, we notice
that boundaries are frequently preserved and regions are sub-divided with tNLM filtering (Fig
5) while the equivalent results for unfiltered data become increasingly noisy, and LB filtering
continues to produce apparently spurious regions which appear as patches of small clusters
around boundaries of larger networks (Fig C in S1 Text). For example, for tNLM results, the
somatosensory and motor cortices are initially identified as a single network (blue) for K = 15
classes (Fig 5(a)). When the number of classes is doubled, this area sub-divides into the right
upper (violet), and left upper (pink), and the lower (brown) somatomotor cortices (Fig 5(b)).
Increasing the number of classes to 60, the right lower somatomotor cortex (red) separates

Fig 5. Cortical parcellation N-cuts applied to tNLM filtered (h = 0.72) data for the same subject as in Fig
4 for (a) K = 15, (b) K = 30 and (c)K = 60 clusters. See Fig C in S1 Text for equivalent images for unfiltered
and LB filtered data.

doi:10.1371/journal.pone.0158504.g005
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from the left hemisphere, and further divides into the ventral premotor cortex (blue) and the
ventral motor cortex (dark red) (Fig 5(c)). Similar patterns of progressive subdivision can be
observed in other primary networks including the visual network.

In Fig 6 we illustrate how the boundaries of the clusters vary across several parcellations
with different number of classes in both tNLM and LB. Fig 6(a) and 6(b) shows cumulative
boundaries for a single subject over different numbers of classes. The tNLM results show con-
sistent boundaries delineating the ventro-medial prefrontal cortex, posterio-medial cortex
(PMC) and the visual cortex. The LB results are quite similar, however, we notice a larger num-
ber edges running through the primary network regions. For example, several edges are seen in
the interior of PMC and similarly some edges are seen in the interior of the medial side of
visual cortex running parallel to the boundary between visual cortex and PMC on both hemi-
spheres. When cumulative edges are averaged across the population of 40 subjects, Fig 6(c) and
6(d), we see boundaries occurring more consistently across different values of K with tNLM fil-
tering than with LB filtering. In both cases the upper and lower sensorimotor areas are consis-
tently identified, as evidenced through the absence of boundaries in these regions. However,
tNLM shows clearer boundaries than LB, particularly for the PMC, the visual cortex and the
ventrolateral prefrontal cortex. Higher order association cortices also clearly show marked
internal consistency with tNLM. LB shows boundaries spread across frontal and lateral

Fig 6. Cortical map of the cumulative boundaries of N-cut parcellations over fifteen different values of
K in a single subject with (a) LB (t = 4) and (b) tNLM (h = 0.72) filtering. The population average
cumulative boundary map across the 40 subjects are also shown with (c) LB (t = 4) and (d) tNLM (h = 0.72)
filtering. The value at each triangle represents total number of times that triangle was a identified as a
boundary triangle across fifteen different clustering results (K = 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 30, 40, 50, 60, 80).
The boundary maps are thresholded at an upper boundary count of 10 for single subject and 6 for the
population average.

doi:10.1371/journal.pone.0158504.g006
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posterior temporal-occipital region, again, possibly reflecting the introduction of false parcels
near boundaries between functional areas as illustrated earlier in the simulation study.

Additional results showing the distribution of the number and size of clusters in LB and
tNLM N-cuts parcellations are included as Figs D–G in S1 Text. These results support the gen-
eral observation that LB results tend to produce more, smaller contiguous clusters than tNLM.

Fig 7. Quantitative comparison with task labels. (a) An example of task labels for a single subject obtained from 4mm smoothed task fMRI data (see
Methods section for task-pair for each label-ID) (b) Mean agreement fraction, across 40 subjects × 4 sessions, of an example task label (Left foot, motor task)
with N-cuts parcellations obtained using unfiltered, LB filtered and tNLM filtered rfMRI data. See Fig K in S1 Text for corresponding plots for all task labels. (c)
Best performance of different filtering approaches across different task labels. For each task and each filtering approach, we select the parameters which
achieves the highest mean agreement fraction. The grouped bar plot shows the highest mean agreement fraction and the text on top shows the
corresponding parameters.

doi:10.1371/journal.pone.0158504.g007
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Quantitative comparison with task fMRI labels
We quantify the quality of parcellations obtained with different filtering approaches by com-
puting the agreement of rfMRI parcellation with task labels for each subject An example of task
labels for a single subject is shown in Fig 7(a). For each subject, we investigate the agreement of
each task label across several rfMRI parcellations obtained with different numbers of classes (2
� K� 400) and with different filtering approaches: unfiltered, LB filtering (t = 2, 4, 10) and
tNLM filtering (h = 0.60, 0.72, 1.73). Fig 7(b) shows the mean agreement fraction of an example
task label, left foot motor task, with clustering results across the population. Similar plots for
other task labels are included in Figs I–L in S1 Text. For the tongue motor task, we also studied
the performances by subdivided the tongue region into two regions, one on each hemispheres,
because N-cuts clustering frequently sub-divided the clusters across hemispheres for K> 15.

The mean agreement fraction varies substantially with number of classes K for all filtering
approaches and all task labels. This behavior indicates a potential limitation of the N-cuts
approach in that a single value of K will not optimally segment all regions, which presents a
challenge in selecting an appropriate value of K when using this method in practice. However,
our purpose here is to evaluate the relative impact of different forms of smoothing rather than
advocate a specific parcellation approach. To compare performance, we therefore selected the
‘best’ parcellation for each task and each filtering approach (in terms of parameters K, t and h)
as that which achieves the largest mean agreement across the population for that task. We then
compare the performance of different filtering approaches for their quantitatively ‘best’ parcel-
lation for each task label in Fig 7(c). This comparison shows a substantial improvement in per-
formance over unfiltered data with both LB and tNLM but overall, tNLM filtering achieves a
larger mean agreement fraction. More complete overall results for different levels of smoothing
of the task data are shown in Fig I in S1 Text with detailed results for individual tasks shown in
Figs J–L in S1 Text.

We also performed a non-parametric test to examine the statistical differences between the
‘best’ parcellations of LB and tNLM filtering for each task label, the results of which are pre-
sented in Table 1. We used the Wilcoxon signed-rank paired test [37] with a null hypothesis of
no subject-wise difference in ‘best’ performances between LB and tNLM filtering. The alternate
hypotheses for the signed-rank paired tests (i.e. which of tNLM or LB performs better) were

Table 1. Statistical tests for improved agreement with task labels: Table of (uncorrected) p-values for
signed-rank test for ‘best’ performance of LB and tNLM filtering (see text for detailed description). For
each task label, the best performance parameters for both filtering approaches are reported in Fig 7(c). The
agreement fractions across population, computed with these filtering parameters, are used as the perfor-
mance metric for the tests. The alternate hypothesis “tNLM>LB”means that the median agreement fraction of
the tNLM approach is greater than the median agreement fraction of the LB approach; and similarly for
“LB > tNLM”.

Task-pair (ID) Alternate hypothesis Signed-rank p-values

Left foot (7) tNLM > LB 7.588 × 10−9

Right foot (9) tNLM > LB 1.7304 × 10−7

Right hand (10) tNLM > LB 2.7763 × 10−13

Tongue (Left) tNLM > LB 3.4968 × 10−6

Tongue (Right) tNLM > LB 6.995 × 10−20

Faces vs. Shapes (1) tNLM > LB 1.8794 × 10−9

Tongue (11) LB > tNLM 1.6967 × 10−3

Left hand (8) LB > tNLM 3.9957 × 10−3

Story vs. Math (6) LB > tNLM 9.4594 × 10−9

doi:10.1371/journal.pone.0158504.t001
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decided by the value of the population median of agreement fractions and are reported in
Table 1 for each task-pair.

Quantitative test-retest reliability
We also investigated the consistency of rfMRI parcellations across different scan sessions of the
same subject. For each subject, a total of four independent fMRI data were collected over two-
days (two 15 minutes rfMRI runs each day), as per HCP fMRI protocol [6, 24, 38]. We com-
puted the concordance between all 6 possible pairings of the parcellation results for each of the
four 15 min sessions. Concordance is a measure of consistency between parcellations which
measures the fraction of vertices which agree between the parcellations and is described in
details in section C in S1 Text. The concordance measure was computed over all 40 subjects for
each method and several parameter settings.

In Fig 8 we show within-subject agreement over all six possible pairs of parcellations from
the four 15-min rfMRI sessions per subject. We plot the median concordance, over the six
pairs per subject and the 40 subjects, as a function of the number of cuts, K, for three different
smoothing parameters for LB and tNLM. Non-parametric Mann-Whitney U (rank-sum) tests
for significant differences (uncorrected) between median performances of tNLM and LB were
also performed and the square boxes indicate values of p<0.0004. These results show

Fig 8. Test-retest reliability.Median concordance of parcellation results over the pairs of rfMRI sessions (40 subject × 6 session pairs) as a function of the
number of cuts, K = 2 to 80, for different filtering approaches. Square boxes indicate significant differences (uncorrected p-value < 0.0004) between best of
tNLM and LBmedian concordance values, as tested with Mann-Whitney U (rank-sum) test.

doi:10.1371/journal.pone.0158504.g008
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concordance for LB and tNLM roughly decreases until K = 10, and then remains relatively sta-
ble but with a slow increases as K increases to 80. The unfiltered data results are far worse than
either LB or tNLM. Over the range from K = 6 to 80, tNLM with h = 0.72 and h = 1.73 consis-
tently outperform the other methods and settings. Qualitatively, tNLM with h = 0.72 and LB
with t = 4 produced the best apparent results, and there is a clear difference in performance
here between these two over the same range (K = 6 to 80). While it is initially surprising that
the concordance improves with K (this trend continues for K> 80 with LB ultimately given
significantly larger concordance than tNLM for K> 130, see Fig O in S1 Text, we believe this is
simply a result of the decreasing size of the clusters in each network with increasing K and the
nature of the matching algorithm used to compute concordance. Consider the limiting case
where K = number of vertices. Then each surface vertex forms a different parcel. In this case,
the matching algorithm would achieve a perfect match and 100% consistency. Figs D–G in S1
Text show that cluster-sizes of LB parcellations are substantially smaller than tNLM, especially
for K> 130. Cluster-size distribution in Fig D in S1 Text shows that tNLM has several clusters
which are substantially larger than LB for K� 100. The distribution of cluster-size in Fig E in
S1 Text shows this effect more clearly, where we see that tNLM results have substantially larger
clusters as compared to LB across most of the cortex. Fig F in S1 Text shows that tNLM results
seems to consistently have several large clusters as well as several small clusters. In comparison,
LB results seems to uniformly divide the whole cortex in approximately equal size for large K,
Figs D and F in S1 Text. Since the average size of the clusters in LB for a fixed K is substantially
smaller than that for tNLM (Fig F in S1 Text) there is an increased chance of a (random) good
match between pairs of parcellations. Figs P and Q in S1 Text illustrate the spatial distribution
of concordance/disagreement in region boundaries for tNLM and LB as a function of K.

Discussion
The tNLM filtering results shown in Fig 1 and the accompanying video, S1 Video, illustrate the
qualitative impact of this form of nonlinear filtering on resting BOLD data. There are relatively
few other examples showing real time rfMRI whole-brain activity in the form of either single
frame images or movies in the literature. An early example from Vincent et al. shows real-time
brain dynamics from data used to explore resting networks (https://youtu.be/VaQ66lDZ-08
and https://youtu.be/3nCBLw9Z-xU) [36, 39] but the dynamics do not clearly show coherent
activity in regions forming the default mode and other networks. Another example from
Raichle (http://www.nil.wustl.edu/labs/raichle/images/Restless_Brain/restless_brain_lat.html)
also demonstrates dynamic behavior in resting fMRI similar to the tNLM video but at a slower
rate [40]. Kundu et al. [41] have developed a method for denoising multi-echo fMRI data that
distinguishes BOLD from non-BOLD signals based on echo-time dependence. The resulting
denoised data show dynamic activation in DMN and other networks in real-time (https://
youtu.be/D_UUfIF49Vc) similar to that shown in Figs 2 and 1. However this approach explic-
itly requires a multi-echo sequence and unlike tNLM cannot be applied to standard fMRI pro-
tocols. The dynamics shown in the tNLMmovie also share similarities with those in Zalesky
et al. [42] who explore the HCP resting data data using dynamic regional network efficiency
measures, computed from time-resolved connectivity estimates, to produce movies of brain
dynamics. Their results show “a consistent set of functional connections (with) pronounced
fluctuations in their strength over time”. The authors also note spontaneous increases in spa-
tially distributed regions over brief intervals, observations that can be also be made from the
tNLMmovie, S1 Video.

The effect of LB filtering relative to tNLM is shown in the S3 Video and Fig 2. Because LB
filtering does not account for temporal correlations when performing spatial averaging, the
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method will tend to blur boundaries between distinct functional regions. As a result, as activity
in one region increases and that in an adjacent one decreases, the effect of LB smoothing pro-
duces an apparent boundary or wave moving over time from one region to the other. This
behavior is apparent in the LB movie (S3 Video). In contrast, with tNLM only vertices with
similar time series are averaged to denoise the data. Therefore when two adjacent regions have
distinct time series, they should not be blurred through filtering and this wavelike effect does
not occur. Qualitatively, there are clearer boundaries in the tNLM images relative to LB,
although it is also evident that even within regions corresponding to a single network, activa-
tion is not always synchronous. Overall, the impression given in the tNLMmovie, S1 Video, is
that of irregular, burst like activity, similar to what might be expected during a period of undi-
rected mind-wandering [43, 44]. This ability to denoise fMRI data without excessive blurring
across functional boundaries may make tNLM useful in exploratory studies of dynamic fMRI
data involving resting, movie watching and other non-repetitive paradigms.

In addition to Gaussian filtering several other post-processing approaches have been
explored for denoising the fMRI data [6, 45–48]. These approaches include bilateral filtering
[49], ICA (Independent Component Analysis) based filtering [50–52], Wavelet-based denois-
ing [53, 54] and Markov Random Field (MRF) based filtering [45]. MRF filtering uses a combi-
nation of spatial and temporal similarity measures to perform nonlinear smoothing based only
on local (in time and space) data which, unlike tNLM, will result in a time-varying effective
smoothing kernel. ICA filtering does make use of ‘non-local’ similarity but does not perform
the weighted spatial averaging which tNLM uses to produce the functional-boundary preserv-
ing results shown here. While each of these non-Gaussian methods [45–54] has been shown to
be effective for particular applications, Gaussian filtering remains the most widely used
approach among fMRI studies and is frequently effective [6, 55–57]. Hence, all comparisons in
this paper are with LB filtering, which is a generalization of Gaussian filtering on cortical sur-
faces. Further, some of these non-Gaussian filtering approaches can also be used simulta-
neously to combine their respective advantages. For example, all the data presented in this
paper were filtered for non-neuronal signals using an ICA-based approach [6, 24] before LB or
tNLM was applied.

Denoising with tNLM is also potentially attractive as a precursor to network identification
or parcellation. The images in Fig 4 illustrate the beneficial impact of filtering prior to cluster-
ing on the ability of N-cuts parcellation to form larger piece-wise contiguous regions. However,
LB filtering appears to produce a larger number of spurious clusters, as indicated in Fig 4(b)
and 4(e). An example of how and why these spurious clusters may be formed as a result of LB
smoothing is shown in the simulation example, Fig 3. The presence of spurious clusters around
boundaries of large networks can also be appreciated by comparing Figs F and G in S1 Text.
These figures show the average cluster-size as a function of location on the cortical surface
before and after breaking networks into contiguous parcels. For the case K = 100, for example,
the average contiguous cluster sizes are quite similar in the tNLM parcellation, while LB results
show a band of small clusters (the yellow regions) along the boundary of the visual cortex.
These are consistent with the spurious boundary regons produced in the simulation, Fig 3.
This simulation result, and the corroborating evidence from in vivo data, indicates that (regard-
less of the merits of tNLM filtering) care should be taken when using linear smoothing in com-
bination with parcellation methods based on pairwise correlations to ensure that parcels are
not produced solely as an artifact of smoothing.

While all examples shown here are restricted to cortex, tNLM filtering can also be applied to
volumetric or grayordinate [7] representations of the data. Similarly, tNLM could be applied as
a denoising tool in event-related functional MRI studies which may result in improved resolu-
tion of focal activation relative to methods based on conventional isotropic linear smoothing.
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The tNLMmethod could also be extended to include a spatial component, so that the weighted
average depends on a combination of temporal and spatial similarity. It would also be interest-
ing to explore a dynamic version in which the similarity measure is computed of restricted
time-window, rather than the entire time-course as was the case in the results presented above.

We illustrated the potential utility of tNLM through cortical parcellation studies based on
N-cuts spectral graph partitioning. Our approach parcellates a single subject using a fully con-
nected graph with edge strengths based on pairwise correlations between the time series on the
surface elements. Most previous applications of graph-cuts in brain parcellation have used
locally connected graphs to ensure spatially contiguous parcels [4, 5]. While this appears neces-
sary for unfiltered data (Fig 4(a)), the denoising effect of tNLM or LB allows use of the fully
connected graph while still producing a piece-wise contiguous parcellation (Fig 4(c)). This has
the advantage of using all correlations for parcellation rather than a restricted subset, thus
using more information.

Changes in parcellation as a function of the number of networks were investigated in Fig 5
for tNLM (with equivalent results in Fig C in S1 Text for LB and unfiltered data). A well
known problem with N-cuts is that the algorithm tends to produce cuts of similar size if the
graph (and its adjacency matrix) does not contain sufficient information to unambiguously
support a single K-way partition [4]. We note that this does seem to be the case for relatively
large numbers of networks (K� 60) as shown in Fig 5. The plots of cluster-size distribution in
Figs D and F in S1 Text also supports this view. As noted by Blumensath et al. [4], a hierarchi-
cal approach may produce superior results to N-cuts for these larger numbers of clusters.

To investigate consistency as a function of the number of networks, we averaged edge loca-
tions over multiple values of K in Fig 6. It is interesting that the resulting individual edge maps
(Fig 6(a)) bear a strong resemblance to the group functional connectivity gradients shown in
Fig 10 in [6].

Quantitative comparisons with functional task labels (and Brodmann areas in section D in
S1 Text, Figs M and N) demonstrate that tNLM filtering achieves improvement over LB filter-
ing across most tasks and Brodman area maps over a wide range of K values. It is also interest-
ing to note that both filtering approaches show peak performance around similar number of
classes K.

Conclusion
The results shown above support the primary claim of this report: that temporal non-local
means (tNLM) filtering is able to denoise resting fMRI data while also retaining spatial struc-
ture that reflects ongoing dynamic brain activity. Correlated variations in activity are directly
visible in the tNLMmovie of cortical activity, and appear to reflect the underlying dynamics of
large-scale brain networks. While linear LB filtering produces smoothed results that also reveal
dynamic brain activity, the fact that this form of smoothing does not consider temporal corre-
lations will inevitably result in a blurring of functional boundaries. The simulation and experi-
mental results presented above indicate that this can also lead to spurious results when LB
filtering is applied prior to cortical parcellation. This ability of tNLM to help visualize real-time
whole-brain networks may facilitate exploratory data analysis leading to new insights into the
dynamics of spontaneous brain activity. Temporal NLM can also be used as a preprocessor for
resting fMRI for exploration of dynamic brain networks and achieves significant improvement
over traditional isotropic smoothing in quantitative comparisons.
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Supporting Information
S1 Text. Supplemental Material. Appendices and additional detailed results.
(PDF)

S1 Video. tNLM filtered rfMRI data.Movie of temporal non-local means (tNLM) filtered
(h = 0.72) BOLD signal intensities on the cortical surface for a subject from HCP dataset,
played back at a real-time rate. The time series associated with each cortical vertex were nor-
malized to zero mean and unit variance. The signal intensities are visualized on a smoothed
cortical surface using a colormap with transitions from blue (negative) to white (zero) to red
(positive). Movie Parameters: duration of 2.5 minute (200 rfMRI samples), 10 frames per sec-
ond, 1 second in movies equals 1 second in real time.
(MP4)

S2 Video. Unfiltered rfMRI data.Movie of unfiltered (minimally processed using HCP pipe-
line) BOLD signal intensities on the cortical surface for the same subject as S1 Video, played
back at a real-time rate. The signal intensities are visualized on a smoothed cortical surface
using a colormap with transitions from blue (negative) to white (zero) to red (positive). Movie
Parameters: duration of 2.5 minute (200 rfMRI samples), 10 frames per second, 1 second in
movies equals 1 second in real time.
(MP4)

S3 Video. LB filtered rfMRI data.Movie of Laplace-Beltrami filtered (t = 4) BOLD signal
intensities on the cortical surface for the same subject as S1 Video, played back at a real-time
rate. The signal intensities are visualized on a smoothed cortical surface using a colormap with
transitions from blue (negative) to white (zero) to red (positive). Movie Parameters: duration
of 2.5 minute (200 rfMRI samples), 10 frames per second, 1 second in movies equals 1 second
in real time.
(MP4)
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