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Inflammatory storm is an important pathological mechanism of multiple organ dysfunction, and it is associated with most deaths
in septic patients, deserving to be studied. Recent findings have confirmed that the Medullary Visceral Zone (MVZ) regulates
inflammation and immunity through the cholinergic anti-inflammatory pathway (CAP), but how sepsis affects the MVZ and
leads to uncontrolled inflammation remain unclear. The current study reported that sepsis induced MVZ to inhibit CAP which
underlies the inflammation storm. Our studies have shown that the rat models of sepsis prepared by cecal ligation and puncture
had a higher inflammatory level, higher mortality, and higher Murine Sepsis Score. In septic rats, some indicators of heart rate
variability (HRV) such as SDNN, HF band, RMSSD, SD1, and SD2 significantly reduced. In MVZ of septic rats, many
cholinergic and catecholaminergic neurons showed apoptotic, with low expressions of tyrosine hydroxylase and choline
acetyltransferase. The α7nAChR agonist GTS-21 can improve these pathologies, while the α7nAChR antagonist MLA is the
opposite. Our study demonstrates for the first time that cholinergic and catecholaminergic neurons in MVZ went through
significant apoptosis and inactiveness in sepsis, which contributes to the inhibition of CAP and acceleration of the inflammation
storm in early sepsis. Intervening with CAP has a significant effect on the activity and apoptosis of MVZ neurons while altering
systemic inflammation and immunity; in addition, for the first time, we confirmed that some indicators of HRV such as SDNN,
HF band, RMSSD, SD1, and SD2 can reflect the activity of CAP, but the CAP interference had little effect on these indicators.

1. Introduction

In 2017, approximately 48.9 million patients were diagnosed
with sepsis worldwide which caused approximately 1.1 mil-
lion deaths, accounting for 19.7% of all-cause mortality [1].
Sepsis is an abnormal response of the host to infection, which
can lead to life-threatening organ dysfunction. The immune
system is activated in response to infection through
pathogen-associated molecular patterns, involving Toll-like
receptors on the cells of the innate immune system [2]. This
interaction triggers the release of both proinflammatory and
anti-inflammatory mediators such as tumor necrosis factor-
α, interleukin 1, interleukin 2, interleukin 6, and interleukin

8, which cause neutrophil-endothelial cell adhesion, activate
the complement and clotting cascades, and contribute to
multiple organ dysfunction and even death [3]. Early inflam-
mation and immune disorders in infectious disease are
critical to the formation and progression of sepsis; even the
survival of patients with sepsis also depends on the intensity
of inflammation and the balance between proinflammatory
and anti-inflammatory strength [4].

A series of clinical and experimental studies conducted in
recent years have revealed that the Medullary Visceral Zone
(MVZ) regulates inflammation and immunity dynamically
through the cholinergic anti-inflammatory pathway (CAP)
[5]. Therefore, the uncontrolled inflammation and immunity

Hindawi
Mediators of Inflammation
Volume 2020, Article ID 1320278, 14 pages
https://doi.org/10.1155/2020/1320278

https://orcid.org/0000-0001-8067-3202
https://orcid.org/0000-0002-8419-8426
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1320278


in sepsis will inevitably be related to the disorder of MVZ reg-
ulation. Studies have shown that systemic inflammation can
induce MVZ neuroinflammation [6, 7] in many ways, such
as through the leak of cytokines from circumventricular
organs neighboring the blood-brain barrier (BBB) [8], or sat-
urable diffusion of cytokines through the BBB [9], or para-
crine secretion of cytokines from the brain endothelial cells
[10], or the inflammation signals transmitted to the brain
through the vagus nerve [11]. Neuroinflammation results in
CAP dysfunction which may be a key cause of the septic
inflammatory storm, but the pathologies of MVZ under
neuroinflammation and its impact on CAP remain unclear.
This study attempts to use agonists and antagonists to simu-
late and antagonize the function of CAP in sepsis rats to
study the apoptosis and activity of cholinergic neurons and
catecholaminergic neurons in MVZ and simultaneously
study the regulatory activity of CAP and the intensity of sys-
temic inflammation and immunity, through exploring the
pathologies of MVZ in sepsis and its effect on the regulation
of CAP to provide ideas for the treatment of sepsis.

2. Methods

2.1. Animals. 64 adult, male Sprague-Dawley rats (8 weeks
old, 250-280 g, License Number: SYXK (Hubei)2018-0104)
were purchased from the Experimental Animal Center of
Three Gorges University (Sale License Number: SCXK(Hu-
bei)2017-0012). Rats were housed in the Guizhou Medical
University Experimental Animal Center and maintained
under temperature control (21 ± 0:5°C) and a 12h light-
dark cycle (lights on during 05:00–17:00). Standard chow
and tap water were provided ad libitum. Animals were accli-
matized for 7 days before experimental manipulations. All
experimental procedures were carried out in compliance with
the guidelines of the institutional animal care and use com-
mittee (IACUC) of the First Hospital of Guiyang (IACUC
number 20190107).

2.2. Animal Grouping and Treatment. After 7 days of adap-
tive feeding, rats were divided into three groups according
to the random number table: (1) control group: rats (n = 8)
were fed as usual without any treatment; (2) sham group: rats
(n = 8) were subjected to open and suture of the abdominal
cavity without cecal ligation and puncture (CLP) preparing
for sepsis models [12]; afterwards, they were accepted intra-
peritoneal injection of piperacillin (50mg/kg, i.p. tid×3 d);
(3) sepsis group: the sepsis rats (n = 48) were prepared with
the CLP method; the operation process is as follows: the
abdominal cavity was cut about 2 cm along the white line of
the abdomen to find the cecum, about 1/3 of the cecum was
ligated with a 5-0 suture, and the ligated cecum was pierced
with a 21G needle twice. A small amount of intestinal con-
tents from the puncture hole were gently squeezed, the proc-
essed cecum was returned into the abdominal cavity, the
inner layer was sutured with 5-0 sutures, and the outer layer
was sutured with 3-0 sutures. The rats were under anesthesia
with isoflurane inhalation during all the procedures. The rats
in the sepsis group were delayed to recover to their con-
sciousness, the bodies were curled up and inactive, and they

breathed fast and had little and slow response to the outside
world. These appearances indicated that the model is suc-
cessful. One hour after waking up, they were randomly
divided into 3 groups, 16 rats in each group: (a) model group:
accepting intraperitoneal injection of piperacillin (50mg/kg,
i.p. tid×3 d) and saline (1mL/100 g, i.p. tid×3 d); (b) GTS-
21 group, besides piperacillin used in the model group, intra-
peritoneal injection of GTS-21 (a selective α7 nicotinic ace-
tylcholine receptor agonist; it can mimic CAP in acting on
the α7 nicotinic acetylcholine receptors on monocytes and
neutrophils to downregulate NF-κB and inhibit the tran-
scription and release of inflammatory factors, produced by
MCE; Lot: 29834. Dosage and duration: 4mg/kg, i.p. tid×3 d)
was given to each rat [13]; (c) methyllycaconitine (MLA)
group: besides piperacillin used in the model group, intraper-
itoneal injection of MLA (a powerful and selective nicotine
acetylcholine receptor antagonist; the terminals of CAP
release acetylcholine, so it can simulate to block CAP’s effect
on immune cells and aggravate inflammation, produced by
MCE; Lot: HY-N2332A/CS-0021211. Dosage and duration:
4.8mg/kg, i.p. tid×3 d) was given to each rat [14]. After 3
days, the rats were sacrificed to collect blood and medullary
tissue for analysis under anesthesia with isoflurane
inhalation.

2.3. Murine Sepsis Score (MSS) and Rat Mortality Assessment.
MSS was used to assess the severity of sepsis [15]. The scoring
rules are shown in Table 1. The higher the score, the more
severe the rat. Three experimenters evaluated each rat and
get a score separately, and the average score was used to judge
the severity of sepsis of each rat. In addition, the mortalities
of each group were documented at 3 consecutive days after
the model was built.

2.4. HRV Monitoring. Six hours after the CLP operation, the
HRVmonitoring for all rats began [16]. The BL-420F Biolog-
ical Experiment System was used to record the rats’ electro-
cardiogram on lead II for 5 minutes. The anesthetized rat
was taken with isoflurane inhalation in the supine position;
the electrode and rat limbs were sterilized with 75% alcohol,
respectively; and the white, black, and red recording needles
were inserted into the right forelimb, right hindlimb, and left
hindlimb subcutaneously. The parameters were set as fol-
lows: sampling rate is 1K/s and low-pass filter is 1 kHz. After
electrocardiogram recording, HRV were performed with BL-
420F Biosignal Acquisition and Analysis System supplied by
Chendu Taimeng Software Co. The frequency domain, time
domain, and nonlinear analysis of HRV were performed.

It was conducted at 10:00-11:00 AM every morning 2
hours after intraperitoneal injection at 8:00 AM for the fol-
lowing 2 days. The main indicators include the standard
deviation of all NN intervals (SDNN), the root mean square
successive difference of continuous RR interval (RMSSD),
total power (TP), very low frequency (VLF), low frequency
(LF, absolute or standardized unit; 0.20 to 0.75Hz), high fre-
quency (HF, absolute or standardized unit; 0.75 to 3.00Hz),
standard deviation of width of a scatterplot of successive
pairs of RR intervals (SD1), and standard deviation of length
of a scatterplot of successive pairs of RR intervals (SD2).
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2.5. Enzyme-Linked Immunosorbent Assay (ELISA). On the
3rd day, after HRV monitoring, 6 rats from each group were
anesthetized with isoflurane inhalation [17, 18]; then, the
chest cavity was dissected, and 2mL of blood was taken from
the right atrium for ELISA and 2mL for flow cytometry
(FCM). For ELISA, blood was preserved at room temperature
for 2 h prior to centrifugation at 3000 r/min at 4°C for 10min;
then, the upper layer of the serum was separated and stored
in the refrigerator at -80°C for detection. For FCM, fresh
blood was taken for testing. According to the manufacturer’s
instructions [19], the serum levels of TNF-α, IL-1α, IL-10, IL-
6, HMGB1, and sCD14 were determined with ELISA.

The main related antibodies include: rat anti-TNF-α (lot
number: E-EL-R0019c, manufacturer: Elabscience), rat anti-
IL-1α (lot number: E-EL-R0011c, manufacturer: Elabscience),
rat anti-IL-6 (lot number: E-EL-R0015c, manufacturer:
Elabscience), rat anti-IL-10 (lot number: E-EL-R0016c, manu-
facturer: Elabscience), rat anti-HMGB-1 (lot number: E-EL-
R0505c, manufacturer: Elabscience), and rat anti-sCD14 (lot
number: CSB-E11178r, manufacturer: Cusabio).

2.6. Flow Cytometry (FCM) Analysis. According to the FCM
kit’s instructions, the lymphocyte surface antigen was labeled
by a double fluorescent antibody, TH17 lymphocytes were

Table 1: Murine Sepsis Score.

Variable Score and description

Appearance

0—coat is smooth

1—patches of hair piloerected

2—majority of the back is piloerected

3—piloerection may or may not be present; the mouse appears “puffy”

4—piloerection may or may not be present; the mouse appears emaciated

Level of consciousness

0—the mouse is active

1—the mouse is active but avoids standing upright

2—mouse activity is noticeably slowed. The mouse is still ambulant

3—activity is impaired. The mouse only moves when provoked; movements have a tremor

4—activity severely impaired. Mouse remains stationary when provoked, with possible tremor

Activity

0—normal amount of activity. The mouse is any of the following: eating, drinking, climbing, running, or fighting

1—slightly suppressed activity. The mouse is moving around the bottom of the cage

2—suppressed activity. The mouse is stationary with occasional investigative movements

3—no activity. The mouse is stationary

4—no activity. The mouse is experiencing tremors, particularly in the hind legs

Response to stimulus

0—the mouse responds immediately to auditory stimulus or touch

1—slow or no response to auditory stimulus; strong response to touch (moves to escape)

2—no response to auditory stimulus; moderate response to touch (moves a few steps)

3—no response to auditory stimulus; mild response to touch (no locomotion)

4—no response to auditory stimulus. Little or no response to touch. Cannot right itself if pushed over

Eyes

0—open

1—eyes not fully open, possibly with secretions

2—eyes at least half closed, possibly with secretions

3—eyes half closed or more, possibly with secretions

4—eyes closed or milky

Respiration rate

0—normal, rapid mouse respiration

1—slightly decreased respiration (rate not quantifiable by eye)

2—moderately reduced respiration (rate at the upper range of quantifying by eye)

3—severely reduced respiration (rate easily countable by eye, 0.5 s between breaths)

4—extremely reduced respiration (>1 s between breaths)

Respiration quality

0—normal

1—brief periods of laboured breathing

2—laboured, no gasping

3—laboured with intermittent gasps

4—gasping
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labeled with CD4-FITC (fluorescein isothiocyanate)/IL-17A-
PE (phycoerythrin), and Treg lymphocytes were labeled with
CD4-FITC/CD25-PE. The procedures are as follows: 2mL
fresh collected blood was centrifuged at 400-500g at room
temperature for 30 minutes to acquire leukocytes; after
repeated washing and centrifuging, 0.1mL cell suspension
was incubated and fluorescent-labeled antibody was added
to incubate again; eventually, the cells were resuspended in
0.2mL PBS containing 0.5% BSA and analyzed by flow
cytometry. The antigen-labeled monoclonal antibodies used
include CD25-PE monoclonal antibody (manufacturer: Invi-
trogen, lot number: 12-0390-82), CD4-FITC monoclonal
antibody (manufacturer: Invitrogen, lot number: 11-0040-
82), and IL-17A-PE monoclonal antibody (manufacturer:
Invitrogen, lot number: 12-7177-81).

2.7. Sampling and TdT-Mediated dUTP Nick-End Labeling
(TUNEL).After blood collection, rats were perfused transcar-
dially with phosphate-buffered saline (PBS, 0.01M, 150mL at
pH 7.4) followed by a paraformaldehyde (PFA, 350mL) solu-
tion. Afterward, the whole brains were removed and fixed in
4% PFA for 3 h at 4°C. Fixed brains were preserved at 4°C
with 0.01M PBS containing 30% sucrose for 72 h. The
medulla oblongata was acquired and conventionally embed-
ded with paraffin to prepare sections (30μm). The paraffin
sections from different groups were taken, dewaxed, and
immerged in Proteinase K solution. Then, the TdT (Terminal
Deoxynucleotidyl Transferase) buffer was added to incubate.
At last, DAPI (Beyotime Biotechnology, lot number: C1002)
and fluorescence quencher (SouthernBiotech, lot number:
0100-01) were added to stain the nuclei and the apoptotic
cells. The sections were observed under a fluorescent micro-
scope (Olympus BX53 biological microscope). The normal
cell nuclei were stained blue, and the apoptotic cell nuclei
were stained red. ImageJ software was used to calculate the
apoptosis index [20]. 10 images from every group were
randomly selected; the ratio of the number of apoptotic cells
to the total number of cells in each image was calculated, and
the average percentage of the apoptosis is the apoptosis index
of the group.

2.8. Immunofluorescence. After dehydration, the sections
were blocked with 10% normal goat serum (1h) and then
incubated for 24 h in a cocktail of primary antibodies for
the labeling of Caspase3 (produced by Wuhan Sanyan Bio.
Co., China. Lot: 66470-2-IG, dilution: 1 : 50), tyrosine
hydroxylase (TH, produced by Wuhan Boster Co., China.
Lot: BM4568, dilution: 1 : 50), or choline acetyltransferase
(CHAT, produced by Wuhan Bioss Co., China. Lot: bs-
2423R, dilution: 1 : 50). The reactions with primary antibod-
ies were followed by 4h of incubation in the presence of a
fluorescent-labeled secondary antibody (FITC-labeled goat
anti-rabbit IgG, produced by Wuhan Boster Co., China.
Lot: BA1105, dilution: 1 : 100; Cy3-labeled goat anti-mice
IgG, produced by Wuhan Boster Co., China. Lot: BA1031,
dilution: 1 : 100). Finally, the sections were mounted on
gelatin-coated slides and covered with mounting medium
with DAPI, for nuclear staining of all cells present in the slice
[21]. The images from the different experimental groups

were captured with an Olympus BX53 Biological Micro-
scope. The normal nuclei were stained blue, cholinergic
neurons expressing CHAT and catecholaminergic neurons
expressing TH were stained green, and apoptotic neurons
expressing Caspase3 were stained red. Three images with
400-fold enlargement from every group were analyzed with
imagepro (ipp6.0) software [22], and the average densities
were acquired.

2.9. Statistics. Measurement data were expressed as the
mean ± standard deviation (�X ± SD). Data were statistically
processed with SPSS 19.0 software package. Intergroup
differences were analyzed with ANOVA. The Levene
homogeneity test is performed first. The comparison of
homogeneous data is determined by the Bonferroni test;
otherwise, they were judged by the Tamhane test. The rats’
mortality was analyzed with the Kaplan-Meier survival
curve and χ2 test. P < 0:05 was considered statistically
significant.

3. Results

3.1. Rat Mortality andMSS. The mortality rates of the control
group, sham group, model group, GTS-21 group, and MLA
group were, respectively, 0%, 0%, 56.3%, 50%, and 68.8%.
There was a significant difference in the survival rate among
the five groups (χ2 = 14:210, P < 0:01); however, although the
overall survival percentages of the three sepsis groups had no
significant difference (χ2 = 1:21, P > 0:05), they were much
lower than those in the control group and the sham group
(Figure 1).

In the same day, the MSS scores of the model group,
GTS-21 group, and MLA group were significantly higher
than that of the control group, and the MSS score of the
MLA group was significantly higher than that of the GTS-
21 group (P < 0:05, Figure 2). In addition, the scores of the
same group on different days were not significantly different
(see Figure 2).

3.2. Effects of Sepsis on Inflammatory Cytokine Levels and
CAP Intervention. Inflammatory cytokines (including TNF-
α, IL-1α, IL-10, IL-6, HMGB1, and sCD14) in the model
group, GTS-21 group, and MLA group were significantly
higher than those in the control group and the sham group
(P < 0:05). The serum concentration of TNF-α, IL-1α, IL-6,
and HMGB1 in the GTS-21 group was significantly lower
than those in the model group (P < 0:05). All inflammatory
cytokine levels reached the highest in the MLA group, and
there were significant differences when compared to the
GST-21 groups (P < 0:05) (see Figure 3).

3.3. Effects of Sepsis on the Percentage of CD4+CD25+Treg
and TH17 Lymphocyte and CAP Intervention. The percent-
ages of CD4+CD25+Treg and TH17 lymphocyte of rats in
the model group, GTS-21 group, and MLA group were sig-
nificantly higher than those in the control group and sham
group (P < 0:05). The percentage of the TH17 lymphocyte
in the GTS-21 group was much lower than that in the model
group (P < 0:05). The percentages of Treg and TH17
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lymphocytes in the MLA group were significantly higher
than those in the GTS-21 group (P < 0:05). The ratio of
Treg/TH17 in the model group was significantly lower than
that in the control group (P < 0:05); it was not significantly
higher in the GTS-21 group than that in the model group,
while in the MLA group, it was significantly lower than that
in the GTS-21 group (P < 0:05) (see Figure 4).

3.4. Results of HRV Analysis. Compared with the control
group and the sham group, the time domain indicators
(including SDNN and RMSSD), frequency indicators (HF),
and nonlinear indicators (including SD1 and SD2) of HRV
were significantly reduced in the model group, GTS-21
group, and MLA group (P < 0:05), but these indicators had
no statistical difference among the three sepsis groups; there
was no statistical difference when comparing the frequency
index of HRV (including TP, VLF, LF, and LF/HF) and the
nonlinear index SD1/SD2 among groups (see Table 2). In
the further subgroup analysis, there was no statistical differ-
ence in the same HRV index among the three sepsis groups
in the same monitoring day.

3.5. Effects of Sepsis on Apoptosis of MVZ Neurons and CAP
Intervention. In the TdT-mediated dUTP Nick-End Labeling

(TUNEL) experiment, there were more apoptotic MVZ cells
in the sepsis groups than those in the control group (P < 0:05).
When compared to the model group, there was a tendency for
GTS-21 to inhibit apoptosis; on the contrary, MLA signifi-
cantly increases the percentage of apoptotic cells; the percent-
age of apoptotic cells in the MLA group was significantly
higher than that in the GTS-21 group (P < 0:05) (see Figure 5).

The further immunofluorescence double-label colocali-
zation studies found that the expression of CHAT in the
model group had a tendency to downregulate when com-
pared to the control group, and GTS-21 had a tendency to
enhance it. There was no significant difference for the expres-
sions of CHAT among the control group, sham group, model
group, and GTS-21 group; the expression of CHAT in the
MLA group was significantly lower when compared with
the control group and GTS-21 group. The expression of
Caspase3 in the sepsis groups significantly upregulated when
compared with the control group (P < 0:05), but there was no
statistical significance among the three sepsis groups (see
Figure 6).

In the TH/Caspase3 immunofluorescence colocalization
study, TH expressions in the sham group, model group,
GTS-21 group, and MLA group were significantly lower than
those in the control group (P < 0:05); it was lowest in the
MLA group. The expressions of Caspase3 in the model group
and the MLA group were much higher than those in the con-
trol group (P < 0:05); GTS-21 had the tendency to suppress
it. The expression of Caspase3 reached the highest in the
MLA group; there was a statistical difference when it was
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average MSS scores of the GTS-21 group were much lower than
those of the model group; the P value and 95% CI were,
respectively, 0.039 and -3.621∼-0.054. a: P < 0:05 vs. control
group; b: P < 0:05 vs. model group; c: P < 0:05 vs. GTS-21 group.
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compared between the MLA group and the GTS-21 group
(P < 0:05) (see Figure 7).

3.6. Correlation Analysis between HRV Indexes and MSS,
Inflammatory Cytokines, Immune Regulation, Expression of
CHAT, and TH/Caspase3. Through Pearson correlation
analysis, it was shown that SDNN, RMSSD, HF, SD1, and
SD2 had a strong negative correlation with MSS scores and
the expression of Caspase3 (P < 0:01 or 0.05); SDNN,
RMSSD, SD1, and SD2 were strongly negatively correlated
with TNF-α, IL-1α, IL-6, IL-10, sCD14, HMGB1, and
CD4+CD25+Treg and TH17, whereas they were positively
correlated with the expression of CHAT and TH (P < 0:01
or P < 0:05). Though HF was negatively correlated with all
the measured cytokines (P < 0:05), it was not significantly
correlated with the percentage of the immune-regulating
lymphocytes; LF/HF was positively correlated with sCD14

(P < 0:05); Treg/TH17 was positively correlated with SDNN,
RMSSD, SD1, and SD2 (P < 0:01 or 0.05). There was no sig-
nificant correlation between the indexes of TP, VLF, LF,
SD1/SD2, and inflammatory cytokines and immune-
regulating lymphocyte percentage (see Table 3).

4. Discussion

The MSS score and mortality of septic rats were significantly
higher than those of the sham group and control group. GTS-
21 can reduce the MSS score of sepsis; on the contrary, MLA
significantly increased it. Studies have shown that the morbid
fatigue of rats reflected by the MSS is closely related to the
activation of glial cells in the central nervous system and
the increase of serum IL-1 and other cytokines [23, 24], sug-
gesting that sepsis rats may have both central and peripheral
high levels of inflammation.
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-83.572∼-32.005; 0.006, -59.758∼-8.191; and 0.000, -108.319∼-56.752. For IL-6, they were 0.000, -77.851∼-42.647; 0.000-59.996∼-24.792;
and 0.000, -87.186∼-51.982. The serum sCD14, HMGB1, TNF-α, IL-1α, IL-10, and IL-6 levels of the MLA group were much higher than
those of rats in the GTS-21 group; the P value and 95% CI were, respectively, 0.000, -294.727∼-87.3357; 0.001, 152.166∼628.754; 0.000,
42.107∼99.837; 0.000, 33.033∼77.624; 0.000, 22.777∼74.344; and 0.001, 9.588∼44.792. A: P < 0:05 vs. control group; B: P < 0:05 vs. model
group; C: P < 0:05 vs. GTS-21 group.
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The results of ELISA confirmed that the levels of cyto-
kines such as TNF-α, IL-1α, IL-10, IL-6, HMGB1, and
sCD14 in septic rats increased significantly, indicating that
the intrinsic immunity and adaptive immunity were acti-
vated; proinflammation and anti-inflammation coexisted in
the early stage of sepsis [25]; CD4+CD25+Treg and TH17
simultaneously increased, and the ratio of Treg/TH17
decreased also confirmed that immune activation and sup-
pression were accompanied by each other, but immune acti-
vation dominated at the early stage of sepsis.

Immune cells such as neutrophils and lymphocytes are
innervated and regulated by the autonomic nerve according

to the needs of the body’s immunity [26]; sympathetic nerves
have little effect on the number of lymphocytes [27], so the
early inflammatory storm of sepsis should involve with the
dysfunction of the autonomic nerve system, especially the
vagus nerve. Therefore, CAP, as a key means of regulating
the inflammation and immunity by the vagus nerve [28],
plays a very important role of regulating inflammation and
lymphocytes through the action on α7nAChR receptors by
acetylcholine released from its terminals. This study also con-
vincingly testified this law through modifying the septic sys-
temic inflammation and immunity intensity by means of the
specific α7nAChR agonists and antagonists. In this study,
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Figure 4: Study of the cholinergic anti-inflammatory pathway (CAP) on immune regulation. (a) Representative scatter plot images of flow
cytometry of CD4+CD25+Treg and CD4+IL-17+TH17 lymphocyte among different groups. (b) Double positive percentage of
CD4+CD25+Treg and CD4+IL-17+TH17 lymphocytes among different groups. (c) The ratio of CD4+CD25+Treg/TH17 among groups.
CD4+CD25+Treg lymphocyte percentages of the model group, GTS-21 group, and MLA group were much higher than those of the control
group. The P value and 95% CI were, respectively, 0.000, -7.893∼-2.754; 0.002, -6.773∼-1.634; and 0.000, -9.846∼-4.707, and so were CD4+IL-
17+TH17 lymphocyte percentages; they were 0.000, -2.668∼-1.279; 0.002, -1.851∼-0.462; and 0.000, -3.858∼-2.469. CD4+CD25+Treg and
CD4+IL-17+TH17 lymphocyte percentages of the MLA group were much higher than those of the GTS-21 group. The P value and 95% CI
were, respectively, 0.018, 0.504∼5.643; 0.000, 1.312∼2.701. A: P < 0:05 vs. control group; B: P < 0:05 vs. model group; C: P < 0:05 vs. GTS-21
group.
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GTS-21 significantly inhibited hyperactive inflammation
and immunity, while MLA was the opposite, indicating that
CAP is a powerful negative regulator on inflammation and
immunity. Here, we cannot help but think a problem: Does
the overactivated inflammation stem from CAP’s inhibition
induced by sepsis?

Belonging to the vagus nerve, CAP’s regulatory activity
should be reflected by some indexes of HRV. Previous studies
have confirmed that SDNN reflects both sympathetic and
vagal activities and can be represented as total HRV changes
[29]; HF and RMSSD represent vagal activity which is related
to rapid changes in HRV [30]. In this study, SDNN, HF, and
RMSSD all decreased in the sepsis group, indicating the inac-
tiveness of the vagus nerve; the nonlinear indicators of SD1
and SD2 were significantly reduced simultaneously in the
sepsis group, indicating that the two adjacent RR intervals
have little variation and the scatter plot is very centralized,
which illuminates the higher sympathetic excitement and
lower vagal tone.

Through correlation analysis, SDNN, HF, RMSSD, SD1,
and SD2 of HRV have strong correlations with MSS, inflam-
mation, and immune indicators, while these indicators are
strongly controlled by CAP as mentioned above; therefore,
it can be concluded that SDNN, HF, RMSSD, SD1, and
SD2 can be used to delineate the regulatory activity of
CAP. The significant decrease of these indicators in the
sepsis group directly suggests that CAP function is inhib-
ited in sepsis.

Studies confirmed [31, 32] that stimulation of carotid
sinus nerves and other vagus nerve endings in sepsis rats
can evidently reduce the inflammation intensity in the brain;
Pavlov et al. showed [33] that cholinesterase inhibitor which
can pass through the blood-brain barrier (BBB) such as gal-
antamine or Huperzine A can significantly reduce both
plasma proinflammatory cytokine levels and mortality in

septic rats, but cholinesterase inhibitors which cannot cross
BBB have no such effect; what is more, the improvement
effects of galantamine or Huperzine A were cancelled by
means of CAP transection.

These two studies convincingly confirmed that CAP is a
key and efficient means for the body to regulate the inflam-
mation intensity in sepsis. The critical point of inflammation
and immune disorders in sepsis should be focused on the
central nervous system.

A study has confirmed [34] that MVZ is not only an
important regulatory center responding to stress, but also
an important integrated center of autonomic nerve and
immune regulation. It controls the intensity of systemic
inflammation dynamically through regulating the output of
CAP [31, 35] under normal conditions and local inflamma-
tion. In sepsis, the suppressed CAP should be blamed for
the MVZ’s dysfunction and cause uncontrolled systemic
inflammation. As we all know, the sensory fibers of the vagus
nerve mainly enter the Nucleus Solitary Tract (NST), and the
motor fibers are emitted from the Dorsal Vagus Motor
Nucleus (DVMN). These structures all belong to MVZ.
Therefore, the MVZ pathological changes should be related
to CAP’s suppression in the early stage of sepsis.

Cumulative studies have suggested that sepsis induce
MVZ neuroinflammation [36–38]. It causes a surge of acti-
vated microglia [39], which results in inactiveness or even
loss of neurons [40], and eventually, disorders of various
autonomic functions appear [41, 42]. In the brain, inflamma-
tion exists mainly in the brain regions associated with auto-
nomic nerves during sepsis; it suggests that sepsis
selectively activates the inflammation of the autonomic regu-
latory center such as MVZ, which underlies the dysfunction
of inflammation regulation [43]. In the intensive care unit,
once a patient is diagnosed with septic encephalopathy, the
possibility of death will rise dramatically [44]. It deduces that

Table 2: Time and frequency domain and nonlinear analysis of HRV among different groups.

Control group Sham group Model group GTS-21 group MLA group

SDNN (ms) 3:96 ± 0:89 4:08 ± 0:90 1:59 ± 0:83▲ 1:93V ± 0:74▲ 1:89 ± 0:72▲

RMSSD (ms) 4:25 ± 1:75 4:34 ± 1:26 1:69 ± 1:00▲ 2:20 ± 0:96▲ 2:32 ± 1:03▲

TP (ms2) 1213:27 ± 1022:20 2101:61 ± 345:48 1213:48 ± 818:07 1401:31 ± 678:42 1572:39 ± 747:65
VLF (ms2) 957:12 ± 978:45 1820:08 ± 368:32 992:03 ± 808:40 1200:65 ± 660:70 1370:90 ± 677:89
LF (ms2) 213:65 ± 109:33 232:95 ± 83:31 190:67 ± 25:46 170:85 ± 30:96 167:81 ± 74:43
HF (ms2) 42:56 ± 17:63 48:56 ± 13:06 30:75 ± 5:82▲ 29:83 ± 6:44▲ 33:67 ± 11:17▲

LF/HF (ms2) 5:20 ± 2:12 4:79 ± 1:01 6:45 ± 1:64 5:99 ± 1:66 4:75 ± 2:06
SD1 (ms) 3:00 ± 1:23 3:07 ± 0:89 1:19 ± 0:71▲ 1:56 ± 0:68▲ 1:64 ± 0:73▲

SD2 (ms) 4:64 ± 1:04 4:78 ± 1:42 1:87 ± 1:01▲ 2:20 ± 0:92▲ 2:08 ± 0:77▲

SD1/SD2 0:66 ± 0:27 0:69 ± 0:27 0:67 ± 0:27 0:74 ± 0:24 0:78 ± 0:22
HRV indexes including SDNN, RMSSD, HF, SD1, and SD2 of the model group, GTS-21 group, and MLA group were much higher than those of the control
group. For SDNN, the P value and 95% CI were, respectively, 0.000, 1.359~3.380; 0.000, 1.022~3.043; and 0.000, 1.066~3.087. For RMSSD, they were 0.000,
1.070~4.054; 0.003, 0.559~3.543; and 0.005, 0.439~3.423. For HF, they were 0.006, 3.929~31.683; 0.003, 4.845~32.599; and 0.030, 1.012~8.766. For SD1,
they were 0.000, 0752~2.864; 0.003,.0390~2.503; and 0.006, 0.304~2.417. For SD2, they were 0.000, 1.486~4.052; 0.000, 1.151~3.717; and 0.000, 1.271~3.837.
There were no differences among the groups in such indexes as TP, VLF, LF, LF/HF, and SD1/SD2. SDNN: the standard deviation of all NN intervals;
RMSSD: the root mean square successive difference; TP: total power; VLF: very low-frequency; LF: low frequency; HF: high frequency; SD1: standard
deviation of width of a scatterplot of successive pairs of RR intervals; SD2: standard deviation of length of a scatterplot of successive pairs of RR intervals.
▲P < 0:05 vs. control group.
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Figure 5: Cell apoptosis in MVZ among different groups. The results of TUNEL show that much more apoptotic percentages occurred in the
sepsis groups (including the model group, GTS-21 group, and MLA group) than in the control group. The P value and 95% CI were,
respectively, 0.000, -0.337~-0.160; 0.000, -0.253~-0.077; and 0.000, -0.374~-0.197. GTS-21 decreased the apoptotic percentage when
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bottom left of the images represent 100μm. a: P < 0:05 vs. control group; c: P < 0:05 vs. GTS-21 group.
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the selective inflammatory damage to the specific brain zone
in the early stage of sepsis contributes to a poor prognosis.
However, to my knowledge, by far, there is no relevant report
on the pathological changes of MVZ and its effect on CAP in
early sepsis. Therefore, it is very attractive question deserve to
explore. MVZ consists of various types of neurons such as
cholinergic neurons, catecholaminergic neurons, peptide
energetic neurons, glutamate energetic neurons, and

gamma-aminobutyric acid (GABA) energetic neurons,
which are all involved in autonomic regulation, especially
cholinergic neurons, catecholaminergic neurons [45]. In
our study, immunofluorescence images showed that cholin-
ergic neurons were mainly concentrated in the NST, DVMN,
and Ventrolateral Reticular Nucleus (VLRN); catecholamin-
ergic neurons were mainly distributed in NST, DVMN,
VLRN, and the Area Postrema (AP). TUNEL showed that
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Figure 6: Cholinergic neuron apoptosis in MVZ among the different groups. The images mainly cover NST and VLRN of MVZ. DAPI: 4′,6-
diamidino-2-phenylindole, a fluorescent blue dye capable of binding strongly to DNA. CHAT: choline acetyltransferase, used for labeling
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left of the images represent 100 μm. a: P < 0:05 vs. control group; c: P < 0:05 vs. GTS-21 group.
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significant apoptosis occurs in MVZ cells in sepsis rats, and
immunofluorescence colocalization suggested that sepsis
caused evident apoptosis in MVZ cholinergic and catechol-
aminergic neurons. What is more, the higher the intensity
of systemic inflammation (MLA group>model group>GTS-
21 group), the more severe the apoptosis and the lower the
expression of TH and CHAT. Correlation analysis between

TH, CHAT, Caspase3 expression, and HRV suggests that
the more severe the cholinergic and catecholaminergic neu-
ron apoptosis, or the lower the TH and CHAT expression,
the more inhibitory the CAP function. The upregulated
expression of CHAT inMVZ indicates that the inflammatory
information of peripheral organs is transmitted to MVZ
through the vagus nerve which activates the cholinergic
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Figure 7: Catecholaminergic neuron apoptosis in MVZ among different groups. The images mainly cover the NST and VLRN of MVZ.
DAPI: 4′,6-diamidino-2-phenylindole, a fluorescent blue dye capable of binding strongly to DNA. TH: tyrosine hydroxylase, used for
labeling catecholaminergic neurons (stained green with FITC); Caspase3: indicator for apoptotic cell (stained red with Cy3). The scale bars
at the bottom left of the images represent 100 μm. a: P < 0:05 vs. control group; c: P < 0:05 vs. GTS-21 group.
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neurons in order to enhance the anti-inflammatory effect by
CAP [46]. Therefore, the apoptosis or low expression of
CHAT of cholinergic neurons in sepsis means an inadequate
perception of inflammation and downregulation of anti-
inflammation by MVZ and CAP, which in turn overactivate
immune cells and eventually accelerate inflammation storm.
In this study, although the cholinergic neurons in the model
group are significantly apoptotic, they also significantly acti-
vated by inflammation in sepsis, so the expression of CHAT
did not significantly decrease in the model group; there was a
tendency towards an increase in the GTS-21 group which
was related to the reduction of systemic inflammation, apo-
ptosis, and the increasing activity of cholinergic neurons in
MVZ. In the MLA group, accompanied by the aggravation
of inflammation, the apoptosis of CHAT neurons increased
further and the expression of CHAT decreased significantly
when compared to the GTS-21 group.

Catecholaminergic neurons in MVZ respond sensitively
to dangerous stress such as gastrointestinal toxicant [47],
myocardial ischemia, and subarachnoid hemorrhage [48].
They project onto the DVMN and the medulla oblongata,
by which they participate in the regulation of autonomic
nerves to regulate inflammation and immunity [49]. The
decrease in number and activity of catecholaminergic neu-
rons will inevitably lead to insufficient activation of the
DVMN and then reduce the output of CAP, which denotes
that the curbing effect on inflammation by CAP decreases.
The inflammation of the central nervous system not only
enhances the TH expression but also promote the apoptosis
of catecholaminergic neurons [50]; severe apoptosis of cate-
cholaminergic neurons in sepsis gives rise to the reduction
of CAP output. In this study, the expression of TH in MVZ
catecholaminergic neurons decreased significantly in the
sham group and the sepsis groups, indicating that catechol-
aminergic neurons were sensitive to stress, even surgical
stress can also cause their dysfunction; in sepsis, sharp down-

regulation of expression of TH may be related to its excessive
apoptosis. GTS-21 significantly reduced its apoptosis and
increased the TH expression. MLA was completely the oppo-
site. Although there are different levels of systemic inflamma-
tion in the model group, the GTS-21 group, and the MLA
group, there is no significant difference in the CAP activity
indicators among the three groups, probably because on the
one hand, HRV is dominated by both sympathetic and vagal
nerves; on the other hand, the terminal intervention of CAP
has limited impact on HRV. Further researches such as
exploring the relation between CAP and sympathetic nerves
will be needed to clarify these queries.

5. Conclusions

Cholinergic and catecholaminergic neurons in MVZ mani-
fest obvious apoptosis and low activity in sepsis, which leads
to the inhibition of the CAP function and underlies the
uncontrolled inflammation in early sepsis. Systemic inflam-
mation storm has a significant effect on MVZ neuronal activ-
ity and apoptosis in sepsis. For the first time, it was confirmed
that some indicators in HRV such as SDNN, HF band,
RMSSD, SD1, and SD2 can reflect CAP regulatory activity,
but they were hardly affected by the intervention of CAP.

Data Availability

Because this study is supported by the Guizhou Provincial
Science and Technology Foundation, the data will not make
known to public until the research project is checked and
accepted. Therefore, we declare that all the datasets used
and/or analysed during the current study are available from
the author on reasonable request. The link email is
mrbright789@sina.com.

Table 3: Correlation analysis between HRV indexes and MSS, inflammatory cytokines, immune regulation, expression of CHAT, and
TH/Caspase3.

SDNN RMSSD TP VLF LF HF LF/HF SD1 SD2

MSS -0.883∗∗ -0.733∗∗ -0.196 -0.153 -0.42 -0.613∗ 0.287 -0.732∗∗ -0.872∗∗

TNF-α -0.798∗∗ -0.712∗∗ 0.16 0.2 0.21 -0.429∗ 0.25 -0.711∗∗ -0.756∗∗

IL-1α -0.786∗∗ -0.707∗∗ 0.1 0.12 0.14 -0.401∗ 0.28 -0.706∗∗ -0.747∗∗

IL-6 -0.813∗∗ -0.699∗∗ 0.08 0.11 0.19 -0.415∗ 0.23 -0.698∗∗ -0.787∗∗

IL-10 -0.650∗∗ -0.607∗∗ 0.01 0.04 0.19 -0.425∗ 0.23 -0.607∗∗ -0.609∗∗

sCD14 -0.632∗∗ -0.575∗∗ 0.18 0.2 0.07 -0.407∗ 0.362∗ -0.574∗∗ -0.596∗∗

HMGB1 -0.747∗∗ -0.687∗∗ 0.17 0.19 0.1 0.36 0.26 -0.687∗∗ -0.704∗∗

Treg -0.820∗∗ -0.727∗∗ 0.09 0.06 0.47 0.01 0.27 -0.726∗∗ -0.816∗∗

TH17 -0.683∗∗ -0.692∗∗ 0.11 0.09 0.42 0.05 0.18 -0.691∗∗ -0.662∗∗

Treg/TH17 0.579∗ 0.671∗∗ 0.15 0.12 0.45 0.08 0.18 0.670∗∗ 0.549∗

CHAT 0.406∗∗ 0.333∗ 0.08 0.052 0.261 0.269 0.046 0.332∗ 0.400∗∗

TH 0.570∗∗ 0.478∗∗ -0.07 -0.091 0.139 0.245 -0.021 0.477∗∗ 0.570∗∗

Caspase3 -0.675∗∗ -0.564∗∗ -0.187 -0.159 -0.281 -0.411∗∗ -0.008 -0.564∗∗ -0.668∗∗

∗∗P < 0:01, ∗P < 0:05.
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