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Abstract: KRAS is the most frequently mutated oncogene identified in human cancers. Despite the
numerous efforts to develop effective specific inhibitors against KRAS, this molecule has remained
“undruggable” for decades. The development of direct KRAS inhibitors, such as sotorasib, the first
FDA-approved drug targeting KRAS G12C, or adagrasib, was made possible with the discovery of a
small pocket in the binding switch II region of KRAS G12C. However, a new challenge is represented
by the necessity to overcome resistance mechanisms to KRAS inhibitors. Another area to be explored
is the potential role of co-mutations in the selection of the treatment strategy, particularly in the
setting of immune checkpoint inhibitors. The aim of this review was to analyze the state-of-the-art of
KRAS mutations in non-small-cell lung cancer by describing the biological structure of KRAS and
exploring the clinical relevance of KRAS as a prognostic and predictive biomarker. We reviewed
the different treatment approaches, focusing on the novel therapeutic strategies for the treatment of
KRAS-mutant lung cancers.

Keywords: non-small-cell lung cancer; KRAS mutations; KRASG12C inhibitors; molecular biology;
targeted therapy

1. Introduction

In non-small-cell lung cancers (NSCLCs), identifying molecular mechanisms under-
lying tumor growth and progression is crucial to defining the best therapeutic approach
for each patient. In recent years, great strides have been made to improve the individual-
ized therapeutic approach for each patient. Among the molecular alterations predicting
response to targeted treatment in lung cancer, epidermal growth factor receptor (EGFR)
inhibition was the first to succeed [1]. Studies have shown that in patients with molecular
rearrangements and specific mutations (e.g., EGFR, ALK and ROS1), targeted therapy with
tyrosine kinase inhibitors (TKIs) leads to a significant improvement in survival and quality
of life [2]. Some new molecules have shown efficacy in inhibiting rare oncogenic drivers,
such as RET, BRAF, MET, NTRK and HER2 [3]. KRAS is the most common alteration
identified in solid tumors and especially in pancreatic (88%), colorectal (45–50%) and lung
cancers (31–35%) [4]. G12D, G12V, G12C, G13D and Q61R are five different mutations that
account for 70% of all RAS-mutant patients. KRAS G12C mutations are frequently found
in lung cancer due to G:C>T:A transversions associated with carcinogen-DNA adduct
generated by the mutagens in tobacco smoke [5].

Given the high frequency of KRAS mutations in different types of aggressive tumors,
numerous efforts have been made to block the function of this oncoprotein.

KRAS mutations may be associated with poor overall prognosis and response in
advanced/metastatic NSCLC [6]. Traditionally, the standard treatment for patients with
KRAS mutations in NSCLC is chemotherapy, and the average overall survival (OS) rate is
less than 2 years [7]. Several studies showed that KRAS mutations in patients with NSCLC
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have a negative impact on OS, progression-free survival (PFS) and disease control rate
(DCR) [8,9]; moreover, patients develop liver and brain metastases more frequently in the
presence of this mutation and experience a more aggressive form of the disease [8].

Despite numerous attempts over the last three decades aimed at identifying inhibitors
of RAS, many questions remain unanswered. Recently, small-molecule inhibitors demon-
strated great efficacy in the pharmacological inhibition of the KRAS p.G12C mutation, as
monotherapies and in combination with other treatments. Given these assumptions, the
purpose of this review was to explore the biological basis on which the efforts made to
investigate indirect inhibition mechanisms and direct targeting strategies of mutated forms
of KRAS are based.

2. Molecular Biological Functions of KRAS

The human KRAS gene, located on chromosome 12.p12.1, is the most common onco-
genic driver, with G12C representing the most frequent mutation in NSCLC, followed by
G12V, G12D, and G12A. KRAS is present in a mutated form in 80% of pancreatic cancers,
40% of colorectal cancers, and about 30% of lung adenocarcinomas [10]. In NSCLC, KRAS
mutations are present in approximately 30% of lung adenocarcinomas and 5% of squamous
cell carcinomas; these alterations are more common in western (26%) than in Asian (11%)
populations and in smokers (30%) than non-smokers (10%) [11–13]. The smoking habit has
also been related to the type of KRAS mutation. Transversion mutations, such as the gua-
nine to thymine mutation, are more common in current or former-smoker patients, while
never-smoker patients more frequently have transition mutations [11]. Proto-oncogene
KRAS encode a GTPase protein involved in extracellular to intracellular signal transduc-
tion through activation and inactivation determined by the binding to GTP [14]. The
transduction pathway of RAS proteins is involved in intracellular signaling and tumor
cell growth [15]. KRAS molecule interactions involved in its signaling include EGFR,
MEK, MAPK, Raf, PI3K and AKT. The active form of the protein is represented by the
GTP-binding form, while the protein is demonstrated to be inactive in its GDP-binding
form. The gamma-phosphate of the GTP analog determines conformational changes in
two switch regions of the RAS protein. Downstream effectors interact with the switch
I and II regions, held by the gamma-phosphate of GTP. The inactive state, incapable of
binding effector molecules, is derived from the hydrolysis of the gamma-phosphate, which
determines a structural change in the switch regions.

Guanine nucleotide exchange factors (GEFs) are required to convert the GDP-bound
inactive RAS to the GTP-bound active form. The RAS intrinsic hydrolytic activity allows
for the conversion back to the GDP inactive form (Figure 1).

Both molecules of GTP and GDP have a high binding affinity for RAS. The intrinsic
GTPase activity of RAS and the dissociation rates of GDP are low, so high levels of GEFs
are required for conversion into the active form of RAS. Therefore, missense mutations
lock KRAS in the active state and disable the KRAS’s function to hydrolyze GTP, leading
to the constitutive activation of its effector proteins and increased downstream effects
such as cell proliferation and survival. The mutation of KRAS in codon 12, normally
occupied by a glycine residue, leads to a steric block that hinders the binding of GTPase-
activating proteins (GAPs) to KRAS, reducing GTP hydrolysis and maintaining high levels
of GTP-bound active form [16].
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The RAS intrinsic hydrolytic activity allows the conversion back to the GDP inactive form. Missense
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to hydrolyze GTP. KRAS G12C inhibitors can covalently bind to the switch II pocket of KRAS G12C,
converting KRAS into an inactive state.

3. RAS-Mutant Biological Heterogeneity

Intra-tumor heterogeneity and different treatment responses are a current challenge
in developing targeted therapies in patients with lung cancer and KRAS mutation. Co-
occurring molecular alterations in lung cancer have been revealed as a major concept on
which the molecular diversity of tumor biology is based [17]. Concomitant mutations,
including the TP53 tumor suppressor gene, serine/threonine kinase 11 (STK11) and kelch-
like ECH-associated protein 1 (KEAP1) have been reported in about half of KRAS-mutant
NSCLC [18]. The downstream signaling derived from different co-mutation partners leads
to variances in genetic events, suggesting a difference in treatment response. Skoulidis
et al. [18] explored data from an early stage and chemorefractory disease and examined
the various heterogeneity of KRAS-mutant NSCLC. The following three KRAS subsets
were defined based on the presence of co-mutations: STK11/LKB1 (‘KL’), TP53 (‘KP’) and
CDKN2A/B inactivation (‘KC’). Another critical co-mutation described is KEAP1/NFIE2L2,
which was included in the KL subgroup. Tumors with TP53 alterations demonstrated an
improved overall response rate ([ORR] 7.4% KL vs. 35.7% KP vs. 28.6% KRAS mutations
alone) [19]. Patients with co-mutations in KEAP1/NFE2L2 have a significantly shorter
survival. Co-mutations of KRAS with STK11/LKB1 were associated with a lower response
to immune checkpoint blockade, poor immune micro-environment, and low PD-L1 expres-
sion proved to be immune-inert tumors [19,20]. Instead, KRAS–TP53 co-mutant tumors
expressed high levels of cytotoxic CD-8 Th1 and tumor-infiltrating lymphocytes [18]. These
data highlight the heterogeneity of KRAS-mutant NSCLC, proposing the predictive value
of concomitant genetic events.

4. Why Has Targeting KRAS Been Difficult?

One of the most challenging and, at the same time, attractive therapeutic targets in
cancer is represented by mutant KRAS. RAS proteins lack a deep pocket for small molecules
to bind with high affinity; high intracellular GTP concentrations and its strong affinity
to KRAS brought poor results in the various efforts to find small drugs that bind tightly
to RAS proteins. Furthermore, the indiscriminate inhibition and the high blood levels of
proteins needed to block KRAS function could lead to great potential toxicity [21–23].

Therefore, alternative approaches have been adopted, focusing on the downstream
inhibition of KRAS activity. These indirect strategies demonstrated low efficacy explainable
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by extensive post-transcriptional modifications and the activation of different KRAS signal-
ing pathways, leading to the need to target the RAS protein with different simultaneous
strategies [21].

5. How to Target KRAS-Mutated Lung Cancer
5.1. Indirect KRAS Inhibition
5.1.1. Targeting KRAS Membrane Associations

The oncogenic transforming activity of RAS requires farnesylation; interfering with
the farnesylation of Ras proteins prevents membrane localization and significantly reduces
transformation activity. Several farnesyltransferase inhibitors (FTIs) have been tested
to target the post-translational modification of KRAS and disrupt the farnesylation of
oncogenic RAS (Table 1).

FTIs showed in vitro activity in KRAS-mutant lung cancer in mice [24,25], but its
clinical activity has not been confirmed in NSCLC clinical trials [26–28].

The unsuccessful strategy to target KRAS for cancer therapy through FTIs might
be explained by the existence of different RAS-mutant isoforms [29]. Preclinical studies
showed FTIs failed to inhibit KRAS and NRAS function due to alternative membrane-
binding mechanisms; therefore, only HRAS-mutant cancer cells were sensitive to FTIs.

Salirasib inhibits all isoforms of Ras in contrast to FTIs, and its efficacy as a single
agent was tested in a phase II trial [30]. Salirasib did not show significant antitumor activity
in this study, and no partial responses were observed.

Recently, several clinical trials investigated the efficacy of vaccination. mRNA-5671
was examined as monotherapy, and in combination with pembrolizumab in an ongoing
phase I trial (ClinicalTrials.gov Identifier: NCT03948763).

Table 1. Indirect KRAS inhibition—targeting KRAS membrane associations and cancer vaccine.

Target Therapeutic Drug Trial Patients (n) Overall Response Rate Ref.

Farnesyltransferase
inhibition

Lonafarnib + paclitaxel Phase II 33 10% [26]
Tipifarnib Phase II 44 0% [27]

RAS farnesyl cysteine
mimetic drug Salirasib Phase II 33 0% [30]

Cancer vaccine mRNA-5671 +
pembrolizumab Phase I – – NCT03948763

5.1.2. Targeting KRAS-Regulated Pathways

KRAS signaling involves various downstream pathways which are potentially tar-
getable by the indirect inhibition of KRAS. The dysregulation of the signal induced by KRAS
mutations includes MET overexpression, the PI3k/AKT/mTOR and the RAF/MEK/ERK
pathways [31]. Table 2 summarises the clinical trials examining strategies to prevent KRAS-
mutant activity in a large number of patients with metastatic NCLSC by interfering with
downstream pathways.

Since KRAS was found to be involved in lipogenesis inducing fatty acid synthesis [32],
different phase I trials demonstrated promising preliminary results of fatty acid synthase
(FASN) inhibitors in KRAS-mutant NSCLC [33–35]. Falchook et al. studied TVB-2640
in a phase I trial, the first-in-class FASNs, aiming to investigate the safety of this small
molecule as a monotherapy and in combination with paclitaxel or docetaxel [33]. When
TVB-2640 was administered as a monotherapy, the DCR was 42%, and no patient had a
complete (CR) or partial response (PR). In combination with paclitaxel, the PR rate was
11%, and the DCR was 70%. A phase II trial is ongoing to determine the response rate of
TVB-2640 in KRAS-mutant NSCLC patients by examining the RECIST and toxicity profile
(ClinicalTrials.gov Identifier: NCT03808558).

Selumetinib, a MEK pathway inhibitor, was tested in the phase II Selected-1 trial. The
study included more than 500 patients previously treated, and the association of MEK
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inhibition and chemotherapy did not improve PFS compared with docetaxel alone in KRAS-
mutated NSCLC (3.9 vs. 2.8 months; HR 0.93, p = 0.44); the median OS was 8.7 months with
selumetinib + docetaxel and 7.9 months with placebo + docetaxel (HR, 1.05; p = 0.64) [36].

A preclinical trial revealed different activity of the MEK inhibitor selumetinib using
murine models with co-occurring KRAS mutations. The study proved that the concomitant
loss of either TP53 or Lkb1 (also known as STK11) reduced the response of KRAS-mutant
cancers to docetaxel monotherapy. The addition of selumetinib improved results in mice
with KRAS-mutant cancers and TP53 co-mutations, while those with KRAS and STK11
co-mutations developed primary resistance to this combination therapy [37].

Similarly, trametinib, another MEK inhibitor, showed a similar PFS and response rate
in patients with previously treated KRAS-mutant NSCLC, randomized to receive the MEK
inhibitor or chemotherapy with docetaxel in a phase II trial [38].

The MAPK paradox explained that anti-BRAF agents in KRAS-mutated cancers are
contraindicated because of the activation of tumorigenesis by the binding to BRAF [39].
Heidorn et al. demonstrated that the inhibition of BRAF in the presence of oncogenic
or growth factor-activated RAS induces BRAF binding to CRAF (a type of RAF protein),
leading to CRAF hyperactivation of this signaling pathway.

Therefore, other targets were explored. Sorafenib is an oral RAF inhibitor tested in
the MISSION, a phase III, placebo-controlled trial conducted in molecularly unselected
relapsed or refractory non-squamous NSCLC who failed at least two previous lines [40].
PFS was significantly longer in the KRAS-mutant subpopulation than in the KRAS wild-
type group (2.6 versus 1.7 months; HR, 0.46; p = 0.007). However, the PFS advantage did
not translate into a survival gain. Indeed, median OS was similar in the sorafenib and
placebo groups with KRAS mutations (6.4 versus 5.1 months; HR, 0.76; p = 0.279) and
wild-type KRAS (11.0 versus 9.1 months; HR, 0.79; p = 0.078).

Research on the PI3K/AKT/mTOR pathway showed that inhibiting those alterations
with monotherapy inhibitors might not be sufficient. In a phase II trial, 79 patients received
ridaforolimus, an oral inhibitor of mTOR [41]. The ORR, expressed by the complete
response and partial response, at 8 weeks was 1%, and no significant benefit in OS was
shown. Post-translational modification of KRAS promotes the membrane localization of
this protein and permits KRAS signaling.

Table 2. Indirect KRAS inhibition—targeting KRAS-regulated pathways.

Target Therapeutic Drug Trial Patients (n) Overall Response Rate Ref.

Fatty acid synthase TVB-2640 Phase I 31 0 [33]

RAF/MEK/ERK
pathway inhibition

Selumetinib + docetaxel Phase III 510 20% [36]
Trametinib Phase II 129 12% [38]
Sorafenib Phase III 703 2.9% [40]

PI3K/AKT/mTOR
pathway inhibition

Buparlisib Phase II 63 3% [42]
Ridaforolimus Phase II 79 1% [41]

6. Immunotherapy in KRAS-Mutant NSCLC

The treatment landscape of metastatic NSCLC has been changed with the advent of
monoclonal antibodies targeting PD-1 and its main ligand, PD-L1 [43–46]. Based on a
subgroup analysis, in the CheckMate 057 trial, patients with KRAS-mutant lung cancers
achieved the greatest OS benefit when comparing immune checkpoint inhibitors (ICIs)
with chemotherapy (HR 0.52, 95% CI: 0.29–0.95) [43]. In the OAK study, a phase III clinical
trial, the subgroup of patients with KRAS mutation also benefitted from immunotherapy
with atezolizumab in terms of OS (HR = 0.71; 95% CI: 0.38–1.35) [45].

KRAS-mutant NSCLC is the target of interest for PD-1/PD-L1 inhibition for the
following reasons: KRAS-mutant lung cancers are typically smoking-associated tumors,
and are therefore often associated with a high mutational burden [47,48]; these cancers
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frequently show abundant T-cell infiltration; PD-L1 expression is present in approximately
24–55% of KRAS-mutant lung adenocarcinomas [49,50].

Nevertheless, KRAS-mutant lung cancers respond differently to immunotherapy and
show differences in terms of the immunogenic profile [18].

As previously underlined, KRAS co-occurring mutations are fundamental factors
determining distinct immune phenotypes within KRAS-mutant cancers. KRAS/STK11
co-mutations represent 25% of KRAS-mutant NSCLC, characterized by the low presence of
tumor-infiltrating lymphocytes and reduced immune markers and PD-L1 levels. STK11
mutations constitute a major genomic driver of primary resistance to immune checkpoint
inhibitors [19]. In a subgroup of patients with KRAS-mutant NSCLC in the phase III
CheckMate 057 trial, patients with KRAS/STK11 co-mutations demonstrated significantly
lower response rates than patients with KRAS/TP53 adenocarcinomas [19]. KRAS-mutant
lung adenocarcinomas associated with KEAP1 mutational inactivation demonstrated lower
expression rates of PD-L1 and other immune markers, proving refractory to anti–PD-1
antibody therapy [51,52]. Co-mutation in KEAP1 was also associated with shorter OS
from the start of immune therapy in KRAS-mutant metastatic NSCLC [53]. KRAS/p53
co-mutations are associated with significant treatment responses and major susceptibility
to immunotherapies, showing improvement in progression-free and overall survival [19].
These observations are based on the KRAS/p53 immune profile, which is characterized by
an inflammatory response [21,53].

Maugeri-Saccà and colleagues explored intratumor heterogeneity and immunologic
features among KEAP1/TP53-based subtypes in both blood-based NGS and tissue-based
NGS cohorts. KEAP1 single mutant tumors had the shortest survival; the subgroup repre-
sented by KEAP1/TP53 double mutant had an intermediate prognosis similarly to the pure
TP53-mutant subgroup; and the double wild-type group showed the longest survival [54].

A retrospective exploratory analysis of the IMpower150 phase III study showed
that survival benefits, regardless of the treatment combination, were greater in the KRAS
mutant and KEAP1/STK11 wild-type population compared to mKRAS and co-mutations
in STK11 and/or KEAP1, suggesting both a prognostic and predictive value. Moreover,
tumors presenting co-mutations in KRAS and TP53 had elevated PD-L1 expression. In
contrast, mKRAS and co-occurring STK11- and KEAP1-mutant tumors had reduced PD-L1
expression, suggesting that the addition of bevacizumab to atezolizumab may represent
the preferred option for KRAS and TP53 co-mutated NSCLC [55].

An interesting treatment direction is to explore combination therapy using KRAS
G12C inhibitors and immunotherapy. In a preclinical study, a durable response was
produced in immune-competent mice with the administration of AMG510, resulting in the
infiltration of tumors by CD8+ T cells and the development of a pro-inflammatory tumor
microenvironment [56]. Several studies are underway to evaluate the synergistic activity
between KRAS G12C inhibitors and anti PD-1/PD-L1 therapy (ClinicalTrials.gov Identifier:
NCT03785249, NCT04185883, NCT03600883, NCT04613596).

7. CDK4/6 and SHP2 Inhibition

The description of a biological connection between KRAS and cyclin-dependent kinase
(CDK)4/6 was observed in preclinical studies, suggesting that the robust and selective
inhibition of CDK4/6 could respond to NSCLC patients carrying KRAS oncogenes [57,58].

Nevertheless, the JUNIPER trial [59] and the SWOG S1400C study [60], which tested
the efficacy of abemaciclib and palbociclib as single agents, did not show great activity of
CDK 4/6 inhibitors in mutant KRAS NSCLC tumors (Table 3).
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Table 3. Indirect KRAS inhibition—Immune checkpoint, CDK4/6 and SHP2 inhibition.

Target Therapeutic Drug Trial Patients (n) Overall Response Rate Ref.

Immune checkpoint
inhibition Nivolumab EAP 324 20% [60]

CDK inhibition
Abemaciclib vs. erlotinib Phase III 270 9% [59]

Palbociclib Phase II 53 6% [61]

SHP2 inhibition RMC 4630 Phase I 18 11% [62]

8. Direct KRAS G12C Inhibition

The complex challenge of directly targeting the KRAS protein is highly connected
to the unicity of this protein, characterized by a shallow surface, high affinity for GTP
molecules and lack of active binding sites [63–65].

Developments in the field of crystallography facilitated the study of new molecules
able to interact with the KRAS protein and its specific conformation [66]; with the aim
of finding potent Switch II pocket inhibitors, several molecules were tested in vitro and
in vivo (Table 4).

Table 4. Therapeutic strategies—Direct KRAS G12C inhibition.

Target Therapeutic Drug Trial Patients (n) Overall Response Rate Ref.

Protein-based
inhibition (KRAS

binders)

AMG 510/sotorasib Phase I–III 129 32.2% NCT03600883
CodeBreak 100

MRTX 849/adragasib Phase I–III 79 45% NCT03785249
KRYSTAL-1 trial

JNJ-74699157 Phase I 140 NCT04006301
GDC-6036 Phase I NCT04449874

D-1553 Phase I NCT04585035

Compound 12 had suboptimal pharmacologic properties, proved by the fact that the
compound did not engage covalently KRAS G12C mutant cells [66,67]. Other molecules
proved more potent and efficient in inhibiting KRAS mutant cells in vitro. ARS-1620
exhibited in vitro and in vivo potency and high selectivity for KRAS G12C [68].

Ostrem et al. demonstrated that small compounds could covalently bind to the switch
II pocket of KRAS G12C; therefore, the numerous efforts with the aim of discovering
this new pocket facilitated the direct targeting of KRAS. Recently, two molecules directly
targeting KRAS G12C reached phase II/III trials. Their mechanism of action is based on
the conversion of the preference of KRAS from GTP to GDP, holding a KRAS state from an
active to inactive GDP-bound form and interrupting intracellular signaling and tumor cell
growth [66].

Sotorasib (AMG 510) is an irreversible KRAS G12C inhibitor, which provided en-
couraging results in terms of response rate (RR) and duration of response (DOR) [69].
CodeBreaK 100 is a multicentre, single-arm, open-label clinical trial (ClinicalTrials.gov Iden-
tifier: NCT03600883) evaluating sotorasib alone and in combination with anti-PD-1/PD-L1,
including patients with locally advanced or metastatic NSCLC with KRAS G12C mutations.
Patients showed progression of the disease after three or fewer lines of therapy, includ-
ing ICIs targeting PD-1/PD-L1, platinum-based combination chemotherapy or targeted
therapy if they harbored EGFR, ALK, or ROS1 alterations.

In the phase I monotherapy arm of CodeBreaK 100, 59 patients with NSCLC achieved
an ORR of 32.2%, median duration of response of 10.9 months and a median progression-
free survival of 6.3 months [69–72]. The dose escalation of 960 mg twice daily proved to be
active and safe. The drug was well tolerated, with a grade 3/4 TRAE rate of 11.6%.

The phase II trial evaluated the efficacy and safety of sotorasib in a patient with locally
advanced or metastatic KRAS G12C NSCLC who was previously treated with standard



Int. J. Mol. Sci. 2022, 23, 9391 8 of 15

therapies. Among the 126 enrolled patients, Skoulidis et al. demonstrated an RR of 37.2%,
a median PFS of 6.3 months and a median DOR of 10 months [73].

In May 2021, the US FDA granted accelerated approval to sotorasib based on Code-
BreaK 100 for patients with NSCLC who received at least one prior line of anti-cancer
therapy (immunotherapy and/or chemotherapy). This small molecule became the first
drug targeting KRAS to be approved for treating locally advanced or metastatic NSCLC
with KRAS G12C mutation [74].

The CodeBreak 101 study (ClinicalTrials.gov Identifier: NCT04185883) investigated
sotorasib monotherapy and in combination with other anti-cancer treatments in patients
with advanced solid tumors with KRAS G12C mutation. The CodeBreaK 200 study is a
phase III trial comparing docetaxel to sotorasib in patients with KRAS G12C mutation
in the second-line setting (ClinicalTrials.gov Identifier: NCT04303780). Skoulidis and
colleagues conducted an exploratory analysis of the phase II trial that evaluated the activity
of sotorasib and investigated the association between mutations in STK11, KEAP1 and
TP53 and their response to sotorasib treatment. In the subgroup with mutated STK11 and
wild-type KEAP1, a benefit in terms of response was seen in 50% of the patients. Patients
with both mutated STK11 and KEAP1 showed a response of 23%; otherwise, wild-type
STK11 and mutated KEAP1 demonstrated a response of 14%. Future prospective studies
could validate the identification of subgroups of patients who may benefit differently from
sotorasib treatment [75].

Adagrasib (MRTX 849), another small molecule, was studied in the phase I-II KRYSTAL-
1 clinical trial (ClinicalTrials.gov Identifier: NCT03785249) recruiting patients with pre-
treated advanced or metastatic solid tumors [76,77].

Recently, Jänne et al. published the results from cohort A of the phase I/II KRYSTAL-1
trial with single agent adagrasib in previously treated patients with KRAS G12C-mutated
NSCLC [78]. After a median follow-up of 12.9 months, the objective response was 43%, with
a disease control rate of 80% among the 112 patients with measurable disease at baseline.
The median duration of response was 8.5 months, with 50% of NSCLC patients remaining
on treatment. The median PFS was 6.5 months, and the median OS was 12.6 months, with
6- and 12-month OS rates of 71% and 51%, respectively. The authors evaluated the efficacy
among 33 patients with treated, stable central nervous system (CNS) metastases. The
intracranial ORR was 33%, with a DCR of 85%; the median intracranial PFS was 5.4 months.
The treatment was well-tolerated, with 43% of patients experiencing grade 3 or 4 adverse
events.

Subsequent clinical trials are currently investigating adagrasib as monotherapy or
in association with other compounds in patients with advanced or metastatic solid tu-
mors. The phase III KRYSTAL-12 study is recruiting pre-treated patients with NSCLC
to MRTX 849 versus docetaxel [79]. In the KRYSTAL-1 trial, a subgroup analysis was
performed with the aim of exploring co-mutations in STK11, KEAP1, P53 and CDKN2A.
There were no differences in these subgroups except for patients with STK11 wild-type,
KEAP1-mutant disease, which presented inferior response rates (only one of seven patients
had a response) [80]. The phase II trial Lung-MAP S1900E with sotorasib (NCT04625647)
will further clarify the impact of co-mutations on the activity of KRAS G12C inhibitors.

9. Resistance to KRAS G12C Inhibitor

Despite the evident clinical benefit, underlying mechanisms lead to the development
of resistance in most patients treated with KRAS G12C inhibitors (Figure 2).

As evidenced by clinical studies, KRAS G12C inhibitors did not determine significant
tumor shrinkage in about half of the patients included in clinical trials. Furthermore,
disease progression was evidenced in about 10% of patients. During the treatment with
target therapy, the emergence of resistance mechanisms in cancer cells can determine the
progression of the disease after an initial response or stability of the disease.
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Intercellular variability and intratumoral heterogeneity are recognized as the most
prominent causes of resistance to KRAS G12C inhibitors; nevertheless, multiple resistance
mechanisms are described, leading to the idea that combination strategies and a more
personalized therapy are necessary to overcome resistances.

Resistance to KRAS G12C inhibitors can be either intrinsic or acquired. It has been
suggested that putative resistance mechanisms could lead to intrinsic resistance to KRAS
G12C targeting; the presence of non-KRAS G12C mutations may be evident at baseline,
leading to significant clinical implications for patients eligible for KRAS G12 inhibitors [81].

Two main types of biological mechanisms of adaptative resistance are described,
namely on-target resistance, determined by mutations or amplification in KRAS cells, and
off-target resistance, with the activation of another oncogenic signaling pathway.

Ryan et al. examined the adaptive feedback response to KRAS G12C inhibition
and observed evidence of rapid RAS pathway reactivation in most KRAS G12C models.
These data showed that vertical pathway inhibition strategies, such as combinations of
KRAS G12C inhibitors with SHP2 inhibitors, may be effective in interrupting feedback
reactivation of the RAS pathway following KRAS G12C inhibition and may represent a
possible therapeutic approach for KRAS G12C cancers [82].

As already mentioned, a phase I/II clinical trial (NCT04330664) tested the combination
of adagrasib and TNO-155 (investigational SHP-2 inhibitor) and several other trials of SHP2
inhibitors alone or in combination with other drugs are currently ongoing.

The nuclear factor NRF2 (erythroid 2-like 2, NFE2L2), regulated by the KEAP1 protein,
is a key transcription factor in the cellular antioxidant response. In addition to predicting
poor response to checkpoint inhibitor immunotherapy [53], KEAP1 or NRF2 mutations
may also be related to resistance to KRAS inhibitors, such as adragasib [83].

A recent clinical study evaluated 38 patients, of which 27 with NSCLC with KRAS
G12C-mutant cancers were treated with adagrasib monotherapy [84]. The authors analyzed
genetic variations in circulating tumor DNA or tissue samples from patients resistant to
adagrasib through next-generation sequencing. In total, 42% of those patients showed a
putative resistance mechanism to adagrasib, including secondary mutations or amplifi-
cations to KRAS; the activation of the RTK–RAS signaling pathway; and the histological
transformation of adenocarcinoma to squamous cell carcinoma. Mutations identified in the
switch II pocket of KRAS may impede the binding of KRAS inhibitors. In addition, Awad
et al. identified acquired resistance mechanisms, including MET amplification; activating
mutations in NRAS, BRAF, MAP2K1, and RET; oncogenic fusions involving ALK, RET,
BRAF, RAF1, and FGFR3; and mutations with loss-of-function in NF1 and PTEN.
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Recently, Tanaka et al. described acquired resistance to adagrasib in an NSCLC
patient with 10 secondary genetic mutations on the RAS–RAF–MEK–ERK pathway [85].
Among them, a new KRAS Y96D mutation was observed directly affecting the switch-II
pocket, resulting in resistance to sotorasib, adagrasib or ARS-1620 across multiple models.
Thereby, the authors suggested that the previously undescribed Y96D mutation may have
a novel and specific role in driving resistance to KRAS G12C inhibitors [85]. RM-018 is
a novel KRAS G12C inhibitor that binds specifically to the GTP-bound, active state of
KRAS G12C. Analyzing the different mechanisms of action of this class of inhibitor, they
hypothesized that RM-018 could have the ability to bind and inhibit KRAS G12C/Y96D
and may represent a potential therapeutic strategy to overcome this acquired resistance
mechanism [85].

Patients treated with KRAS G12C-targeted therapies can be affected by intrinsic and
acquired resistance co-occurring in the same patient [86]. Combining KRAS G12C inhibitors
with other treatments could improve the clinical response and overcome resistances.

Several mechanisms can contribute to the development of resistance to KRAS G12C
inhibitors. The results of various studies highlight the need to develop KRAS inhibitors
capable of overcoming resistances, determine the appropriate sequence of treatments and
develop effective combination therapy regimens.

10. Open Questions and Future Challenges

The efficacy of KRAS G12C inhibitors could be enhanced by the combination of
treatments with targeted agents, immune checkpoint inhibitors, and downstream KRAS
inhibitors; several studies are ongoing to evaluate the clinical efficacy and safety of combi-
nation therapy.

In recent years, numerous efforts have been made to implement therapeutic possibili-
ties for patients with KRAS-mutant NSCLC. Several specific drugs have been introduced
into preclinical and current clinical practice.

The position of these inhibitors in the KRAS G12C lung cancer treatment strategy
algorithm is still evolving; primarily, the activity of KRAS G12C may be limited due to the
genetic heterogeneity and complex biology of KRAS.

A multiplex assay for mutations and fusion genes with next-generation sequencing
(NGS) is essential for the appropriate selection of patients, as recommended by ESMO
Clinical Practice Guidelines [3]. A possible approach is to treat patients unsuitable for
standard first-line therapy with direct KRAS G12C inhibitors. Co-mutations of KRAS G12C
and STK11 provided a poorer response to ICI therapy. Therefore, treatment with KRAS
G12C inhibitors could represent a valid option in this first-line setting. Another strategy
could be the association of KRAS G12C inhibitors with ICI and/or chemotherapy.

Overcoming the mechanisms of innate/acquired resistance that reduce the clinical
efficacy of KRAS G12C inhibition constitutes a future challenge to obtaining a durable
response. Combining KRAS G12C inhibitors with other therapy strategies, such as im-
munotherapy or KRAS pathway inhibitors, as previously described, could improve clinical
benefits and overcome resistances.

Co-occurring genetic alterations and the mutant KRAS allele copy number gains
define a variety of tumor microenvironments, which lead similar histological tumors
of different drug sensitivities. Individualized treatments are needed to overcome the
biological heterogeneity of KRAS-mutant NSCLC and ensure the development of new
effective treatment strategies.

In addition, further developments are warranted to identify selective agents against
KRAS G12D and G12V mutations, representing 38% of all KRAS-mutant lung adenocarci-
nomas. It is necessary to develop selective inhibitors against single mutations or pan-KRAS
inhibitors able to block all mutant proteins.

Furthermore, many questions remain, and additional studies are needed to optimize
these therapeutic strategies in the clinical setting; however, recent results are encouraging
and demonstrate the potential to adequately treat patients with KRAS-mutant NSCLC.
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A major concern is identifying patients who can potentially benefit from KRAS-targeted
monotherapies or combination therapy strategies.
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