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ABSTRACT
Objective: Surveillance is critical for the rapid implementation of control measures
for diseases caused by aerially dispersed plant pathogens, but such programs can be
resource-intensive, especially for epidemics caused by long-distance dispersed
pathogens. The current cucurbit downy mildew platform for monitoring, predicting
and communicating the risk of disease spread in the United States is expensive to
maintain. In this study, we focused on identifying sites critical for surveillance and
treatment in an attempt to reduce disease monitoring costs and determine where
control may be applied to mitigate the risk of disease spread.
Methods: Static networks were constructed based on the distance between fields,
while dynamic networks were constructed based on the distance between fields and
wind speed and direction, using disease data collected from 2008 to 2016. Three
strategies were used to identify highly connected field sites. First, the probability of
pathogen transmission between nodes and the probability of node infection were
modeled over a discrete weekly time step within an epidemic year. Second, nodes
identified as important were selectively removed from networks and the probability
of node infection was recalculated in each epidemic year. Third, the recurring
patterns of node infection were analyzed across epidemic years.
Results: Static networks exhibited scale-free properties where the node degree
followed a power-law distribution. Betweenness centrality was the most useful metric
for identifying important nodes within the networks that were associated with disease
transmission and prediction. Based on betweenness centrality, field sites in
Maryland, North Carolina, Ohio, South Carolina and Virginia were the most central
in the disease network across epidemic years. Removing field sites identified as
important limited the predicted risk of disease spread based on the dynamic network
model.
Conclusions: Combining the dynamic network model and centrality metrics
facilitated the identification of highly connected fields in the southeastern United
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States and the mid-Atlantic region. These highly connected sites may be used to
inform surveillance and strategies for controlling cucurbit downy mildew in the
eastern United States.

Subjects Computational Biology, Ecology, Parasitology, Plant Science
Keywords Centrality measures, Disease monitoring, Infection frequency, Network analysis, Scale-
free network

INTRODUCTION
Dispersal properties of a pathogen are fundamental to the development of epidemics at
different spatial scales that can range from local to the landscape level. The transmission of
invasive plant pathogens and the spread of resultant epidemics influences essential
ecosystem services, including biodiversity and food production in agricultural systems
(Brown & Hovmøller, 2002; Crowl et al., 2008). Measures that might involve containment
and eradication programs can be implemented to reduce the potential impact of these
epidemics. However, the planning and implementation of any specific control measure
requires an understanding of the mechanics of invasions and the ecological consequences,
risks, and dynamics of disease spread. Such control efforts can benefit greatly from
epidemic records within a region as they enable an analysis of the overall structure of
pathogen dispersal. Information from such analyses can inform the design of control
programs for disease epidemics and risk-based surveillance. For example, timely recording
of animal movements was fundamental in the containment of the 2011 foot and mouth
disease epidemic in the UK, for which retrospective analyses demonstrated that initial
spread was influenced by the frequency of animal movement (Ferguson, Donnelly &
Anderson, 2001; Kao et al., 2006).

One approach to understand pathogen dispersal and the spread of resultant epidemics is
through network analysis, a method that is becoming increasingly popular but still has
limited application in plant disease epidemiology (Garrett et al., 2018; Xing et al., 2020).
Networks consist of ‘nodes’ and ‘links’, where nodes are the entities of interest (e.g.,
individual fields or observed sites of disease outbreak), while links connect nodes in various
ways, for example, the potential of contact with a pathogen or pathogen transmission
between two nodes. Further, networks can be weighted with link weights that are
proportional to the probability of transmission. Networks have been used to describe the
spread of diseases caused by aerially dispersed plant pathogens such as Podosphaera
macularis in hop (Gent, Bhattacharyya & Ruiz, 2019) and Phakopsora pachyrhizi in
soybean (Sutrave et al., 2012; Sanatkar et al., 2015). The primary determinants in pathogen
dispersal, such as source strength, location of host populations and relevant covariate
information, can be formulated as a network spreading model (Firester, Shtienberg &
Blank, 2018; Garrett et al., 2018; Gent, Bhattacharyya & Ruiz, 2019; Sutrave et al., 2012).
Such models can combine static spatial components, such as field location, and dynamic
components of an epidemic, such as wind-based pathogen dispersal, to infer the
underlying contact structure of landscape connectivity (With, Gardner & Turner, 1997).
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The choice of networks to be studied depends on several factors, for example, the
disease of interest and specific questions on the network structure. The latter, in turn,
influences the type of network measures to be used in the analysis of pathogen dispersal
and disease spread. Static and dynamic networks are common in landscape connectivity
analyses. Connections in a static network are fixed links, while connections in a dynamic
network change over time. Both static and dynamic networks have been applied in plant
disease epidemiology (Sanatkar et al., 2015; Sutrave et al., 2012). In dynamic networks,
between-node distances, host availability, wind speed and wind direction, can be
formulated as a susceptible-infected (SI) model to describe disease spread (Sutrave et al.,
2012). Further, plant diseases display seasonal differences in the occurrence and intensity
of epidemics. Thus, an analysis of data from multiple epidemic years is useful in
determining if there are recurring patterns that could informmonitoring or disease control
measures. Highly connected nodes provide effective surveillance and opportunities for
more targeted control to reduce disease spread within the network. An open question still
remains regarding which centrality measure is useful for identifying important nodes for
surveillance and managing real-world networks (Holme, 2017). Due to inherent differences
in pathogen dispersal and disease spread mechanisms, centrality measures used to identify
important nodes for surveillance may be specific to different pathosystems (Holme, 2018).

A motivating plant disease example for network analysis to inform surveillance and
disease control is cucurbit downy mildew (CDM). A resurgence of the disease occurred
around the world in the last 20 years that fundamentally altered cucurbit production and
disease management at multiple scales (Holmes et al., 2015; Ojiambo et al., 2015). The
resurgence of CDM in Europe and the United States was attributed to the introduction of a
new pathotype or species that was previously limited to East Asia (Cohen et al., 2015;
Thomas et al., 2017). Fungicides are integral to CDM control due to the lack of cultivars
with adequate host resistance and in the absence of control, the disease can result in
complete crop loss (Holmes et al., 2015). The disease is caused by an obligate pathogen,
Pseudoperonospora cubensis, which exhibits significant long-distance dispersal (Ojiambo
& Holmes, 2011). In the continental United States, P. cubensis overwinters below
approximately 30-degree latitude in southern Florida and along the Gulf of Mexico on
living hosts, and disease outbreaks in northern states rely on aerial dispersal of the
pathogen from the south (Ojwang’ et al., 2021). Oospores have been reported in cucurbit
fields in the southeastern United States, albeit at a low frequency, however, their role in the
epidemiology of CDM is still unclear (Kikway, Keinath & Ojiambo, 2022). Further, while
anthropogenic movement of infected transplants could be involved in pathogen dispersal,
it is not typically considered due to lack of data.

In 2008, disease surveillance based on a series of sentinel (sites designated for regular
monitoring) and non-sentinel (sites not designated for regular monitoring) sites was
implemented as part of the CDM ipmPIPE (http://cdm.ipmpipe.org) surveillance system
(Ojiambo et al., 2011). Based on the prediction framework developed byMain et al. (2001)
and the sentinel site data, an integrated aerobiological model was developed to predict
disease occurrence and progression in the eastern United States (Neufeld et al., 2018) to
guide growers on when to apply their initial fungicide application. Surveys conducted in
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Georgia, Michigan, and North Carolina show that the forecasting system resulted in an
average reduction of two to three fungicide applications compared to calendar-based
application schedules. This reduction in fungicide applications translated to more than $6
million in savings for producers in these three states alone annually (Ojiambo et al., 2011).
However, the disease surveillance system is expensive to maintain and thus, there is
increasing interest in identifying locations that are critical for pathogen dispersal and
disease spread within the region. The latter could facilitate a more targeted surveillance
approach by directing the limited resources to locations that are more integral to disease
spread and pathogen transmission within the region. These sentinel and non-sentinel sites
have been instrumental in understanding the spatio-temporal spread of CDM (Ojiambo &
Holmes, 2011; Ojiambo et al., 2017; Ojwang’ et al., 2021).

In this study, we specifically focus on centrality metrics that are directly applicable to
CDM surveillance and management to identify highly connected sites. The centrality
measures are betweenness (BWC), closeness (CLC), degree (DGC) and eigenvector (EVC),
and these metrics have previously been used in network analysis of aerially dispersed plant
pathogens and have relevance in describing epidemic spread (Andersen et al., 2019; Gent,
Bhattacharyya & Ruiz, 2019; Sanatkar et al., 2015). Our inference of the importance of the
highly connected sites is limited to disease records from the existing structure of sentinel
and non-sentinel sites within the region. The specific objectives of this study were to: i)
determine a centrality measure that is most useful in the surveillance and control of CDM,
ii) identify highly connected nodes that are critical for pathogen dispersal and spread of
CDM and iii) establish how removal of highly connected nodes influences the spread and
containment of CDM in the eastern United States. Portions of this work were previously
published as part of a PhD dissertation of the first author (Ojwang’, 2021).

MATERIALS AND METHODS
Data source
Records of CDM occurrence in the eastern United States from 2008 to 2016 were used in
this study. The data were obtained from the CDM ipmPIPE database (http://cdm.ipmpipe.
org) that tracks reports of disease occurrence in the United States (Ojiambo et al., 2011).
Disease records in the system include reports from a network of regularly monitored sites
(sentinel sites) and voluntary reports (non-sentinel sites) submitted by commercial
growers, agricultural researchers and the public. Sentinel sites were strategically placed
within specific states and planted with different cucurbit host types to monitor CDM
occurrence. Sentinel sites were located at research facilities or commercial fields with
standard dimensions of 15 m × 61 m and were georeferenced using the Global Positioning
System. These sites were planted early and regularly monitored for disease symptoms every
1 to 2 weeks by state collaborators and extension specialists. Cucurbits grown at the
sentinel sites were cucumber cv. Straight 8 and Poinsett 76 (Cucumis sativus), cantaloupe
cv. Hales Best Jumbo (Cucumis melo), acorn squash cv. Table Ace (Cucurbita pepo),
butternut squash cv. Waltham (Cucurbita moschata), giant pumpkin cv. Big Max
(Cucurbita maxima), and watermelon cv. Micky Lee (Citrullus lanatus) (Ojiambo et al.,
2011). Non-sentinel reports were from locations not designated for regular surveillance but
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rather voluntary reports from commercial fields, research plots, and home gardens
(Table 1). These non-sentinel reports are useful given that, in some epidemic years, CDM
was reported earlier in non-sentinel sites than in sentinel sites and thus, they could be
informative for inferring sources for disease spread.

Latitudes and longitudes geo-coordinates for sentinel and non-sentinel sites were
generated from the customized section of the CDM ipmPIPE website (http://cdm.ipmpipe.
org). Where plot data was not available, latitudes and longitudes of county centroids were
extracted from US Census Bureau 1990 Gazetteer Files and used as approximate
georeferenced points. The compiled data from sentinel and non-sentinel sites included,
among other things, the date of first disease symptoms, planting type (sentinel sites,
commercial field, research plot, home garden, or unspecified), state, county, and geo-
location. A disease case represented a unique combination of host and date of first disease
symptoms at a particular location. The total number of disease cases across the study years
ranged from 114 to 220, while the number of counties affected ranged from 86 to 179
across epidemic years (Table 1). Correlation analysis was performed to determine whether
the number of counties influenced the number of disease reports (Fig. S1) and whether
numbers of sites with active surveillance were correlated with the number of counties
(Fig. S2) in the region during the study period.

Hourly wind speed and direction at each sentinel site were derived from weather
observations from the National Oceanic and Atmospheric Administration Integrated
Surface Database (Smith, Lott & Vose, 2011) provided by BASF (Research Triangle Park,
Raleigh, NC, USA). Wind measurements were recorded 10 m above the ground and the
maximum wind speed was used in this study. Meteorological wind direction is the
direction the wind is blowing from, e.g., the wind coming from the north is a northerly
wind, and a southerly wind is a wind coming from the south. A raw observation for the
meteorological wind direction for a northerly wind is defined as 360�, a southerly wind is

Table 1 States, number of counties in the eastern United States where cucurbit downy mildew was reported, and number of monitoring sites
with disease summarized by planting type, during the study period.

Number of
states affected

Number of counties Number of sites by planting type

Year Commercial Home garden Research Sentinela Unspecifiedb Totalc

2008 22 113 68 10 12 59 5 154

2009 24 165 77 26 24 92 1 220

2010 25 118 77 17 24 25 1 144

2011 23 86 57 10 22 28 0 117

2012 25 149 99 20 23 31 0 173

2013 26 179 118 30 23 29 4 204

2014 23 104 53 16 22 20 3 114

2015 27 171 126 15 22 42 4 209

2016 22 107 61 9 19 33 0 122

Notes:
a Sentinel planting type refers to fixed plots, planted early and designated for monitoring.
b Unspecified refers to reports where the planting type was not stated when the disease was reported in the cucurbit downy mildew monitoring database.
c Total number of disease monitoring sites designated as commercial, home garden, research, sentinel and unspecified plot.
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180�, a westerly wind is 270�, and an easterly wind is 90� (Fig. S3). Meteorological wind
direction (wd) in degrees was converted to a mathematical direction (md, i.e., the angle as
measured in the mathematically conventional way, counterclockwise from the eastward
direction) in degrees using the formula:

md ¼ 270� wd; if wd � 270
360þ ð270� wdÞ; if wd > 270

�
(1)

The mathematical direction in degrees was subsequently converted to radians (i.e.,
radians = [degrees × π]/180). The x and y (u and v) components of the hourly wind vectors
were then calculated as: x ¼ r cos u and y ¼ r sin u, where r is the wind speed in miles per
hour and θ is the wind direction in radians (Fig. S3).

Static network analysis
In this study, nodes were a combination of sentinel and non-sentinel sites in the eastern
United States. We point out that other locations in the eastern United States that were not
monitored in this study may contribute to the risk and spread of CDM. However, the
locations where CDMwas monitored or reported were available for inclusion in this study.
Static networks were constructed for each epidemic year to provide insight into the
structure of the spread of CDM in the eastern United States.

The general methodology involved creating a link (l) between a ‘source’ node i at one
location and a ‘sink’ node j at another location using a probability that was based on the
distance between the two nodes. This probability is given by a connection kernel, which
decays with distance such that connections are predominantly localized (Danon et al.,
2010). Between-node Euclidean distances were calculated using the Haversine formula
(Sinnot, 1984) in the geosphere package (Hijmans, 2017) implemented in the R
programming language (R Core Team, 2018). The x and y displacement vectors for two
nodes were calculated based on the equirectangular projection as follows:

z ¼ sin2½ðjj � jiÞ=2� þ cosðjjÞ cosðjiÞsin2½ðkj � kiÞ=2�
lij ¼ R � 2� atan2ð ffiffiffiffi

z;
p ffiffiffiffiffiffiffiffiffiffiffi

1� z
p Þ

x ¼ R � ðkj � kiÞ cos½ðjj þ jiÞ=2�
y ¼ R � ðjj � jiÞ

(2)

where φ = latitude (radians), λ = longitude (radians), R = radius of the earth (mean = 6,371
km), and lij = haversine distance between node i to node j.

Links were created using an inverse power-law dispersal kernel y ¼ ðlijÞ�b, where y is
the probability of transmission from node i to node j (Andersen et al., 2019), li j is the
distance between node i and node j, and b is the spread parameter. The parameter b was
not estimated in this study but was obtained from a previous study on the isotropic spread
of CDM in the eastern United States (Ojiambo et al., 2017) using the same epidemic data
from 2008 to 2016 that was used in the present study. Ojiambo et al. (2017) examined how
b varied over multiple epidemic years and found that b ranged from 1.61 to 3.36. Thus, a
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value of b generated for each year from that study was used in the corresponding year
examined in the present study to represent isotropic spread through links in the network.
In essence, a link was created between node i and node j based on whether it was within a
certain distance and if y > τ for 0 < τ < 1, where τ is the threshold probability of pathogen
transmission.

Several static networks were created for a range of τ values for uncertainty analysis to
determine the influence of τ on link formation as described by Andersen et al. (2019). The
range of τ selected was bounded by values that produced a full network and a near-zero
probability of link formation (Fig. S4) to facilitate the identification of a network with a
giant component (GC), since a network without a GC does not provide much information
on the behavior of disease spread. A GC is a connected component whose size is on the
same order of magnitude as the size of the whole network. Thus, the value of τ selected to
generate the final static network was identified in two stages. First, τ had to result in a
network where each node was connected to at least another node (Ferrari, Preisser &
Fitzpatrick, 2014). Second, the selected τ also had to have a high proportion of nodes
within the GC in the resulting static network. For each epidemic year, the final static
network generated using the selected τ value for each epidemic year was used in additional
network analyses described below (dynamic networks and error quantification). The
degree and the exponent of the degree distribution, γ, for final static networks were
estimated in R using the powerLaw package (Gillespie, 2015) as described by Kolaczyk &
Csárdi (2020).

Network centrality measures
Centrality measures, betweenness centrality (BWC), closeness centrality (CLC), degree
centrality (DGC) and eigenvector centrality (ECV) (Table 2), were calculated using the
igraph package in R (Csárdi & Nepusz, 2006) for each static network that was created for
different τ values as described below (identification of important nodes). The empirical
cumulative distribution functions of BWC, CLC, DGC, and EVC were calculated for each
epidemic year to describe the distribution of the generated centrality metrics across all
nodes. The cumulative distribution functions of BWC, CLC, DGC, and EVC were obtained
using stat_ecdf and visualized using the ggplot2 package in R (Wickham, 2016). The
similarity in ranking of nodes among centrality metrics was then assessed using
Spearman’s rank-based correlation.

Table 2 Definition of centrality measures in a network model used to study the spread of cucurbit downy mildew in the eastern United States.

Centrality measure Central node Relevance in epidemic spread

Betweenness (BWC) Acts as a bridge to other nodes Removal of nodes with high betweenness may contain an epidemic

Closeness (CLC) Lies on the shortest path Nodes are able to spread disease through a network

Degree (DGC) Connected to many other nodes Nodes with high degree may be ‘superspreaders’

Eigenvector (ECV) Connected to other high-degree nodes Nodes with neighbors having high degree may be ‘superspreaders’
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Identification of important nodes for disease spread within the static
network
Analysis of disease outbreaks from 2008 to 2016 was conducted to determine if recurring
patterns of disease spread occurred that could help to identify important nodes in the
networks. We tallied the number of times a node was observed as infected from 2008 to
2016, herein referred to as the infection frequency. In addition, a new dataset was created
with only nodes where the disease occurred in at least one year i.e., infection frequency�1.
Two approaches were used to identify nodes potentially important for disease spread that
could be useful for risk-based surveillance or disease mitigation: i) selection of nodes based
on infection frequency and ii) selection of nodes based on a combination of infection
frequency and centrality metrics.

In the first approach, nodes were ranked from highest to lowest based on their infection
frequency. In the second approach, a static network was created such that each node was
connected to at least another node (Ferrari, Preisser & Fitzpatrick, 2014) using b = 2.11 as
estimated previously by Ojiambo et al. (2017) and the centrality metrics were calculated for
this network. Centrality metrics were scaled to a value between 0 and 1 and combined with
infection frequency in a ratio of 4:1 (frequency:centrality) for each node, to give more
weight to infection frequency as described by Sutrave et al. (2012). Nodes were then ranked
in decreasing order based on this weighted value. This weighting in the second approach
puts more emphasis on nodes where the disease is observed recurrently between years and
nodes that either are highly connected and acting as bridges to other nodes (BWC), occur
on the shortest path (CLC), or are connected to other potential super-spreaders (DGC and
EVC). A sensitivity analysis was conducted with four additional frequency:centrality ratios
with different weights. The results of this analysis showed that changing the weights
changed the ranks but did not give more weight to the infection frequency (Fig. S5).
Further, of all ratios tested, only the 4:1 ratio resulted in consistent results wherein the
higher frequency nodes also had higher weights and were ranked higher (Table S1).

For each epidemic year, a range of threshold values (0 < τ < 1) was considered such that
bounds for τ produced a range of dense networks and sparse networks. In each year, 20 to
30 individual values of τ were used to construct 20 to 30 networks. Centrality metrics were
calculated for each network and the results were ranked in a decreasing order. The top 20
nodes with the highest scores were then selected and a second ranking was done for each
node in this set. The number of times a node appeared in the top 20 ranking across all
thresholds was recorded to eliminate the nodes that were ranked with higher scores in the
dense and sparse networks. The nodes were then ranked in decreasing order. The results
across centrality metrics and τ values were combined into a heatmap visualization using
the ggplot2 package in R (Wickham, 2016).

Dynamic network model of cucurbit downy mildew
To describe the dynamic process of disease spread occurring on a static network, we
modeled the probability of different nodes being infected over a discrete weekly time step,
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t 2 1; 2;…;Tf g, in each epidemic year, based on a simplified SI model described by
Sutrave et al. (2012) with the following assumptions: i) the pathogen is primarily dispersed
by wind, ii) host response to the pathogen is homogeneous and iii) weather is favorable for
infection and disease spread. This model combines the static (constant during each year)
and the dynamic (time-varying during each year) components of the network and was
formulated as:

ai j ¼ ðli jÞ�b

bi j ¼
~lij �~wt

~lij
��� ���

ui j ¼ ai j � bij

8>>>><
>>>>:

9>>>>=
>>>>;

(3)

where ai j is a constant function of the between-node distance and decays exponentially
with distance, bi j is the dynamic wind-based infection rate, li j and b are as defined above,
~li j is the displacement vector between two nodes, ~wt is the wind vector at time t, and ui j is
the link weight based on ai j and bi j between node i and node j at time t.

Given that the probability of a node being infected depends on the number of infected
neighbors, the probability #i of node i not being infected by its neighbors was calculated as:

#iðtÞ ¼
Y

j2Ni
ð1� ui j � pjðtÞÞ (4)

where pj is the probability of node j being infected at time t, ui j ∈ [0,1] is the link weight as

defined above, and Ni is a set of neighbors of node i. Given Eq. (4), the probability pi of
node i being infected at time t was calculated thus:

piðtÞ ¼ 1� ð1� piðt � 1ÞÞ#iðtÞ (5)

Values of pi and bi j were calculated and updated, respectively, at each weekly time step.
All calculations were performed in MATLAB version R2019a (MathWorks Inc., Natick,
MA, USA).

Error quantification in the dynamic network model
The observed infection status of a node and the corresponding predicted infection
probability of the node were used to quantify the error in the dynamic network model.
First, a value of 0 or 1 was assigned to a node that was either non-infected or infected,
respectively, in the observed data at each time step t. Secondly, the observed (0 or 1) value
for each node was compared to the corresponding infection probability calculated by the
model at each time step t. The error was then defined as the absolute difference between
the observed and predicted infection probability. The mean error for the infected nodes at
time step t was then calculated as Sutrave et al. (2012):

ÊinðtÞ ¼
PNinðtÞ

i¼1 ð1� piðtÞÞ
Nin tð Þ (6)
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where NinðtÞ is the total number of infected nodes at time step t, while piðtÞ is as defined
above. Similarly, the mean error for non-infected nodes for at each time step t was
calculated as:

ÊhnðtÞ ¼
PNhnðtÞ

i¼1 piðtÞ
Nhn tð Þ (7)

where NhnðtÞ is the total number of non-infected nodes at time step t. The total error was
obtained by using the expression:

Ê ¼ tÊinðtÞ þ ð1� tÞÊhnðtÞ (8)

where υ is a weighting factor. The ratio υ: (1 - υ) in Eq. (8) was 4:1 such that
observed-infected nodes were given four times more weight than the observed-non-
infected nodes in evaluating the total error. Here, it was deemed more important to
correctly predict infection (i.e., sensitivity) than to correctly predict an absence of infection
(i.e., specificity) such that a few nodes incorrectly predicted will have an insignificant effect
on the prediction error (Sutrave et al., 2012). All these calculations were performed in
MATLAB.

Assessing node importance in disease spread using a dynamic
network
The importance of nodes identified as highly connected based on the four centrality
measures from the static network analysis, i.e., BWC, CLC, DGC, and EVC, were
subsequently evaluated for their impact on disease spread based on link structures of the
dynamic network model described above. Nodes identified as most important based on
each centrality metric were removed from the networks and the probabilities of disease
spreading among the remaining nodes were recalculated in the new dynamic network for
each epidemic year as described above. Prediction of disease outbreaks based on all nodes
present in the network was subsequently compared to predictions of disease outbreaks
when nodes identified as important based on the above centrality measures were removed
from the network. This approach of node evaluation is equivalent to intensive disease
management, where important nodes are completely removed and the resultant impact of
their removal on disease propagation within the network is assessed (Sutrave et al., 2012).
A sensitivity analysis was also conducted for a range of υ: (1 - υ) ratios to examine the
effect of the choice of the value of the weighting factor υ on the model prediction errors.
This analysis showed that increasing the value of υ resulted in negligible changes in
prediction errors across all centrality measures and epidemic years (Table S2).

RESULTS
Spatiotemporal dynamics of disease spread in the eastern United
States
Observations of disease outbreaks suggested a spatial association between the locations of
first and last disease reports. The disease was first observed in a sentinel site in southern
Florida in Miami-Dade County in 5 out of 8 epidemic years (Fig. 1). Most of the first

Ojwang’ et al. (2024), PeerJ, DOI 10.7717/peerj.17649 10/30

http://dx.doi.org/10.7717/peerj.17649/supp-2
http://dx.doi.org/10.7717/peerj.17649
https://peerj.com/


disease reports from 2008 to 2016 occurred in February and March in southern Florida or
southwestern Texas along the Gulf of Mexico, with reports of initial disease outbreaks
being from both sentinel and non-sentinel sites.

Subsequent reports of new disease outbreaks progressed northward with time, with new
outbreaks occurring later in more northern states (Fig. 1). The first outbreaks of CDM in
more northern states (e.g., Michigan, New York, or Wisconsin) occurred considerably later
than corresponding reports of first CDM outbreaks in southern states (e.g., Alabama,
Georgia or South Carolina). Across all years, the last set of new disease reports occurred in
July, August and September across several states within the region (Fig. 1).

The total number of states with CDM ranged from 22 to 27, and the corresponding
number of counties ranged from 86 to 179 across the region (Table 1). There was a positive
correlation (r = 0.90; P = 0.0002) between the number of disease reports and counties
(Fig. S1), with the number of sites increasing with an increasing number of infected
counties. However, the correlation between the number of counties where the disease was
reported and the number of counties where surveillance was occurring was not significant
(r = 0.42; P = 0.2700) (Fig. S2). The linear maximum distance between two disease reports,
a measure of the spatial extent of the epidemic, ranged from 2,491 km in 2012 to 3,071 km
in 2015.

Figure 1 Map of locations of disease monitoring. Locations of cucurbit downy mildew outbreaks in the
eastern United States from 2008 to 2016. Locations are color-coded based on the week of the year. Shapes
represent the surveillance plot type associated with disease reports during the study period. Map Source:
ggmap and ggplot. Full-size DOI: 10.7717/peerj.17649/fig-1
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The number of times that nodes were infected at least once based on combined
epidemic data across all years varied from 1 to 6 (Fig. 2). Nodes where the infection
frequency was consistently higher than the median frequency (frequency >3) were in
Alabama, Maryland, Michigan, North Carolina, Ohio, and South Carolina. Nodes with the
highest levels of infection frequency were in Wicomico County in Maryland, Johnson,
Lenoir, New Hanover, and Sampson counties in North Carolina, and Sandusky, Huron,
and Wayne counties in Ohio, with an infection frequency of 5 and 6 (Fig. 2). The
remaining nodes had an infection frequency less than the median and they constituted
most of the nodes present in counties scattered throughout the region.

Connectivity threshold and static networks of cucurbit downy mildew
The proportion of nodes in the giant component (GC) and the extent of connectedness in a
network were used to select the threshold probability of transmission, τ, to generate the
final static networks. For example, for the 2008 epidemic data, networks were more
connected at τ = 6.21 × 10−9 (GC = 1.0) than at τ = 1.14 × 10−9 (GC = 0.92), with other
threshold values resulting in either highly or sparsely connected networks. Thus, to achieve
a balance in connectivity, τ = 6.21 × 10−9 was used to generate the final static network for
the epidemic data in 2008 (Fig. 3). Similarly, for the 2009 data, networks were more
connected at τ = 7.83 × 10−9 (GC = 0.98) than at τ = 1.12 × 10−8 (GC = 0.95) with the
remaining threshold values resulting in either highly or sparsely connected networks.
Thus, τ = 7.83 × 10−9 was used to generate the final network for disease records in 2009.
This logical approach was used to generate the final networks for disease records for the

Figure 2 Frequency map of cucurbit downy mildew outbreak. Frequency of cucurbit downy mildew
outbreaks across all epidemic years from 2008 to 2016 in the eastern United States. Colors represent the
frequency (n) of disease cases: red (n = 6), yellow (n = 5), green (n = 4), light blue (n = 3), blue (n = 2) and
pink (n = 1). Frequency represents the number of years a node was observed as an infected node (i.e., a
location where the disease was reported at least once). Map Source: ggmap and ggplot.

Full-size DOI: 10.7717/peerj.17649/fig-2
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remaining epidemic years from 2010 to 2016. The corresponding values of τ were 1.0 ×
10−19, 4.72 × 10−13, 2.55 × 10−13, 1.0 × 10−14, 2.55 × 10−17, 1.0 × 10−12 and 1.0 × 10−12,
respectively (Fig. 3). In summary, the threshold for probability of transmission for the final
static networks was very low ranging from (1.0 × 10−19 to 7.8 × 10−9) and the average

Figure 3 Static networks of cucurbit downy mildew epidemics. Static networks of cucurbit downy mildew epidemics in eastern United States from
2008 to 2016. Closed circles are nodes where disease was reported (either in a sentinel and non-sentinel site) and the lines between two nodes are
links for the probability of transmission between two nodes calculated based on the power-law dispersal kernel. Thresholds for probability of
pathogen transmission ranged from ranged from 1.0 × 10−19 to 7.8 × 10−9. The initial source of disease outbreak (open square) in 2009, 2011, 2012-
2015 was a sentinel site in Miami-Dade County in southern Florida, while the initial source in 2008, 2010 and 2016 was a sentinel site in Collier
County in Florida, Alachua County in Florida and Baldwin County in Alabama, respectively. Map Source: ggmap and ggplot.

Full-size DOI: 10.7717/peerj.17649/fig-3
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degree ranged from 12.9 (in 2014) to 52.1 (in 2015). The exponent of the degree
distribution (γ) was 2.34 (2008), 1.63 (2009), 2.03 (2010), 1.75 (2011), 1.93 (2013), 1.82
(2014), 2.05 (2015) and 2.14 (2016). Values of γ ≥ 2 indicate that a network is scale-free,
i.e., the degrees follow a power-law distribution and the network is characterized by large
hubs or nodes with a very high number of links.

Centrality measures and selection of important nodes
Betweenness, closeness, degree, and eigenvector centrality metrics varied between
epidemic years. Variability among the 20 most important nodes for each of these metrics
was also observed for the final static network constructed within a given epidemic year.
Overall, variability among the 20 most important nodes within any epidemic year across
the entire study was high for BWC. For example, BWC values ranged from 264.5 to 888.3
in 2008 (Table 3), from 1,147.6 to 2,415.7 in 2009 (Table 4), and from 237.6 to 1,718.2 in
2010 (Table 5). The mean values for the 20 most important nodes identified by BWC in

Table 3 Centrality-based ranking of the twenty most important sites in the cucurbit downy mildew
network for the epidemic observed in the eastern United States in 2008.

Betweennessa Closenessa Degreea Eigenvectora

Rank ID State BWC ID State CLC ID State DGC ID State EVC

1 74 MS 888.3 89 NC 0.0034 131 PA 73 128 PA 1.000

2 118 OH 665.3 118 OH 0.0034 52 MD 72 131 PA 0.994

3 135 SC 608.6 125 PA 0.0034 125 PA 72 134 PA 0.989

4 124 OH 534.1 128 PA 0.0034 128 PA 72 125 PA 0.981

5 39 KY 517.2 130 PA 0.0034 130 PA 72 130 PA 0.974

6 141 TN 507.2 124 OH 0.0034 127 PA 71 99 NY 0.963

7 31 GA 500.4 52 MD 0.0034 134 PA 69 127 PA 0.962

8 89 NC 471.1 134 PA 0.0034 99 NY 66 102 NY 0.953

9 137 SC 470.8 86 NC 0.0033 102 NY 65 96 NY 0.943

10 82 NC 416.6 148 VA 0.0033 96 NY 64 97 NY 0.930

11 91 NC 416.6 150 VA 0.0033 129 PA 64 98 NY 0.926

12 139 TN 375.8 131 PA 0.0033 11 DE 63 100 NY 0.902

13 52 MD 372.1 87 NC 0.0033 97 NY 63 52 MD 0.879

14 75 MS 336.7 88 NC 0.0033 98 NY 63 126 PA 0.858

15 125 PA 324.7 127 PA 0.0033 13 DE 62 129 PA 0.856

16 128 PA 305.4 80 NC 0.0033 100 NY 61 111 OH 0.847

17 136 SC 290.5 78 NC 0.0033 10 DE 59 113 OH 0.847

18 33 GA 290.1 79 NC 0.0033 93 NJ 59 117 OH 0.828

19 29 GA 279.0 151 VA 0.0032 94 NJ 59 120 OH 0.820

20 34 GA 264.5 39 KY 0.0032 133 PA 59 101 NY 0.814

Mean 441.8 0.0033 65.4 0.913

SD 441.1 0.0000 9.9 0.132

Notes:
a ID, Node identification number.
BWC, Betweenness centrality; CLC, Closeness centrality; DGC, Degree centrality; and EVC, Eigenvector centrality; SD,
Standard deviation.
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Table 4 Centrality-based ranking of twenty most important nodes in the cucurbit downy mildew
network for the epidemic observed in the eastern United States in 2009.

Betweennessa Closenessa Degreea Eigenvectora

Rank ID State BWC ID State CLC ID State DGC ID State EVC

1 34 GA 2,415.7 122 NC 0.0012 74 MI 35 109 NC 1.000

2 212 VA 2,390.2 132 NC 0.0012 79 MI 35 136 NC 0.979

3 48 KY 2,376.2 134 NC 0.0012 82 MI 33 114 NC 0.979

4 154 OH 2,152.4 129 NC 0.0012 93 MI 33 118 NC 0.966

5 32 GA 2,011.5 124 NC 0.0012 109 NC 33 130 NC 0.960

6 192 TN 1,907.7 135 NC 0.0012 158 OH 33 127 NC 0.960

7 186 SC 1,803.5 205 VA 0.0012 200 VA 33 211 VA 0.937

8 169 PA 1,796.5 212 VA 0.0012 76 MI 32 119 NC 0.913

9 2 AL 1,672.3 48 KY 0.0011 90 MI 32 128 NC 0.906

10 180 SC 1,605.4 163 OH 0.0011 114 NC 32 207 VA 0.898

11 104 MS 1,515.0 164 OH 0.0011 118 NC 32 115 NC 0.891

12 171 PA 1,413.6 165 OH 0.0011 136 NC 32 125 NC 0.887

13 103 MS 1,351.4 133 NC 0.0011 211 VA 32 126 NC 0.884

14 25 FL 1,343.5 192 TN 0.0011 75 MI 31 113 NC 0.882

15 200 VA 1,311.5 123 NC 0.0011 83 MI 31 121 NC 0.872

16 153 OH 1,259.8 169 PA 0.0011 88 MI 31 120 NC 0.869

17 147 NY 1,258.1 171 PA 0.0011 89 MI 31 112 NC 0.869

18 54 KY 1,248.4 183 SC 0.0011 91 MI 31 203 VA 0.867

19 101 MS 1,158.2 207 VA 0.0011 92 MI 31 200 VA 0.864

20 158 OH 1,147.6 203 VA 0.0011 111 NC 31 110 NC 0.850

Mean 1,656.9 0.0011 32.2 0.912

SD 896.7 0.0000 2.8 0.106

Notes:
a ID, Node identification number.
BWC, Betweenness centrality; CLC, Closeness centrality; DGC, Degree centrality; and EVC, Eigenvector centrality; SD,
Standard deviation.

Table 5 Centrality-based ranking of twenty most important sites in the cucurbit downy mildew
network for the epidemic observed in the eastern United States in 2010.

Betweennessa Closenessa Degreea Eigenvectora

Rank ID State BWC ID State CLC ID State DGC ID State EVC

1 30 KY 1,718.2 30 KY 0.0033 116 OH 56 116 OH 1.000

2 31 KY 1,009.3 31 KY 0.0032 103 OH 54 109 OH 0.998

3 65 MS 691.0 116 OH 0.0032 104 OH 54 106 OH 0.997

4 4 AL 577.1 121 PA 0.0032 105 OH 54 110 OH 0.995

5 139 TX 556.0 105 OH 0.0032 106 OH 54 103 OH 0.995

6 77 NC 486.1 103 OH 0.0032 108 OH 54 113 OH 0.995

7 25 GA 469.3 104 OH 0.0032 109 OH 54 114 OH 0.995

8 74 NC 410.1 108 OH 0.0032 110 OH 54 104 OH 0.995

9 13 FL 404.1 110 OH 0.0032 113 OH 54 108 OH 0.995

(Continued)
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these respective years were 441.8, 1,656.9, and 474, with corresponding standard deviations
of 441.1, 896.7 and 1,046.9. Variability among the 20 most important nodes as identified by
the other centrality metrics was relatively limited (Tables 3–5), with variability among the
nodes identified as important based on CLC being the lowest across the entire study
period.

The distribution of BWC values across the nodes in the examined networks exhibited a
power-law distribution. About 85% of the nodes had BWC values <250, with BWC >1,500
being the largest BWC value observed, as shown in the CDF (Fig. S6). In contrast, the
distributions of CLC and DGC values were more characteristic of a normal distribution,
with the variance of CLC being relatively smaller than that of DGC. The distribution of
EVC values followed a Poisson distribution since each other node had an EVC value that
was closer to that of one or two other nodes, except for the most important node in each
epidemic year (EVC = 1).

Ranking of nodes considered to be important varied among centrality metrics for
epidemic years examined (Tables 3 to 5). Spearman’s rank-based correlation coefficients
were highest between BWC and CLC, with correlations ranging from 0.43 to 0.74 (Fig. S7).
Correlations between BWC and DGC or EVC were relatively lower across the epidemic
years except between BWC and DGC in 2016, where r = 0.46 (Fig. S7). The consistency in
the rankings of nodes based on centrality measures was summarized as a heatmap to
visualize unique nodes within the networks (Fig. 4). Many nodes overlapped in their
rankings among the top 20 important nodes (across all thresholds and centralities) in 2010
(Fig. 4A) and 2014 (Fig. 4C) based on BWC and CLC. However, most nodes overlapped
across the four centrality measures in 2011 (Fig. 4B). For example, node 117 in Lewis

Table 5 (continued)

Betweennessa Closenessa Degreea Eigenvectora

Rank ID State BWC ID State CLC ID State DGC ID State EVC

10 23 GA 342.0 113 OH 0.0032 114 OH 54 61 MI 0.992

11 26 GA 342.0 114 OH 0.0032 61 MI 53 41 MI 0.983

12 5 AL 331.3 107 OH 0.0032 40 MI 52 53 MI 0.983

13 120 PA 305.2 106 OH 0.0031 41 MI 52 60 MI 0.983

14 130 SC 296.8 109 OH 0.0031 48 MI 52 48 MI 0.983

15 138 TX 282.0 120 PA 0.0031 53 MI 52 105 OH 0.977

16 80 NC 264.0 119 PA 0.0031 60 MI 52 42 MI 0.964

17 67 NC 257.1 115 OH 0.0031 107 OH 52 40 MI 0.960

18 117 PA 253.7 61 MI 0.0031 112 OH 52 111 OH 0.960

19 122 PA 246.7 112 OH 0.0031 122 PA 52 112 OH 0.959

20 140 VA 237.6 111 OH 0.0031 42 MI 51 43 MI 0.959

Mean 474.0 0.0032 53.1 0.983

SD 1,046.9 0.0000 3.5 0.029

Notes:
a ID, Node identification number.
BWC, Betweenness centrality; CLC, Closeness centrality; DGC, Degree centrality; and EVC, Eigenvector centrality; SD,
Standard deviation.
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County, West Virginia, appeared more than 20 times in the top 20 rankings based on BWC
and CLC. This same node also appeared more than 10 times in the top 20 ranking of nodes
based on DGC and EVC.

Figure 4 Illustration of important nodes for disease spread. A heatmap representation of the most important nodes (node IDs x-axis) across 20
thresholds and the four centrality measures (y-axis) for 2010 (A), 2011 (B), and 2014 (C) networks. Frequency represents the number of times a node
appeared in the top 20 ranked list across all evaluated thresholds. Most nodes overlapped across the four centrality measures in 2011. For example,
node 117 in Lewis County inWest Virginia appeared more than 20 times in the top 20 ranks based on BWC and CLC. This node also appeared more
than ten times in the top 20 ranks based on DGC and EVC. Full-size DOI: 10.7717/peerj.17649/fig-4
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Infection frequency and centrality selection of important nodes
Identifying important nodes based on infection frequency and centrality measures of static
networks showed some similarities and differences based on the examined centrality
metric. The ranking of nodes based on BWC and CLC was generally similar across years,
while rankings based on EVC differed from all other centrality measures. Based on BWC,
nodes that had a frequency >4 had the highest calculated values (combined frequency ×
centrality), with the largest value being 0.82 for the node in Sandusky County in Ohio that
had an infection frequency of 6 (Fig. 5), while the lowest weight was 0.13 for a node in
Charleston County in South Carolina. Based on CLC, the largest weight was 0.98 for a
node in Sandusky County in Ohio that had a frequency >6, while the lowest weight was
0.198 for a node in Miami-Dade County in Florida. Similarly, the node in Sandusky
County in Ohio had the highest weight of 0.93 based on DGC, followed by nodes in
Johnston, Lenoir and New Hanover counties in North Carolina, Wicomico County in
Maryland, and Huron and Wayne counties in Ohio that had an infection frequency of 5
(Fig. 5). Node ranking based on EVC was comparably different from the ranking based on
all other centrality measures. A node in Johnston County in North Carolina had the
highest weight of 0.84, followed by nodes in Wicomico County in Maryland, Sampson and
Johnston counties in North Carolina and Wayne County in Ohio (Fig. 5).

Dynamic network model of disease spread and predicted probability of
node infection
The dynamic network model revealed an emerging and evolving network that differed
from the static network representation of disease spread (Fig. 6). Generally, similar
temporal and spatial patterns were observed in all other years, although the probabilities
between nodes in different states and levels of these probabilities differed between years. In
all epidemic years, links between nodes closest to the initial disease outbreak (open square)
in southern Florida had the highest probabilities of transmission early in the season (i.e.,
week 10), while the probability of transmission for links between nodes elsewhere in the
network was relatively low (Fig. 6). As epidemics progressed in time and space, link
probabilities increased for nodes that were more distant from the initial outbreak in more
northern latitudes, although probabilities remained relatively low for isolated nodes
(Fig. 6).

The probability of infection increased in time and space, with a generally northward
expansion of the epidemic front in all years (Fig. 7). Predicted probability of infection
increased most during weeks 20 or later. By week 35, the predicted probability increased
for most nodes in the eastern United States, with only a relatively few nodes in Illinois and
Michigan having a low infection probability.

Errors in dynamic model and impact of removal of important nodes on
model errors
Based on all nodes in the network, the mean absolute error for the dynamic model
generated across weekly time steps and averaged monthly from January to August was
lowest in 2015 with a value of 0.09 and highest in 2011 with a value of 0.33. The mean
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absolute error for the dynamic model across the entire study for all the nodes was 0.21
(Table 6).

Removal of nodes identified as important based on BWC, CLC, DGC, and EVC
increased the mean absolute errors, indicating that these nodes were indeed important in
the network structure and prediction accuracy. However, the changes in mean absolute
errors after node removal varied depending on the specific centrality measure considered.
Removal of nodes identified as important by BWC resulted in the largest mean absolute
error, 0.32, a 52.4% error rate relative to the base prediction that included all nodes. In
contrast, removing nodes identified as important based on CLC, EVC and DGC led to
comparatively small increases in mean absolute error (0.24, 0.24 and 0.25, respectively).
Thus, model errors due to the removal of nodes identified as important based on BWC
were 3 to 4 times higher than errors resulting from the removal of nodes identified as
important based on CLC, DGG, or EVC, indicating BWC was superior in identifying
important nodes in this data set (Table 6).

The probability of node infection and epidemic progress in the disease network was also
affected by removing nodes identified as central in the network. Relative to a network with
all nodes present, removing nodes identified as important based on BWC reduced the
probability of infection of non-infected nodes in the subsequent time step in all epidemic
years (Fig. 8). For example, removing of nodes in counties in north Florida, Georgia, and
South Carolina that were identified as important based on BWC arrested the progression
of CDM and infection of nodes in north Florida, South Georgia, and South Carolina in

Figure 5 Node importance based on frequency of disease occurrence and centrality measures. A
depiction of node importance based on a combination of the frequency of cucurbit downy mildew
occurrence in the eastern United States and betweenness, closeness, degree or eigenvector network
centrality measures. Frequency represents the number of years a node was observed as an infected node
based on epidemic years from 2008 to 2016. Frequency of occurrence and centrality measures are
weighted based on a ratio of 4:1. Map Source: ggmap and ggplot.

Full-size DOI: 10.7717/peerj.17649/fig-5
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2009 by week 25 (Fig. 8). We observed a similar pattern of infection probability being
meaningfully changed in other years as well when node removal was based on BWC, with
the precise change in infection probability varying in specific years. In contrast, removing
nodes identified as central based on CLC, DGC or EVC had a comparably minor impact
on the probability of node infection and epidemic progress in all years (Fig. 8).

DISCUSSION
Estimating the probability and timing of outbreaks in specific sites and determining where
and when the introduction of inoculum can impact the extent of an epidemic, is one of the

Figure 6 Dynamic network of the spread of cucurbit downy mildew. Evolving networks resulting from a dynamic network model for the spread of
cucurbit downy mildew in the eastern United States in 2008, 2013, 2014 and 2015. Black circles indicate node centroids of disease outbreak, while the
open square is initial source of disease outbreak. Lines are links that have been scaled relative to the probability of transmission by time, with darker
and thicker lines indicating higher probabilities of transmission. Map Source: ggmap and ggplot. Full-size DOI: 10.7717/peerj.17649/fig-6
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Figure 7 Prediction of the temporal spread of cucurbit downy mildew. Prediction of cucurbit downy mildew outbreaks in the eastern United
States in 2014 based on cumulative disease outbreaks observed in previous times steps in the same epidemic year. Dark red nodes represent sites
predicted to have an outbreak with a high probability. Blue nodes represent sites predicted to have no outbreak with negligible probability of
infection, and all other shades from green to dark red represent increasing probability of disease outbreak. A single node in Texas was reported as
infected by week 10 in the observed data; thus the county was considered infected with probability of 1 by week 10. Map Source: ggmap and ggplot.

Full-size DOI: 10.7717/peerj.17649/fig-7

Table 6 Absolute errors for a network model using data from all sites and removal of sites identified
as important based on centrality measures used to study the spatio-temporal spread of cucurbit
downy mildew in the eastern United States.

Error after removal of important nodes based on centrality measureb

Yeara All nodes Betweenness Closeness Degree Eigenvector

2008 0.18 0.31 0.22 0.21 0.22

2009 0.27 0.39 0.29 0.28 0.33

2010 0.15 0.23 0.20 0.19 0.20

2011 0.33 0.40 0.35 0.34 0.34

2012 0.27 0.33 0.27 0.27 0.27

2013 0.28 0.45 0.30 0.31 0.31

2014 0.26 0.44 0.36 0.37 0.37

2015 0.09 0.12 0.10 0.10 0.10

2016 0.10 0.17 0.09 0.10 0.10

Mean 0.21 0.32 0.24 0.24 0.25

Notes:
a For each year, values are means of absolute model errors generated across monthly time steps from January to August.
b The 20 most important nodes identified by each centrality measure were removed in the network and the model rerun
to calculate the corresponding absolute errors.
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challenges in predicting the spread of plant diseases and pests (Meentemeyer et al., 2011;
Fitzpatrick et al., 2012). The CDM pathogen can be dispersed over long distances and the
disease can spread rapidly under favorable environmental conditions (Ojiambo & Holmes,
2011). In this study, networks were formulated based on historical epidemic records of
CDM to establish how connectivity of cucurbit fields influences pathogen dispersal and
disease spread in the eastern United States. Multiple low- to high-density static networks
were initially generated and analyzed, and networks with biologically-plausible structures
and topologies were selected for further analysis. The exponent of the degree distributions
for most of the examined networks followed a power-law distribution, indicating that static
networks of CDM displayed scale-free properties (Pastor-Satorra & Vespignani, 2001),
where most nodes had a small number of links, while a smaller number of nodes had a
relatively large number of connections. Scale-free connectivity implies the existence of
highly connected nodes (hubs) that are responsible for the rapid spread of disease within

Figure 8 Impact of removing important nodes on disease spread in the network. Prediction of cucurbit downy mildew outbreaks in the eastern
United States by week 25 for all nodes present in the network (i.e., prediction) compared to prediction when the 20 most important nodes (based on
betweenness, closeness, degree, and eigenvector centrality measures) are removed from the network based on data from epidemics in 2008, 2009,
2013 and 2014. Diamond symbols are nodes identified as important based on each centrality metric. The initial source of disease outbreak is
represented by a square symbol. Map Source: ggmap and ggplot. Full-size DOI: 10.7717/peerj.17649/fig-8
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the network (Jeger et al., 2007). The transmission probability threshold is low or even
absent in scale-free networks (Shirley & Rushton, 2005; Pastor-Satorra & Vespignani, 2001)
and this may partly explain the low levels of τ observed in the present study. Disease spread
in scale-free networks is rapid and models suggest that control of pathogens spreading in
such networks should focus on the highly connected sites (Jeger et al., 2007). Thus, targeted
sampling of frequently-infected and highly connected sites that are critical in spreading the
disease may benefit disease surveillance.

Sites in Florida, Alabama, North, and South Carolina that were infected more frequently
in the past may be candidates for disease surveillance. Acquiring the frequency of infection
data is a prerequisite, but constant scouting for the disease is expensive. However, once the
historical frequency of infection data is available, additional information about network traits
is inexpensive to obtain using mathematical models (Sutrave et al., 2012). Network centrality
metrics such as BWC, CLC, DGC and EVC can facilitate the identification of such highly
connected nodes (Andersen et al., 2019; Gent, Bhattacharyya & Ruiz, 2019) and aid in
evaluating strategies for selecting nodes for surveillance (Sanatkar et al., 2015). Based on a
complete static network model, these centrality measures were used to identify highly
connected sites for the spread of CDM in the eastern United States. Combining past
infection frequency with centrality measures improved the identification of important nodes.
For example, DGC, BWC, and CLC produced similar rankings with the infection-based
frequency for nodes with an infection frequency greater than four. Although EVC produced
a different ranking, nodes with a frequency greater than four still had high weights, thus
agreeing with the rankings from the other centrality measures. The combination of
frequency-based and DGC was useful in selecting sampling nodes for sentinel sites for
soybean rust in the United States (Sutrave et al., 2012). DGC is considered the standard
measure in network science and is useful for identifying important nodes in static networks
of several pathosystems to inform strategic management (Christley et al., 2005; Gent,
Bhattacharyya & Ruiz, 2019; Kiss, Green & Kao, 2006; Xing et al., 2020). Unlike other
centrality measures, DGC is easier to calculate and does not require assessing the entire
network (Christley et al., 2005). In this study, DGC was ineffective in identifying important
nodes compared to BWC. Further, BWC rankings were poorly correlated with those of DGC
except for the epidemic data collected in 2016.

Betweenness centrality was more useful in identifying the influential nodes in the
network as compared to other commonly used metrics. BWC measures the importance of
a node by computing how many times a node of interest is on the shortest paths between
any two other nodes. This centrality measure has been used to characterize large networks
by way of selected nodes since the seminal work by Granovetter (1973). Nodes with high
BWC have been used to determine keystone species in food webs, find clusters and
communities, and analyze the robustness of networks by identifying sensitive points of
failure (Barabási & Bonabeau, 2003; Girvan & Newman, 2002; Vasas & Jordán, 2006). In
epidemiology, nodes with high BWC indicate that they are important in disease spread as
they act as bridges or ‘hubs’ to other nodes. Thus, greater disease surveillance efforts and
treatment should be directed towards these nodes to decrease the risk of pathogen
transmission and disease spread within the network (Marquetoux et al., 2016). The
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observation that BWC was more informative of node importance than other centrality
measures emphasizes the need to generate centrality measures that are specific to the
disease of interest (Holme, 2018). Invariably, different centrality measures can result in a
dissimilar ranking profiles of important nodes for diverse pathosystems, possibly due to
the inherent differences in the underlying mechanisms of pathogen dispersal and disease
spread, landscape connectivity, or other factors (Dudkina et al., 2023; Holme, 2018; Singer,
Thompson & Bonsall, 2022).

The importance of the highly connected sites in disease spread was further evaluated
using a dynamic network model. Mean absolute errors and the probability of infection in
nodes across the networks were relatively insensitive to removing of nodes identified as
central by CLC, DGC, and EVC. In contrast, mean absolute errors and the probability of
infection in simulated epidemics were quite sensitive to removing of nodes identified as
central based on BWC. This may be related to the physical location of the nodes identified
as highly central by the various centrality measures. Removing nodes identified as
important based on CLC, DGC and EVC that were located in Pennsylvania, Ohio, and
New York did not affect disease progression northward from southern states, whereas
removing important nodes in North Carolina largely prevented disease spread. Nodes with
high BWC scores were scattered across the region, including in the southern United States.
Removing these nodes, reduced disease spread, and in some epidemic years, it entirely
halted disease spread from most southern states. Most of the spread of CDM is over
relatively short distances of less than 30 km (Ojiambo & Holmes, 2011) as the host is
planted from south to north. Since BWC is based on the number of shortest paths that pass
through a target node, a target node will have a high BWC score if it appears in many
shortest paths. Given the relative short dispersal distances of P. cubensis, it is plausible that
BWC may be better at capturing the dynamics of disease transmission for most of the
dispersal events that drive the spread of CDM.

Where resources available for control are limited, targeting nodes with high BWC for
treatment has also been found to be an effective strategy in impeding epidemics caused by
a disease that spreads rapidly (Singer, Thompson & Bonsall, 2022). The most central nodes
identified as important based on BWC were sites in Michigan in the Great Lakes region,
Ohio in the Midwest, and Maryland, North Carolina, South Carolina, and Virginia along
the mid-Atlantic coast. These states are located along the seasonal transport pathway of
P. cubensis spores from overwintering locations from the south (Aylor, 2003). Further,
most of these states have the largest acreage of cucurbit production in the United States.
Thus, a combination of spore transport and host density may be a reason for the location
of the most central nodes in the above states. These sites could thus be reasonable targets
for more intensive sampling for surveillance of new disease outbreaks within the region.
Potentially, more effective disease management in these highly connected sites, such as the
strategic deployment of host resistance, could reduce inoculum production that drives
infection in neighboring cucurbit fields in the eastern United States.

Static networks capture connectivity patterns at a single point in time, while dynamic
models account for changes in network structure over time, allowing for more accurate
predictions of disease spread trajectories. Thus, the simpler static network representations
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are often deficient when compared with a fully dynamic representation, and should thus be
used only with caution in epidemiological modelling (Vernon & Keeling, 2009). Unlike the
dynamic model used for the spread of soybean rust in the United States (Sutrave et al.,
2012), the dynamic model used in this present study incorporated a power-law dispersal
gradient characteristic for the long-distance dispersal of plant pathogens. Based on the
2008 and 2009 epidemic data and point-pattern analysis, the dispersal distances for the
CDM pathogen were estimated to be up to 390, 737 and 879 km, with 1,000 km being the
maximum possible distance of spatial association (Ojiambo & Holmes, 2011). Further,
Ojiambo et al. (2017) showed that the spread parameter b varied in different epidemics,
with the final epidemic extent ranging from 4.16 × 108 to 6.44 × 108 km2. Thus, different
values of b were used in the construction of static networks and in the dynamic network
model to account for the difference in spatial spread in each epidemic year. The dynamic
network model used in the present study improves on modeling long-distance dispersal by
using a flexible threshold for distance to allow for the connectivity of nodes that are further
apart (Ferrari, Preisser & Fitzpatrick, 2014). However, the model does not account for
differences in environmental factors that are likely to influence pathogen dispersal. In
addition, accounting for differences in host susceptibility at the different locations could
further improve our ability to generalize the findings reported here to different cucurbit
host types. Subsequent studies are also needed to establish how unknown disease sources
can be imputed in this network modeling framework and determine how accounting for
these unknown sources could influence the network structure and inference made on the
location of highly connected sites for disease surveillance reported in this study. Due to the
non-random placement of sentinel sites within the monitoring network, these results may
not be generalizable and additional studies may be needed to assess how the random
placement of sentinel sites could influence the findings reported in this study.
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