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Acne vulgaris is a chronic inflammatory skin disease in which the influence of

gut microbiota has been implicated but without clarification of mechanisms.

Gut microbiota may exert such an influence via metabolites, particularly those

of tryptophan. End metabolites of tryptophan activate receptors, including aryl

hydrocarbon, G protein-coupled, and pregnane X receptors to stabilize the

immune microenvironment and intestinal mucosal homeostasis. Any impact

on the pathogenesis of acne vulgaris remains unclear. The current review

collates recent advances concerning potential roles of tryptophan metabolism

in mediating skin inflammation, follicular sebaceous gland function and

intestinal permeability, all of which influence the pathogenesis of acne

vulgaris. The aim was to improve understanding of the pathogenesis of acne

vulgaris and to expose therapeutic opportunities.

KEYWORDS

tryptophan, gut microbiota (GM), metabolite, acne vulgaris, aryl hydrocarbon
receptors

Introduction

Acne vulgaris is a highly prevalent cutaneous inflammatory disorder that primarily
affects the face, chest, and back. Approximately 85% of sufferers are aged 12–24 years
with 50% being 20–29 years (Eichenfield et al., 2021). Years of continuous research
have established the complexity of acne vulgaris pathogenesis. Dysfunctions of the
hair follicle sebaceous glands (Moradi Tuchayi et al., 2015), altered sebum fatty acid
composition (Zouboulis et al., 2014), hormonal disorder of the microenvironment
(Zouboulis, 2020), neuropeptide interaction (Ganceviciene et al., 2009), abnormal
follicular epithelial differentiation, excessive follicle keratinization (Cong et al., 2019),
induced inflammation, innate immunity, and adaptive immune system dysfunction
(Tanghetti, 2013; Zouboulis et al., 2014) are all thought to be involved. However, the
exact pathogenesis of the disease remains unknown. Numerous studies have shown
that gut microbiota (GM) affect immune regulation of distant organs, such as lung
(Ma et al., 2021), brain (Mayer et al., 2022), and skin (De Pessemier et al., 2021).
Advances in new-generation sequencing technologies over the past decade have allowed
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unprecedented insights into the human microbiome
(Zhernakova et al., 2016). We have previously conducted
an analysis of the GM in acne vulgaris patients and found
significant deviations from that of the healthy, including
decreased abundance of Lactobacillus and Bacillus (Deng et al.,
2018). GM analysis in moderate and severe acne vulgaris
patients found that the abundance of various probiotics, such as
Bifidobacterium and Lactobacillus, decreased (Yan et al., 2018).
These observations strongly imply an interaction between
GM and the onset of acne vulgaris but no specific mechanism
has been clarified.

Many effects of GM are known to be mediated by
metabolites derived from environmental transformation or
generated by microorganisms. Dysregulation of aminoadipic
acid metabolism has been suggested to be associated with
increased risk of acne vulgaris (Lin et al., 2019) and the
essential amino acid, tryptophan (Trp), is an aminoadipic acid
metabolite. Tryptophan has essential physiological roles and
has also been implicated in the development of other diseases,
such as metabolic syndrome, obesity and depression (Bosi et al.,
2020). The current brief review summarizes potential roles of
microbial Trp metabolites in regulating local skin inflammation,
hair follicle sebaceous gland dysfunction and gut permeability.
The aim was to improve the comprehension of acne vulgaris
development and expose therapeutic opportunities.

Gut microbiota and acne vulgaris

The human microbiome comprises a wide range of
microorganisms that inhabit the body and protect it against
external intrusions through an impact on immunity. Studies of
microbiome composition have been hindered by its complex
nature and the difficulties in culturing some of the components.
However, recent advances in research technologies, such
as 16S rRNA sequencing, metagenomics, metabolomics and
metaproteomics, have enabled microbiome-associated research
(Jangi et al., 2016; Zhernakova et al., 2016). As a result, changes
in GM composition and diversity have been linked to the gut
immune environment and barrier function and been found
to affect the inflammatory response of distant organs (Gilbert
et al., 2018). Common factors contributing to GM changes are
psychosocial stress, social relationships, health, alcohol intake,
tobacco use and diet (Dowd and Renson, 2018). A Western
diet, enriched in carbohydrates, saturated fats and salt, has
been linked to acne development (Baldwin and Tan, 2021). GM
analyses have identified Bacteroidetes as a phylum positively
associated with fat but negatively associated with fiber and
Firmicutes as having the opposite association (Jangi et al.,
2016). Westernization of the diet promotes GM dysbiosis with
attendant changes in gut permeability and barrier function
and leads to abnormal activation of immune cells which may
eventually contribute to the development of chronic diseases
(Zinocker and Lindseth, 2018). Reduced levels of Lactobacillus

may mediate the hypertensive effects of high-salt diets in
humans and experimental animals (Na et al., 2021). Additives,
such as artificial sweeteners, are associated with intestinal
permeability, GM changes and inflammation, promoting
an increase in pathogenic bacteria (enterobacteria) and a
reduction in beneficial bacteria (lactobacilli and bifidobacterial;
Schiffman and Nagle, 2019). Recent studies have shown that
patients with acne vulgaris exhibited lower Firmicutes and
increased Bacteroides with potentially beneficial taxa, such
as Lactobacillus, Bifidobacterium and Bacillus being depleted
(Deng et al., 2018; Yan et al., 2018).

GM are known to participate in the metabolism and
absorption of food through the human digestive system and
also to generate GM-host co-metabolites, such as short-
chain fatty acids (SCFAs), Trp metabolites, lipids and bile
acids. Such metabolites are necessary for immune homeostasis
and influence the host’s susceptibility to many immune-
mediated disorders. For example, SCFAs, such as butyrate,
acetate, and propionate, bind “metabolite-sensing” G protein-
coupled receptors (GPCRs), including GPCR41, GPCR43, and
GPCR109A, to inhibit histone deacetylases and promote a
tolerogenic, anti-inflammatory cell phenotype (Cummings and
Macfarlane, 1997; McKenzie et al., 2017). Bile acids bind to G
protein-coupled bile acid receptor 1 to exert anti-inflammatory
effects in the gut, promoting the anti-inflammatory M2
macrophage phenotype and reducing the pro-inflammatory
M1 macrophage phenotype. Secondary bile acids modulate the
Treg/Th17 ratio to regulate the adaptive immune system (Ridlon
et al., 2014; Ramirez-Perez et al., 2017; Fiorucci et al., 2018).
Recent research on the relationship between acne vulgaris and
GM (Bowe and Logan, 2011; Yan et al., 2018; Lin et al., 2019;
Szegedi et al., 2019; Huang et al., 2021) has largely been limited
to correlation analysis without addressing causal relationships.
A more complete understanding of the relationship between
GM-associated metabolites and acne vulgaris could indicate new
directions for diagnosis and management of the disorder.

Bacterial tryptophan metabolism
in the gut

Trp is an essential amino acid abundant in high-protein
foods, such as eggs, meat, fish, cheese, and nuts. The small
intestine digests and absorbs most ingested protein, although
some proteins and amino acids may arrive at the colon
depending on the intake (Evenepoel et al., 1999). Trp is
not only metabolized but also synthesized by GM (Paley,
2019). Trp released by the small intestine circulates in its free
form or binds to albumin in the peripheral bloodstream. Trp
metabolism in the gastrointestinal tract is divided into three
main pathways (Table 1): (i) Gut bacteria convert Trp into
indoles, indole derivatives and tryptamine which are ligands of
aryl hydrocarbon receptors (AhR); (Zelante et al., 2013); (ii) the
kynurenine pathway, including indoleamine 2,3-dioxygenase 1
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TABLE 1 Summary of tryptophan metabolic pathways in the human body.

Pathways Enzymes Key metabolites Bacteria/Host References

Kynurenine pathway (∼95%) TDO/IDO Kyn, KA, QA Both Savitz, 2020

Indole pathway (∼5%) ArAT Indole, IAId, ILA, IPA, IAA, IA, tryptamine Bacteria Taleb, 2019

Serotonin pathway (∼1–2%) TPH1/2, AAAD, MAO 5-HT, Melatonin Host O’Mahony et al., 2015

AAAD, aromatic amino acid decarboxylase; ArAT, aromatic amino acid aminotransferase; 5-HT, 5-hydroxytryptamine; IA, Indole-3-acrylic acid; IAA, indoleacetic acid; IAld, indole-3-
aldehyde; IDO, indoleamine 2,3-dioxygenase; ILA, indole-3-lactic acid; IPA, indole-3-propionic acid; KA, Kynurenic acid; Kyn, Kynurenine; MAO, monoamine oxidase; QA, Quinolinic
acid; TDO, tryptophan 2,3-dioxygenase; TPH, tryptophan hydroxylase.

in immune and epithelial cells (Clarke et al., 2013) and (iii)
serotonin production in intestinal chromaffin cells through
tryptophan hydroxylase 1 (Yano et al., 2015).

GM play a vital role in the digestion and absorption of
amino acids and commensal bacteria in the colon convert Trp
to indole and its derivatives, such as IAId (indole-3-aldehyde),
ILA (indole-3-lactic acid), IPA (indole-3-propionic acid), IAA
(indoleacetic acid), IA (Indole-3-acrylic acid) and tryptamine,
which have roles in maintaining intestinal immune homeostasis
and barrier function (Jennis et al., 2018). Lactobacillus murinus
and Lactobacillus reuteri have been reported to convert Trp to
IAld and ILA via aromatic amino acid aminotransferase and
indole lactic acid dehydrogenase (Cervantes-Barragan et al.,
2017; Wilck et al., 2017). Moreover, several Bacteroides, in
addition to Clostridium, have been reported to generate indole,
IPA, IA, ILA, IAA, and tryptamine (Aragozzini et al., 1979;
Russell et al., 2013; Devlin et al., 2016; Dodd et al., 2017; Paley,
2020; Paley, 2021).

Tryptophan metabolites and their
receptors

Trp has recently been implicated in the crosstalk between
GM and the host in healthy and diseased states (Agus et al.,
2018; Roager and Licht, 2018). Impaired Trp metabolism
may influence many diseases, such as metabolic syndrome,
obesity, neuropsychiatric disorders and inflammatory bowel
diseases (Agus et al., 2018). We have also found disordered
metabolites of aminoadipic acids, such as alanine, histidine,
leucine, methionine, serine, and Trp, in acne vulgaris patients
(Deng et al., 2018). Trp metabolism end-products may activate
the immune system through binding to AhR, GPCRs and the
pregnane X receptor (PXR; Agus et al., 2018; Roager and Licht,
2018). AhR is known to be a ligand-dependent transcription
factor (Abel and Haarmann-Stemmann, 2010; Gargaro et al.,
2021) with numerous roles in skin physiology and disease
(Szelest et al., 2021). GPCRs are highly expressed by epithelial
cells and specific subsets of immune cells and are thought to
recognize GM-derived SCFAs and tryptamine in addition to
Trp-derived kynurenic acid (KYNA), the chemokine, CXCL17,
and phospholipid-derived lysophosphatidic acid in order to
regulate intestinal homeostasis (Maravillas-Montero et al., 2015;

Bhattarai et al., 2018; Gao et al., 2018; Kaya et al., 2020).
Moreover, AhR and PXR are both involved in intestinal
epithelial barrier fortification (Agus et al., 2018). Therefore,
the remainder of this review focuses on potential roles of gut
microbial Trp metabolites in the complex pathogenesis of acne
vulgaris through the above receptors.

The beneficial role of microbial
tryptophan in acne
vulgaris-associated disorders

Acne vulgaris sometimes accompanies metabolic syndrome,
obesity, and neuropsychiatric disorders. A cross-sectional study
of 89 women with acne found that 36% had metabolic syndrome
(Gayen et al., 2021) and higher prevalence of insulin resistance
and metabolic syndrome occurred in acne sufferers than in
controls (Nagpal et al., 2016). Additional previous studies
have shown that psychosomatic problems, such as anxiety and
depression are linked to the onset of acne (Samuels et al., 2020;
Sood et al., 2020). A cross-sectional survey in New Zealand
found that students with acne experience higher rates of anxiety
(9%), depressive symptoms (24%), suicidal thoughts (34%) and
suicide attempts (13%) than those without (Halvorsen et al.,
2011). The association between these diseases and acne vulgaris
warrants further understanding of the role of Trp.

Metabolic syndrome and obesity

Metabolic syndrome comprises numerous cardiovascular
risk factors, including insulin resistance, obesity and
hypertension (Huang, 2009). Fecal samples from patients
with metabolic syndrome displayed decreased levels of Trp
metabolites (Liu X. et al., 2020) and deficiencies in ligands
of AhR have been observed in animal models of metabolic
syndrome. Compensatory administration of Lactobacillus
or an AhR agonist reduced glucose dysmetabolism and
liver steatosis in animal models with high Trp metabolizing
capabilities (Natividad et al., 2018). Intestinal barrier defenses
and MyD88 are impaired in diabetes and ICAM and FMO3
expression induced while AhR ligands reverse diabetes-induced
intestinal barrier damage, insulin insensitivity, FMO3/ICAM
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expression and systemic inflammation (Liu W. C. et al.,
2020). Indole has been shown to stimulate enteroendocrine
L-cells to produce glucagon-like peptide-1, stimulating insulin
secretion by pancreatic β-cells. Significant upregulation
of AHR mRNA in peripheral blood monocytes of type 2
diabetics has been found and increased ANR transcription
correlated with the elevated plasma levels of IL-22 and IL-17
in peripheral blood mononuclear cells from both metabolically
healthy obese and type 2 diabetic subjects (Zhao et al.,
2020). Thus, Trp metabolites may influence metabolic and
pro-inflammatory states in metabolic syndrome and obesity
through interactions with AhR.

Neuropsychiatric disorders

The GM may affect the brain and neuropsychiatric
disorders via regulation of circulating Trp which may cross the
highly selective blood-brain barrier and affect neurotransmitter
metabolism (Agus et al., 2018). Depression is a neuropsychiatric
disorder strongly associated with acne vulgaris (Molla et al.,
2021) and stems from decreased availability of Trp and
serotonin in the brain (Agus et al., 2018). Decreased KYNA
in the periphery and the cerebro-spinal fluid of patients after
suicide attempts have also been found (Wiedlocha et al., 2021).

Autism spectrum disorder, a severe neurodevelopmental
condition, has also been linked to altered GM and Trp
metabolism (Kaluzna-Czaplinska et al., 2019). Polymorphisms
in the gene encoding the AhR nuclear translocator have
been associated with the severity of autism spectrum disorder
(Fujisawa et al., 2016). Nevertheless, no links have been
confirmed between GM species and specific mechanisms. We
could still speculate that the gut-brain-skin axis has a vital role in
some acne-associated psychiatric disorders whose pathogenesis
is partly due to the changes in altered GM and Trp metabolism.

Probiotics may treat acne vulgaris
by modulating tryptophan
metabolism

Probiotics are live microorganisms that exert beneficial
effects on the host when adequately ingested. Promising results
have emerged from the application of probiotics for skin
diseases, such as acne vulgaris, atopic dermatitis and allergies
(Goodarzi et al., 2020; Yu et al., 2020). Twelve week oral
administration of Lactobacillus bulgaricus and Streptococcus
thermophilus produced a 33.2 percent reduction in total acne
lesion counts in 56 adults (Kim et al., 2010) and 12 weeks
of oral administration of a mixed probiotic preparation of
Lactobacillus acidophilus, Lactobacillus delbrueckii subspecies
bulgaricus and Bifidobacterium biftdum reduced acne lesion
counts by 67 percent in 45 adults (Jung et al., 2013).

A randomized blind-controlled trial in which 20 adults
with acne were given a supplement containing Lactobacillus
rhamnosus for 12 weeks produced “improvement/significant
improvement” in acne scores which were not seen in the
placebo group. Probiotic intervention also decreased IGF-1
and increased FoxO1 expression (Fabbrocini et al., 2016).
The PI3K/Akt/FoxO1/mTORC1 of the Mammalian Target of
Rapamycin (mTOR) C1 pathway induced by IGF-1 is known
to be involved in the pathogenesis of acne (Melnik, 2018; Cong
et al., 2019).

Research also confirmed the relationships between GM
and Trp metabolism. Lactobacillus levels were found to be
diminished by chronic stress in parallel with elevated serum
kynurenine, effects which were reversed by restoration of gut
Lactobacillus. Moreover, attenuation of the proinflammatory
response and increased serum Trp and KYNA were observed
after prolonged Bifidobacterium infantis administration in rats
(Wiedlocha et al., 2021). Indeed, oral feeding of Lactobacillus
reuteri to healthy breastfed mice significantly increased IPA
and IA (Liu et al., 2022) and administration of Lactobacillus
salivarius to germ-free rats caused generation of Trp-derived
ILA (Xia et al., 2021).

Based on the role of the GM in Trp metabolism,
beneficial effects of Trp metabolites in acne vulgaris-
associated disorder and clinical probiotic treatment of acne
vulgaris, we could speculate that the increased intestinal
probiotics, such as Lactobacillus and Bifidobacterium,
may generate Trp-derived end metabolites which inhibit
immune inflammation, regulate sebum synthesis, and alleviate
intestinal leakage.

Microbial tryptophan metabolites
may regulate innate and adaptive
immune responses, and inhibit
sebum synthesis in acne vulgaris

The pathogenesis of acne vulgaris includes follicular
hyperkeratinization, hyperseborrhea, increased C. acnes
colonization and inflammation (Kurokawa et al., 2009).
Indeed, inflammation participates at all stages of acne
development, from microcomedo and open/closed comedones
to inflammatory comedones and even acne scars (Tanghetti,
2013; Dreno et al., 2015; Cong et al., 2019). The role of adaptive
and innate immune systems in regulating inflammation during
acne pathogenesis via Toll-like receptors (TLRs) has been
established. By this mechanism, inflammasomes are activated,
matrix metalloproteinases produced, and antimicrobial peptide
activity stimulated (Kistowska et al., 2014; Dreno et al., 2015).
The adaptive response can also induce inflammation. Specific
anti-C. acnes activate complement and recruit neutrophils
(Dreno et al., 2015). CD4 + T cells were also found in patches
of acne where they exacerbate inflammation (Agak et al., 2014;
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FIGURE 1

Potential role of microbial Trp metabolites in the pathogenesis of acne vulgaris. Patients with acne vulgaris on a long-term Western diet may
develop GM dysbiosis, which could result in a decrease in beneficial bacteria (e.g., Bifidobacterium, Lactobacillus), an essential metabolic link in
the dietary Trp metabolism, and a reduction in potentially beneficial metabolites such as IAId, IAA, and ILA. In the local skin, Trp metabolites not
only inhibit the production of pro-inflammatory factors such as IL-1β, IL-6, IL-8, and TNF-α by Mϕ differentiating to M1 type through AhR but
also promote the secretion of anti-inflammatory factors such as IL-10 and IL-22 by LC and ILC through AhR, and induce the differentiation of
CD4+T cells to FoxP3+Treg and inhibit Th17 cells. On the other hand, Trp metabolites may also reduce sebum synthesis by inhibiting mTORC1,
thus alleviating acne vulgaris. The “gut-skin” link may be caused by the disruption of the intestinal barrier caused by GM dysbiosis. Increased LPS
in the gut may also enter the local skin through the peripheral circulation and aggravate the occurrence of acne vulgaris.

Kelhälä et al., 2014; Kistowska et al., 2014; Eliasse et al.,
2021). An exploration of roles and mechanisms of GM Trp
metabolism in mediating innate immune inflammation and
sebaceous gland function during acne vulgaris pathology
follows (Figure 1).

Microbial tryptophan metabolites may
suppress inflammation in acne vulgaris
by regulating the innate immune
response

Skin is the body’s first line of defense against environmental
threats and pathogen invasion. It consists of a complex and
diverse network of epithelial, immune and neuronal cells
that integrate signals (Abreu and Kim, 2021). Skin immunity
is coordinated by innate and adaptive immune cells with
the former, including macrophages (Mϕ), basophils, mast
cells, and innate lymphoid cells (ILCs), responding rapidly to
non-specific stimuli. The inflammatory response mediated by
innate immune cells is considered an essential pathological link
in the development of acne vulgaris (Dreno et al., 2015; Cong
et al., 2019).

Macrophages
Mϕ differentiate into two phenotypes, the inflammatory M1

phenotype activated by the TLR ligands, interferon-gamma or
lipopolysaccharide (LPS) and the alternative anti-inflammatory
M2 phenotype (Mosser and Edwards, 2008). Colonization
by C. acnes would activate mononuclear Mϕ via surface
TLR2/4, recruit MyD88 signaling molecules and activate the
NF-κB inflammatory signaling pathway to release inflammatory
factors, IL-6, IL-8, IL-1β, and TNF-α (Cong et al., 2019). The Trp
metabolite receptor, AhR, influences Mϕ polarization and the
regulation of immune function. LPS-induced endotoxic shock
is more profound in AhR-null mice, compared to WT, and
Mϕ from these mice produce higher levels of proinflammatory
cytokines (Kimura et al., 2009). Deletion or inhibition of
AhR in Mϕ co-cultured with apoptotic cells shifts the IL-10-
dominated anti-inflammatory response to a pro-inflammatory
state with increased IL-6, IL-12p40, and TNF-α. The end
Trp metabolite, indole-3-acetate, reduced LPS- and fatty-
acid-stimulated production of pro-inflammatory cytokines in
macrophages and inhibited cell migration toward chemokines
(Krishnan et al., 2018). Moreover, it is reported that the IAId-
stimulation of LPS-activated primary human Mϕ decreased IL-6
signaling (Walter et al., 2021). Tryptamine and KYNA also
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bind GPCRs and influence Mϕ polarization to mediate the
inflammatory process (Vieira et al., 2016; Husted et al., 2017).

Innate lymphoid cells
ILCs mediate innate and adaptive immunity and

participate in the pathogenesis of various autoimmune
diseases (Gwela et al., 2017; Withers and Hepworth, 2017;
Sonnenberg and Hepworth, 2019; Satoh-Takayama et al., 2020).
Tissue-resident ILCs maintain mucosal tissue homeostasis
when internal physiological responses are disrupted. The
Western-style high-calorie diet may induce transcriptional
and epigenetic reprogramming of monocytes and enhance
myeloid progenitor cell proliferation (Christ et al., 2018).
Unsurprisingly, the AhR is also involved in the secretion of
IL-22 by ILCs (Martin et al., 2009; Veldhoen et al., 2009;
Cibrian et al., 2016). Activation of AhR by IAId induces IL-10
production by Langerhans cells (LCs) and RANK and RANKL
expression by LCs and keratinocytes, respectively, leading to
NF-kB signaling and IL-10 production.

Moreover, LCs activated by IAId inhibit CD4+ T cell
proliferation and induce IL-10 secretion (Liu X. et al., 2020).
Although distinct differences in innate lymphoid cell expression
in skin lesions of acne patients compared with healthy controls
have not been confirmed, secretion of anti-inflammatory IL-
10 by peripheral blood mononuclear cells is reduced in acne
patients and adding exogenous IL-10 to peripheral blood
mononuclear cell cultures from acne patients restores its
phagocytic activity. These observations suggest that IL-10
modulates pro-inflammatory cytokines and may have utility in
treating acne vulgaris (Caillon et al., 2010).

Microbial tryptophan metabolites may
suppress acne vulgaris inflammation by
regulating adaptive immune responses

Adaptive immunity is also considered to influence the
pathogenesis of acne vulgaris. CD4 + T cells have two main
subtypes: pro-inflammatory type IL-17 generating cells and
anti-inflammatory FOXP3 + Treg cells (Elias et al., 2008). T
lymphocytes have been demonstrated to appear first in early
acne lesions (Norris and Cunliffe, 1988; Jeremy et al., 2003) and
IL-17-producing cells with increased IL-17A tissue expression
have also been found in lesions (Agak et al., 2014; Kistowska
et al., 2014). Activation of mast cells to produce IL-17 in
CD4 + T cell rich areas has been suggested, even in the
subclinical stages of acne (Eliasse et al., 2021), and scattered
distribution of IL-17A positive cells was observed in both the
papillary dermis and around sebaceous follicles in acne lesions
(Kelhälä et al., 2014).

AhR regulates the balance among various T cell
populations, proinflammatory or autoimmune Th17 cells,
immunosuppressive or tolerogenic Treg and T regulatory type

1 (Tr1) cells, and is affected by the cellular microenvironment
and specific ligands. Activation of AhR by tetrachlorodibenzo-
p-dioxin promoted FoxP3 gene transactivation in vitro and
expanded the CD4 + CD25 + FoxP3 + Treg-cell compartment
in vivo. AhR activation has been reported to increase Tregs to
reduce inflammation and ameliorate disease (Quintana et al.,
2008; Quintana et al., 2010; Singh et al., 2016; Abron et al., 2018;
Al-Ghezi et al., 2019; Alrafas et al., 2019). Epigenetic changes
in the FoxP3 locus and expression of additional transcription
factors required to induce functional FoxP3 + Treg cells are
the result (Gandhi et al., 2010; Singh et al., 2011). AhR activity
is synergistic with that of c-Maf and transactivated IL-10 and
IL-21 in Tr1 cells (Gandhi et al., 2010; Mascanfroni et al., 2015)
and facilitated RORγt-mediated IL-22 transcription in Th17
cells (Veldhoen et al., 2008; Veldhoen et al., 2009). Additionally,
GPCR61 was expressed at higher levels in the Th17 cell subset
compared to resting CD4+ cells which may indicate a potential
role for this receptor in autoimmune diseases (Kozielewicz
et al., 2017). Tregs homing reactions mediated by GPCR -ligand
interactions may also aid the maintenance of intestinal immune
homeostasis (Song et al., 2022).

The above may indicate regulation of the skin’s innate
and adaptive immune systems by bacterial Trp metabolites.
Microbial Trp metabolites may enter the peripheral circulation
through the intestinal mucosa in the area of acne lesions,
activate the AhR and GPCR-induced signaling, attenuating Mϕ

polarization, activation of ILCs and secretion of inflammatory
factors by Treg cells. This sequence of events would alleviate
the acne-induced inflammation. Deficiency of intestinal
probiotics in acne vulgaris patients would lead to decreased
Trp metabolites, such as IAId, IAA, and ILA, and weakened
activation of AhR and GPCR on the Mϕ surface. The Mϕ would
then be prone to polarization into the M1 phenotype with
promotion of the local inflammatory response. Compensatory
intestinal probiotics or microbial Trp metabolites would
maintain AhR activation and the anti-inflammatory
microenvironment of M2 phenotype-Mϕ. Alternatively,
Trp metabolites may induce ILCs, through AhR and GPCR
activation, to produce a protective anti-inflammatory cytokine,
IL-10, and regulate the inflammatory environment. Direct
relationships between probiotics/Trp metabolites and acne
vulgaris require further investigation. Little has been reported
regarding the role of microbial Trp metabolites and GPCR-
mediated immune inflammation, an area which is worthy of
further scrutiny.

Microbial tryptophan metabolites may
inhibit sebum synthesis and promote
the resolution of acne vulgaris

The PI3K/Akt/FoxO1/mTORC1 axis of the Mammalian
Target of Rapamycin (mTOR) C1 pathway, induced by IGF-1, is
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known to be an essential signaling pathway for the pathogenesis
of acne (Melnik, 2018; Cong et al., 2019). Both improvements
in skin lesions and decreased insulin levels are associated with
a low-glycemic diet (Smith et al., 2007). By contrast, a high-
glycemic diet and excessive dairy product intake may activate
insulin/IGF-1 signaling, stimulating mTORC1 and enhancing
keratinocyte proliferation, and hormone production, leading
to acne vulgaris (Emiroglu et al., 2015). Extensive research
has suggested an impact of long-term dietary tendency on
alterations in GM, predisposing individuals to insulin resistance
and higher serum insulin (Del Prete et al., 2012; Clark et al.,
2017). For instance, GM-induced imidazole propionate in
type 2 diabetes may impair insulin signaling via p38γMAPK
activation, promoting p62 phosphorylation and mTORC1
activation (Koh et al., 2018). Therefore, acne occurrence is not
limited to hair follicles and sebaceous glands: GM imbalance
also has an impact.

In addition, activation of the AhR signaling pathway appears
to inhibit human sebocytes, reducing sebum production (Hu
et al., 2016). An in vitro study on the sebocyte AhR showed that
its stimulation resulted in attenuated expression of lipogenic
genes via enhanced SREBP1 proteolysis (Muku et al., 2019).
Cross-talk between AhR and TLR-2 was probably responsible
for this (Hou et al., 2019). The AhR agonist, peptidoglycan,
stimulates TLR-2 on cultured human sebocytes to induce TNF-
α and IL-8 secretion, an effect which was inhibited after AhR
knockdown and pre-treatment with an AhR antagonist (Hou
et al., 2019). Moreover, C. acnes–Mϕ interactions may depend
on sebum composition with pathological and therapeutic
relevance for acne (Lovaszi et al., 2017). Overall, these findings
indicate roles of microbial Trp metabolites as AhR ligands which
affect lipid synthesis and immune cell differentiation, raising
the possibility of therapeutic uses for acne vulgaris treatment.
Further confirmatory studies need to be conducted.

Microbial tryptophan metabolites
could stabilize the intestinal
mucosa, reduce intestinal leakage,
and promote acne regression

The intestinal barrier is the first line of defense against
hazardous pathogens and dysfunction results in enhanced
permeability and translocation of microbial entities, such as
LPS, to the systemic circulation, leading to inflammation (Cani
et al., 2008). Stokes and Pillsbury discovered a link between the
microbiome and skin inflammation as early as the 1930s (Stokes
and Pillsbury, 1930). They found hypochlorhydria in a majority
of acne patients, a lack of acid which promoted the migration of
bacteria from the colon to the small intestine, disrupting GM
structure. More recently, hypochlorhydria was identified as a
significant risk factor for small intestinal bacterial overgrowth,

enhancing intestinal permeability and systemic inflammation
(Lombardo et al., 2010; Reddymasu et al., 2010). Thus, altered
GM of acne patients may disrupt the intestinal barrier, leading
to the entry of endotoxin into the peripheral blood circulation
and further pathological changes.

LPS, an abundant gut endotoxin, contributes to impaired
intestinal epithelial barrier and immune function (Nicholson
et al., 2012). It binds TLR-4 to stimulate an extreme
inflammatory reaction (Candelli et al., 2021). We have
previously found increased Bacteroidetes and Escherichia coli
and markedly over-expressed LPS biosynthesis pathways in
the GM of acne patients (Deng et al., 2018). Bacteroidetes
and Escherichia coli are thought to be the main contributors
to LPS biosynthesis (Juhlin and Michaelsson, 1983; Hevia
et al., 2014; Deng et al., 2018). Altered GM may contribute
to the phenomenon of a “leaky gut.” LPS is a pro-
inflammatory molecule produced by gram-negative bacteria
which may promote increased intestinal permeability and
decreased expression of intestinal tight junction proteins. LPS-
binding protein-4 activates TLR-4, allowing LPS to transit
from the intestinal lumen into the bloodstream and bind the
serum LPS receptor, CD14 (Guo et al., 2013; Guo et al.,
2015; Park et al., 2016). Thus, LPS from a “leaky gut” may
enter the blood and mimic the TLR activation by C. acnes
and other bacteria, exacerbating inflammation and promoting
cytokine cascades.

Trp metabolites may also be beneficial for intestinal barrier
stability. Previous studies have shown that the feces of obese
and untreated type II diabetic subjects contain more kynurenic
acid, an end product of Trp metabolism (Laurans et al.,
2018). A similar pattern has been reported for intestinal
inflammatory diseases (Lamas et al., 2016), suggesting a
common mechanism of a disrupted intestinal barrier. Reduced
AhR activation has been observed in the GM of individuals
with metabolic syndrome and intestinal inflammatory disease
(Lamas et al., 2016; Natividad et al., 2018). However, indoles
can reinforce intestinal epithelial barrier function by increasing
the expression of genes involved in preserving epithelial cell
structure and function in vivo and in vitro (Bansal et al., 2010;
Shimada et al., 2013). IA may promote intestinal goblet cell
differentiation and mucus production through AhR activation,
thereby regulating intestinal epithelial barrier function and
alleviating inflammatory responses in mice (Wlodarska et al.,
2017). In addition, bacterial metabolites of Trp which are PXR
ligands, such as IPA, Indole and IA, modulated intestinal barrier
function in mice (Venkatesh et al., 2014; Illes et al., 2020). PXR
has been reported to be activated by Trp metabolites, such as
IPA and indole, strengthening intestinal barrier function (Niu
et al., 2022), alleviating colonic inflammation (Huhn et al., 2020)
and protecting against LPS-induced muscle inflammation (Du
et al., 2021). Homing reactions of Tregs, mediated by GPCR -
ligand interactions, have been thought to play a central role in
maintaining intestinal immune homeostasis (Song et al., 2022).
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Thus, GM-induced Trp metabolites bind AhR and PXR
to modulate GM composition, activate the immune system
and repair the intestinal epithelial barrier, thereby exerting
anti-inflammatory, antioxidative or toxic effects in the systemic
circulation (Roager and Licht, 2018).

Decreased abundance of beneficial taxa in the gut of
acne vulgaris patients may lead to adverse changes in
Trp metabolites, reducing intestinal barrier stability and
resulting in LPS entering the systemic circulation, followed
by skin inflammation. Supplementation with Trp metabolites
may be prophylactic for acne morbidity by protecting
the gut epithelial barrier. However, mechanisms of Trp
metabolism by the intestinal microbiome and its effect on
acne pathogenesis remain unclear. More research is needed
to provide tangible connections between Trp catabolites
and acne vulgaris.

Discussion

The current elucidation of interactions between the gut
microbiome and host may contribute to a better understanding
of acne vulgaris and inform further investigation. Changes
in the GM, whether in diversity or abundance of specific
bacteria, indeed play a vital role in the pathogenesis of
acne vulgaris. Decreased probiotics in the intestinal tract
of acne vulgaris patients, reduce microbial Trp metabolites
which would otherwise alleviate both innate and adaptive
immune inflammation, downregulating insulin and IGF-
1/mTORC1 signaling, promoting the AhR inhibition of
sebum production and enhancing intestinal mucosa stability.
Supplementation with probiotics may restore Trp metabolism,
ameliorating acne vulgaris through an impact on immunity
and inflammation. However, causal relationships between GM
and acne vulgaris remain to be established, along with the role
of GM-associated Trp metabolism and underlying molecular
mechanisms. Only preliminary discussions on correlations
between GM metabolism and acne pathogenesis have been
reported to date. Experiments involving rat models of acne, fecal
transplantation and intestinal organoids are all planned in order
to investigate causal relationships between GM metabolites
and acne vulgaris. We hope that these findings will provide
new insights into the pathogenesis and therapeutic direction
of acne vulgaris.
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