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Abstract: In this study, we monitor pavement and land subsidence in Tabriz city in NW Iran
using X-band synthetic aperture radar (SAR) sensor of Cosmo-SkyMed (CSK) satellites (2017–2018).
Fifteen CSK images with a revisit interval of ~30 days have been used. Because of traffic jams,
usually cars on streets do not allow pure backscattering measurements of pavements. Thus, the major
paved areas (e.g., streets, etc.) of the city are extracted from a minimum-based stacking model of high
resolution (HR) SAR images. The technique can be used profitably to reduce the negative impacts
of the presence of traffic jams and estimate the possible quality of pavement in the HR SAR images
in which the results can be compared by in-situ road roughness measurements. In addition, a time
series small baseline subset (SBAS) interferometric SAR (InSAR) analysis is applied for the acquired
HR CSK images. The SBAS InSAR results show land subsidence in some parts of the city. The mean
rate of line-of-sight (LOS) subsidence is 20 mm/year in district two of the city, which was confirmed
by field surveying and mean vertical velocity of Sentinel-1 dataset. The SBAS InSAR results also
show that 1.4 km2 of buildings and 65 km of pavement are at an immediate risk of land subsidence.
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1. Introduction

Land subsidence is a gradual downward movement of the ground due, e.g., to the withdrawal
of a large amount of water from underground layers [1–3] or mining activities [4]. When the
underground space becomes empty, the surficial ground falls in on itself. The trend for ground
subsidence is not usually sudden; it takes several years to be visible. The land subsidence starts
slowly and spreads to adjacent areas, where it could affect agricultural, industrial, and urban activities.
Land subsidence has been recognized as a serious environmental problem [5–7]. There are some
strategies to monitor or control land subsidence, but if it progresses without the required supervision,
the land could lose its functionality in the future. For example, sinkholes appear in agricultural land
when the underground space becomes too large and causes a sudden collapse. Reviving such land for
agricultural activities would be difficult after the failure point. Land subsidence takes place not only
in agricultural land but also in urban areas. In urban areas, the land subsidence phenomenon is as
complex as in nonurban areas—a mixture of geotechnical, hydrogeological, and engineering aspects [8].
Land subsidence in urban areas could damage building foundations, collapse walls, and cause damage
to pavement and gas and water pipelines [9–11]. In recent decades, land subsidence monitoring has
increased in terms of both spatial and temporal distribution. One of the conventional methods of
land subsidence monitoring is precise leveling. Another conventional method is the station-based
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global positioning system (GPS) approach, in which each station can provide three-dimensional
displacements with an acceptable accuracy [12,13]. Although the GPS method can provide higher
accuracy of measurements, there is sparse coverage and the high cost of establishing stations is always
debatable [14]. Remote sensing technology provides more efficient and cheaper tools such as unmanned
aerial vehicles (UAV), airborne laser scanning, or airborne imagery [15,16]. These tools are efficient,
but making regular measurements over a certain area is still bothersome. Alternatively, satellite remote
sensing, especially synthetic aperture radar (SAR) remote sensing, which has developed in the last two
decades, gathers information from the Earth regularly. For example every six days for the Sentinel-1
constellation (S1A and B), or every four days for the Cosmo-SkyMed constellation if all four of the
constellation’s satellites are operational. SAR remote sensing techniques such as differential SAR
interferometry (DInSAR) or small baseline subset (SBAS) can be effective for the analysis of land
subsidence over large areas. In urban areas, SAR remote sensing techniques are popular and the
number of studies that are trying to find correlations between engineering plans and remote sensing
techniques has increased. Recent SAR remote sensing studies show that the monitoring of major
urban elements such as railroads, bridges, and buildings is possible [17–19]. Two components of
SAR images are the amplitude and the phase. Both components are used successfully to measure
deformations such as earthquake damage, volcanic activity, land subsidence, and landslides [20–34].
However, for long-term deformations (e.g., land subsidence), interferometric methods (i.e., phase-based)
are favorable. Here amplitude and phase information will be used profitably for pavement and
land subsidence, respectively. Amplitude information will be used to extract buildings and roads,
which stand out against a low backscattering coefficient in urban areas. We introduce a fresh idea to
deal with traffic jams in urban areas using a stack of amplitude images. The phase information will also
be used in SAR interferometry (InSAR) to extract vertical land displacement. If ground truth data are
not available, high resolution (HR) SAR images over urban areas are necessary to extract displacement
and urban elements (e.g., buildings and roads). The SAR images contain useful information for several
purposes. In the next section, we present the land subsidence problem in Iran, a semi-arid to arid
country, explain the geological characteristics of the study area, and discuss the HR SAR images
acquired from the Cosmo-SkyMed (CSK) constellation.

2. Study Area and Dataset

2.1. Study Area

Iran is a semi-arid to arid country with two major deserts, the Kavir and Lout. According to
previous studies, precipitation in the country is lower than average. Thus, the land subsidence problem
in Iran’s strategic plains (e.g., Varamin, Mashahd, Tabriz, etc.) is related to the overexploitation of
underground water [30–32,35]. Due to industrialization and the high demand for water by different
sectors, water shortage in major basins of the country is becoming a major challenge for the government.
Only in the capital, Tehran, and its surrounding land, has the number of water wells increased roughly
eightfold between 1986 and 2012. These are legally excavated wells, but considering other illegal wells,
the number of dams constructed, and other effective parameters of urbanizations. The roadmap of
development of the country was built on rapid industrial and agricultural production, with no plan B
for the possible water-shortage era [31,36].

Tabriz is an industrial Iranian city located in northwestern Iran. It is the sixth most populous city of
Iran, with a high demand for water for agricultural, residential, and industrial purposes. Figure 1 shows
the location of the study area and its geological descriptions. The city currently has 10 municipal
districts (the red shapes in Figure 1) with urban and nonurban areas. All of the municipal districts
belong to four geological classes. Districts 2, 3, 8 and 9 belong completely to the Cenozoic volcanic class,
while districts 1, 5, 7 belong to Cenozoic volcanic, Quaternary marsh and Neogene classes. Districts 4
and 10 are part of both the Cenozoic volcanic and Quaternary marsh classes. District 6 is situated
in the Quaternary and Quaternary marsh, Cenozoic volcanic and Neogene classes. The total area of
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Tabriz municipality is approximately 782 km2, of which the largest (district 6) and smallest (district 8)
districts are approximately 280 km2 and 4 km2, respectively. The largest and smallest geological classes
inside the municipal boundaries are the Cenozoic volcanic (~363 km2), and Neogene (~61 km2) classes,
respectively. The North Tabriz fault, a major tectonic feature (~150 km) in NW Iran, stretches in the
NW-SE direction, passing through districts 1, 5, and 6. Instrumental records near the fault suggest that
the fault is seismically active and mature with right-lateral strike-slip motions [37]. The North Tabriz
fault’s slip rate is estimated from trenching, GPS, and InSAR methods, suggesting that the slip rate is
ranging between 2 and 10 mm/year [35,38,39].
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ASAR images revealed that, between 2003 and 2010, rapid subsidence with a maximum rate of 20 
mm/year occurred near the Tabriz thermal power plant in the Tabriz plain [30]. In the Tabriz plain, 
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black asterisks in Figure 1 show the location of several piezometric sites where the Regional Water 
Organization (RWO) regularly controls water level fluctuations in the Tabriz plain and surrounding 
areas. Piezometric measurements are an integrated measurement of the water level over time. The 
measurements could be positive or negative, depending on the reference benchmark’s water level 
situation. If the measurements are positive, it means that they are below the reference level (in most 
cases) and negative if the opposite situation occurs (artesian wells). There are hundreds of 
piezometric stations in the Tabriz plain, but here we only show those stations located inside the city 
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dataset (between 2003 and 2006) and Sentinel-1 (between May and October 2015) dataset was24 

Figure 1. The study area with geological classes (provided by Geological Survey of Iran) on shaded
relief global 30 arc second elevation data (GTOPO30). The red shapes show the 10 municipal districts
of Tabriz; the black polygon is the synthetic aperture radar (SAR) footprint from the Cosmo-SkyMed
(CSK) mission. Black asterisks and black lines are the piezometric sites and faults, respectively.
Piezometric measurements of the W1, W2 and W3 sites are available. Must be noted that the W1 and
W2 are too close to each other.

There are several studies related to InSAR land subsidence in Iran [30–32,35], but few of them have
focused on urban areas in NW Iran [30,40]. An InSAR SBAS time series analysis of 17 Envisat ASAR
images revealed that, between 2003 and 2010, rapid subsidence with a maximum rate of 20 mm/year
occurred near the Tabriz thermal power plant in the Tabriz plain [30]. In the Tabriz plain, the progressive
land subsidence could be harmful for structures and infrastructure such as roads. The black asterisks in
Figure 1 show the location of several piezometric sites where the Regional Water Organization (RWO)
regularly controls water level fluctuations in the Tabriz plain and surrounding areas. Piezometric
measurements are an integrated measurement of the water level over time. The measurements
could be positive or negative, depending on the reference benchmark’s water level situation. If the
measurements are positive, it means that they are below the reference level (in most cases) and negative
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if the opposite situation occurs (artesian wells). There are hundreds of piezometric stations in the Tabriz
plain, but here we only show those stations located inside the city boundaries. Using the same InSAR
method, the maximum rate of subsidence for the Envisat ASAR dataset (between 2003 and 2006) and
Sentinel-1 (between May and October 2015) dataset was 24 cm/year and 39 cm/year, respectively, in the
Marand plain, 40 km from Tabriz [40]. Despite the successful application of the Envisat and Sentinel-1
datasets for land subsidence monitoring of the large-scale subsidence in major basins, HR SAR data
on the urban scale have not been yet applied to the region. The main objective of this study is to
examine the potential of HR SAR data in urban areas, not only for deformation monitoring, but also for
gathering auxiliary information on the buildings and pavement by HR SAR data. Accordingly, in the
next subsection and section, the CSK data description, traffic noise, pavement quality, SBAS method
and extraction of vertical motion will be explained.

2.2. Dataset Description

For this study, SAR images were obtained from the CSK mission. The CSK constellation consists
of four satellites, designed by the Italian space agency (ASI). This was a collaborative project between
the Italian Ministry of Research (MUR) and the Italian Ministry of Defense. The satellites of the
system are midsize sun-synchronous satellites with multimode high-resolution SAR sensors. All the
CSK satellites use X-band, which is a segment of the microwave radio region of the electromagnetic
spectrum (wavelength: ~3.1 cm). The revisit interval of the mission is considerably shorter than for
former missions in Europe due to its constellation nature. The revisit interval of each CSK satellite
is 16 days. If all the CSK satellites are in action, the revisit interval could be reduced to four days.
The satellites were launched between 2007 and 2010. For the first 10 years of operation, more than
1 million SAR images were collected all over the world [41,42]. Although the perspective and the
revisit interval of the constellation are ideal for monitoring natural hazards such as earthquakes,
fires, and land subsidence, the spatial coverage is highly concentrated on the European territory.
Some characteristics the SAR images of the CSK constellation are as follows: 1—very high-resolution
(VHR) spotlight images (<3 m) for special use on monitoring of small features or individual objects
(e.g., structures), 2—high-resolution Stripmap images in HIAMGE and PINGPONG modes (3–10 m) for
midsize objects and routine purposes such as interferometric analysis, 3—medium- and low-resolution
images (30–100 m), focusing on large-scale features [41,42]. Here, we acquired 15 HR CSK images
(eight images from satellite 1, three images from satellite 2, and four images from satellite 4) in Stripmap
HIMAGE mode, all from descending orbits. We had only quota for 15 HR CSK images according
to the agreement between the ASI and the European Space Agency (ESA) which is a small dataset
for SBAS analysis, but according Crosetto et al., typically 15–20 images are enough for time series
analysis; it is even possible to use short dataset for X-band data because of higher resolution and shorter
wavelengths [43]. Since the study area is arid and semi-arid, the temporal decorrelation is not a major
issue in this case. The footprint dimensions of HR CSK images, as shown in Figure 1, are 40 km × 45 km,
all in SCS (standard single-look complex slant) format. The SCS format’s specialties and its zero-Doppler
projects make the format suitable for urban-scale applications such as change detection and deformation
monitoring. The standard single-look complex images in the next section will be converted to multilook
images to reduce the level of speckle noise. In Table 1, detailed information on the images is given.
The incidence angle of the images at the center of the swath is 29◦with a tolerance≤0.9◦. The acquisition
time of the swath is approximately 7 s. Although HH polarization images are useful for monitoring
urban features, the sensing time of the images is not ideal as traffic jams usually form during the
evening in the city. In the next section, we explain how dense urban areas could reduce the quality of
SAR images in terms of road monitoring.
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Table 1. Detailed information on the CSK high resolution (HR) SAR images used in this study. “*” and
“D” indicate super master image and descending orbits, respectively.

Label (#) Date
(YYYY/MM/DD) Satellite ID Incidence

Angle (◦) Product ID Polarization Orbit Time
(Local)

0 2018/05/04 1 29 1075358 HH D 18:20
1 2018/06/01 4 29 1075417 HH D 18:20
2 2018/07/23 1 29 1075413 HH D 18:20
3 2018/08/20 4 29 1075480 HH D 18:20
4 2018/09/09 1 29 1075407 HH D 18:20
5 2018/10/03 2 29 1075421 HH D 18:20

6 * 2018/10/27 1 29 1075466 HH D 18:20
7 2018/11/12 1 29 1075419 HH D 18:20
8 2018/12/06 2 29 1075464 HH D 18:20
9 2018/12/30 1 29 1075414 HH D 18:20
10 2019/01/23 2 29 1075469 HH D 18:20
11 2019/02/12 4 29 1075472 HH D 18:20
12 2019/03/04 1 29 1075420 HH D 18:20
13 2019/04/01 4 29 1075482 HH D 18:20
14 2019/04/21 1 29 1075415 HH D 18:20

3. Methodology

3.1. Pavement Monitoring

Image classification of high-resolution SAR data is useful to segregate interesting features.
Buildings, ponds, and pavement are examples of common features in urban areas. The backscattering
behavior of the features is different, but sometimes different features cannot be distinguished for
several reasons. One reason is the shortcomings of the SAR systems: as they are side-looking systems,
we might lose some features that are not in the illumination direction (e.g., shadows). Usually the
backscattering of the buildings is strong, signal penetration into the buildings is not too high (unlike
vegetation), and “double bounce” backscattering from the buildings is expected. In the case of natural
events, the behavior of the buildings could also change. For example, if the buildings are not close
to each other, a collapsed building’s backscattering coefficient will be reduced, but if the buildings
are close to each other, the lowered backscattering of the collapsed building will be reflected from the
side wall of the intact neighboring building [21]. The story is different for floods. The backscattering
coefficient might increase in all SAR bands over vegetated areas, as volumetric backscattering behavior
is affected by flooding. The results are heterogeneous for different case studies, so the developed
methods must first be adapted to the local parameters [44]. Here, we aim to bear in mind the real
backscattering behavior of buildings and pavement. The backscattering behavior of the buildings is
rather strong in a dense city such Tabriz. Thus, the bright pixels in SAR images are representative of the
buildings, or they are areas to be affected by the layover distortion. The layover problem occurs when
a sharp feature such as a mountain interrupts the SAR illumination, especially when the foreslope (α)
of a feature is larger than the incidence angle of the image (θ). We assume that the built-up area in
Tabriz does not have a sudden slope. This assumption might help us to classify the buildings more
easily. Since the main objective of this study is to extract the land subsidence rate of buildings and
pavement, the SAR backscattering behavior of the pavement must also be characterized correctly.
Usually, the quality of the pavement is related to the backscattering coefficient. If the pavement’s
roughness is low, the pavement acts like a mirror and the transmitted energy from the sensor will be
fully reflected in the opposite direction; like the behavior of water bodies, the backscattering coefficient
will also be low. Thus, the road quality and moisture level are dependent on the backscattering
coefficient. Thus, the backscattering is not solely representative of the pavement, but also of the
double-bounce behavior of different vehicles on the pavement. Figure 2 shows two examples of SAR
acquisition for pavement. In occasion 1 we see noisy backscattering of the pavement in the presence of
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a traffic jam and in occasion 2 we face real backscattering in the absence of a traffic jam. The acquisition
time in Table 1 shows that the images over Tabriz were gathered during peak traffic.Sensors 2020, 20, x FOR PEER REVIEW 6 of 21 
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presence of a traffic jam (upper) and in the absence of a traffic jam (lower).

The image, taken on 4 May 2018, shows the buildings in brighter pixels, while the pavement
is rarely visible (Figure 3a). The other sample images also show that the level of backscattering in
the pavement is unexpectedly high. This implies that the temporal changes are not the main reason.
On the other hand, the airport runway in the upper-left part of the city shows a considerably lower
backscattering coefficient. The minimum and maximum backscattering coefficients for all 15 images are
−35 dB and +90 dB, respectively. For the airport runway, the minimum and maximum backscattering
coefficients of the images vary between +13 and +37 dB. The minimum and maximum values for the
airport runway are recorded in images #5 and #3, respectively. Despite the low backscattering values
of the runway, the behavior of the pavement is not similar, probably because of noisy backscattering
due to the presence of more vehicles on the street.

We provided an image stacking solution in which all images over time are stacked. Image stacking
is a way to combine several images to produce a single image for a certain purpose. The extent of the
images (i.e., number of columns and rows) must be the same and all of the images that contributed
to the stacking must be oriented or georeferenced with respect to a reference image or datum. If the
images are not of the same resolution, a resampling process must be carried out before the image
stacking. Considering all the obtained images, we have 15 different traffic occasions. Here, the idea
behind the noise removal process is that the minimum backscattering coefficient of the images is more
likely to result from the interaction of the transmitted signal and the pavement’s surface. Before the
minimum-based stack method, we applied non-local means and Lee filters as two Speckle suppression
approaches [45,46]. Figure 3b shows the denoised pavement overlaid on the mean image using image
stacking. Comparing Figure 3a with Figure 3b shows that the selection of the lowest pixel value is
helpful to visualize and classify the pavement. Figure 3c also shows that the standard deviation of the
stacked images differs from 0 to 35 dB; most of the tolerance can be seen in the streets, layover-related
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distortions of sharp topographic feature, and shadows. Figure 4a is a pavement map of the study
area created from the lowest backscattering coefficients for each representative pixel. Two main
highways in the north and south of the city (Pasdaran and Shahid Kasaei) have rather low pixel
values, so their asphalt quality could be higher. Since Pasdaran and Shahid Kasaei highways are wider
international roads (~20 m), it is logical that they have higher quality. However, a low pixel value does
not exclusively reflect the quality of the pavement. Probably, the remaining traffic noise in the city
center and surrounding areas would have a negative impact on the pavement map. Thus, in Figure 4a,
the hot pixel values probably represent a higher quality of pavement, lighter traffic, absence of tall
buildings or all of these items. In contrast, the cold pixel values probably represent a lower quality of
pavement, heavier traffic, presence of tall buildings or all of these items. In addition, we have carried
out proximity analysis based on the extracted roads from the minimum-based stacking method and the
primary and trunk roads of the OpenStreetMap (OSM) in GIS environment (Figure A1). The proximity
analysis calculates Euclidean distance and proximity information between the extracted road map
(input feature) and the OSM (reference feature). In order to extract a proximity map, we assign a
search radius not larger than 15 m, which means that if the reference object is closer than 15 m, it will
be reflected in the proximity map. Green lines in Figure 4b show that the main streets and road are
recognized well and the standard deviation of the verified roads is 1.9 m. Must be noted that the red
lines do not exist in the extracted map or they are not recognized well because their distances from the
reference data were larger than 15 m.
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Figure 3. (a) Example of single look complex (SLC) SAR images over Tabriz (described in Table 1).
Tabriz international airport’s runway in the upper left corner of the images is visible in dark pixels.
As shown in the red square, the streets are not as dark as the runway, which means that either the
pavement quality is lower than the runway or the number of vehicles on the streets is higher than the
number of vehicles (e.g., plane) on the runway; (b) a minimum backscattering map of the pavement
extracted from the stack of 15 images; (c) a standard deviation map of the study area from the stack
of 15 images.
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We compare international roughness index (IRI) for the study area and descending SAR data.
The IRI is one of the roughness indices that commonly has been used for description of the road
quality by means of longitudinal profile of the roads. Figure 5a shows different road types and road
qualities with respect to a specified IRI value range [47]. There are roughly three ways to measure
IRI of the roads as follows: 1—IRI from precise one-wheel vehicles. In this technique a one-wheel
vehicle that has not a suspension system like usual cars should be used to measure longitudinal profile.
The sampling distance on the road should be no greater than 250 mm [48], 2—IRI from quarter car
(QC) method. In this technique all types of usual vehicles or cars with four wheels can be used with
a mobile application on the basis of the direct computations of the IRI after removal of effects of car
suspension system. It must be noted that the accuracy of this method is acceptable for large scale
projects, but its accuracy is not good enough for detailed projects. Typically the accelerometer sensors
and a GPS device of a smart phone would be enough to measure inertial profile and distance, 3—IRI
from indirect methods on the basis of correlation. In this technique the IRI can be computed from
enough field data acquired from the method 1 or 2, and its correlation with other parameters.Sensors 2020, 20, x FOR PEER REVIEW 8 of 21 
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Figure 4. (a) Pavement map created by stacking the backscattering coefficient values. The red box
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Here, the precise IRI for the study area is not available. Thus, we measured the IRI in Kasaei
highway using QC method and BumpRecorder application (Figure 5b,c). To avoid data redundancy,
the IRI values are presented every 160 m. In order to do a fair comparison, we compare the IRI results
with the last SAR (2019.04.21) image to keep the shortest temporal baseline between the IRI and the
SAR backscattering coefficient. Must be noted that the IRI measurements with an average speed of
30 km/h and 100 Hz frequency were gathered on April 2020 and the SAR image values are adjusted by
applying a mean 3 × 3 window size. Figure 5c shows the measured IRI and the scatter plot of the IRI
values together with SAR backscattering coefficient values (2019.04.21). Intuitively, the correlation
between IRI and backscattering coefficient is not surprising since the time difference between IRI and
SAR data is about one year. Nevertheless, a very slight correlation can be observed between IRI and
SAR backscattering coefficient values. As the IRI increases (road quality decreases), the backscattering
coefficient increases. However, in order to achieve accurate results in the dense areas, the integration
of ascending and descending SAR datasets can reduce negative impacts of the tall buildings near to
the roads [21]. A previous study also showed that probably the relationship between these items is not
linear exclusively and more sophisticated correlation analyses (e.g., exponential curve) show better
results [47].
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3.2. SBAS Time Series Analysis

Several time series approaches have been introduced for SAR data analysis [49–51]. Two main
techniques of interferometric time series analyses are a permanent scatterer (PS) InSAR and a small
baseline or SBAS InSAR [43,49]. Although SBAS is a technique, it can also be considered as an algorithm
for SAR processing too. Previous studies revealed that SBAS was an effective technique to monitor
land subsidence in Iran [30–35,52]. Here, we follow the SBAS InSAR method introduced by Berardino
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et al. to derive mean velocity displacement values. The analysis will be based on N + 1 images with
the same characteristics (e.g., orbit, track, mode) taken at specific times (t0, . . . ., tN). We assume that
all the images are co-registered with respect to a “super master image” and that at least one image
can contribute to the interferometric analysis. The super master image is an ideal master image that
can satisfy both the temporal and normal baselines’ limitations. For example, the super master image
should not be temporally far from the first or last images. Its relative spatial baseline to the other
images should also not be too large. Each SBAS interferogram has at least two images. Thus, if we
assume that N is an odd number, the number of differential interferograms (M) can be used to estimate
the low-pass signal component as follows:

N + 1
2
≤M ≤ N

(N + 1
2

)
(1)

The radar coordinates of each pixel in the range and azimuth directions (x, r) of the produced
unwrapped j-interferogram will contribute to the SAR images at times tB and tA as follows [50]:

ϕ j(x, r) = ϕ(tB, x, r) −ϕ(tA, x, r) ≈
4π
λ

[
dLP(tB, x, r) − dLP(tA, x, r)

]
+ ∆ϕatm

j (tB, tA, x, r) + ∆ϕtopo
j (x, r) (2)

where j is assumed to be an integer between 1 and M, ϕ(tB, x, r); ϕ(tA, x, r) are the associated
multi-look phase components of the two images for the produced interferograms; dLP(tB, x, r) and
dLP(tA, x, r) are the line-of-sight (LOS) deformations of the low-pass components accumulated from tA
to tB with respect to the reference time (t0); λ is the wavelength of the CSK satellite; ∆ϕatm

j (tB, tA, x, r)

is the atmospheric phase associated between two acquisitions; and ∆ϕtopo
j (x, r) is the topographic

phase, mainly because of errors in the digital elevation model (DEM) and the Earth’s features,
defined as follows:

∆ϕtopo
j (x, r) ≈

4π
λ

B⊥ j∆z(x, r)

rsinθ
(3)

where B⊥ j is the perpendicular baseline of the two images that contributed to the interferometric
analysis, θ is the incidence angle of the images (~29◦ for CSK), and ∆z(x, r) is a topographic artefact
that can be reduced by the DEM. Note that the instrumental noise, such as from the overheating
of the sensors, etc., is assumed to be zero. Thus, according to Equation (2), to achieve the pure
deformation rate, the ∆ϕatm

j (tB, tA, x, r) and ∆ϕtopo
j (x, r), components must be separated from the rest

of the equation.
We used 1 arc-second (~30 m) Shuttle Radar Topography Mission (SRTM) DEM and 40 ground

control points in motionless parts of the study area that pose high coherence values to reduce or remove
the topographic and atmospheric effects. Among all pairs, the pair of images 4 and 6 had the lowest
mean coherence (0.34) and the pair of images 7 and 8 had the highest mean coherence value (0.68).
We have defined spatial and temporal constraints for the potential SBAS pairs to finish the InSAR
processing in a timely manner and reduce the level of uncertainty. Here, the maximum temporal gap
for a potential SBAS analysis is set to be 60 days and the normal baseline can be enlarged up to 50%
of the critical baseline. Accordingly, we can maintain the integrity of the SBAS network without any
separate network, as shown in Figure 6, and also avoid generating excessive SBAS pairs, which can
increase the time of analysis. The minimum normal baseline belongs to the pair of images 7 and 8
(49 m) while the maximum normal baseline belongs to the pair of images 4 and 6 (1324 m).

3.3. InSAR Vertical Motion Estimation

First, we note that, since the images are gathered only from descending orbits, the SBAS map
provided would show one-dimensional displacement in the satellite-and-ground system. As explained
in the previous subsections, the LOS direction is representative of the whole displacement, which is
composed of three velocity vectors, DEW and DNS (horizontal vectors) and DV (a vertical vector).
The LOS displacement is a problematic component that cannot be compared with other geodetic
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observations such as leveling or GPS. Thus, for land subsidence characterization, it is reasonable to use
the vertical component instead of line-of-sight displacements. On the other hand, the SBAS InSAR
measurements are not very sensitive to north-south displacements because CSK satellites and other
SAR satellites are polar orbiting satellites. Figure 7 displays InSAR displacement components in the
vicinity of land subsidence.Sensors 2020, 20, x FOR PEER REVIEW 11 of 21 
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We ignore DNS vector (north–south movement) and convert the LOS movements or velocities to
estimate Dv as follows:

Dv =
DLOS + DEWsinθcosα

cosθ
(4)
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Here, DLOS is the LOS displacement, Dv is the vertical displacement, DEW is the east–west
displacement, α is the azimuthal angle of the LOS, and θ is the incidence angle of the satellite. We also
assume that other tectonic or nontectonic local east-west displacements are trivial. Thus, the numerator
of Equation (4) is DLOS. This assumption is reasonable because we can expect that hydrostatic loads
are mainly related to Dv. The relative vertical displacement is calculated with respect to a reference
area (motionless). The reference area is chosen based on the following criteria: its distance from the
land subsidence patterns or uplift areas; the relative coherence value of the produced interferograms,
in which high coherence can be an ideal factor for reference area; and its position far from ground
instabilities such as a landslide.

4. Results

4.1. InSAR Velocities

Figure 8 shows the SBAS InSAR mean velocity map of the study area from May 2018 to May 2019
using HR CSK data. Hot colors (positive values) and cold colors (negative values) indicate uplift and
subsidence, respectively. In the western part, Tabriz plain (shown as a dashed polygon) experienced
the maximum rate of subsidence (−117 mm/year). The observed deformation in the plain is probably
the continuation of a progressive land subsidence between 2003 and 2010. The reason for the
land subsidence was extensive water withdrawal for agricultural and industrial purposes [30,35,53].
It must be noted that in some parts of the plain (the dashed polygon), there are some uplifts
reaching +56 mm/year. However, the corresponding histogram shows that the uplift is not significant
(Figure 9a); the mean deformation rates and standard deviation on the plain were −40 mm/year and
−16 mm/year, respectively. For the urban area, the minimum and maximum rates were −154 mm/year
and +143 mm/year, respectively. Unlike the wide normal distribution of Tabriz plain, the normal
distribution of the urban areas was sharp. As shown in Figure 9b, the peak of the normal distribution
of the deformation values is close to zero (~+6 mm/year), which means that the city was almost stable
and did not experience a uniform land subsidence, as was happening in the plain. However, there are
some areas with subsidence (the blue rectangle in Figure 8). The subsidence area inside the city is
located in district two (see Figure 1). In addition, the city has developed rapidly towards the east,
where the probable uplift areas were observed. Since the GPS and leveling measurements are not
available for the study area, we gathered field evidence related to the impacts of the subsidence on
the buildings, and also analyzed 14 co-polarized (VV) descending (T79) images of Sentinel-1 from
23 May 2018 to 12 April 2019 using SBAS technique (Figure A2). The mean vertical velocity maps
deduced from the HR CSK and Sentinel-1 datasets present similar patterns for district two (Figure 10).
The correlation between the two maps is 0.77 and the HR CSK map resulted in higher mean velocities
than the Sentinel-1 map.

The piezometric level of some wells in the study area has been gathered by RWO for more than
one decade. Most of the piezometric records are from 2006 to 2018, which is not quite suitable for
comparison to the CSK dataset (2018–2019). In addition, the majority of wells are located in the
outskirts. Thus, only seven piezometric wells are selected, and only three of them are located inside the
city. It must be noted that, since some of the selected wells were destroyed or filled in, we only use sites
W1, W2 and W3 to compare their water level with the corresponding InSAR time series. As shown in
Figure 11, the behavior of the underground water fluctuation versus InSAR deformation differed in
W1, W2 and W3. Since W3 is located at the boundary of the city and the plain, the correlation between
the underground water level and the vertical displacement was higher than in W1 and W2. In W3,
the obvious underground water depletion led to land subsidence from 19 May 2018 to 13 March 2019
(Figure 11). In the W1 and W2 wells, the level of underground water fluctuations and the vertical
displacements did not show a significant correlation, possibly because W1 and W2 are located in an
urban region; they have a slight uplift, instead of a progressive land subsidence; and the underground
water level and vertical land displacement are not exclusive indicators of the aquifer’s behavior.
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Although underground water fluctuations in W1 do not have a significant correlation with the vertical
displacement, in W2, the uplift and underground water level has a good correlation between 15 August
and 14 December 2018.

Table 2. Detailed information on the pavement and buildings affected by subsidence for the areas in
blue rectangles in Figure 8.

Target Area Total Affected
Pavement (km)

Total Affected
Structure (km2)

Mean
Deformation

Rate
(mm/year)

Maximum
Deformation

Rate
(mm/year)

Minimum
Deformation

Rate
(mm/year)

Subsidence
Area (Blue) 65 1.4 −20 −150 +10
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The study area is dominated by the Neogene, Cenozoic volcanic, and Quaternary classes. Here,
the areas of land subsidence are in the Quaternary and Quaternary marsh classes. We examined the
abundance of SBAS pixels and the corresponding mean velocity rate. The numbers of pixels in the
Neogene, Quaternary, Quaternary marsh, and Cenozoic volcanic are 4220, 8498, 48,778, and 145,851,
respectively. As shown in Figure 12a, the Quaternary class shows the highest land subsidence rate
(−188 mm/year), and the corresponding standard deviation is 15 mm/year. This implies that the
Quaternary class generally consists of fine-grained alluvial plane, so the most land subsidence is
expected from this class. Since the subsidence is more commonly related to subsurface geology,
further tests such as cone penetration testing (CPT) are necessary to identify the types of subsurface
soil [54,55]. Figure 12b shows that the levels of coherence in all four dominant classes are close to
each other. The coherence values for the Neogene, Quaternary, Quaternary marsh, and Cenozoic
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volcanic are 0.20, 0.19, 0.21 and 0.20, respectively. The standard deviation of the coherence values for
the geological classes is almost the same (0.07).
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4.2. Pavement, Buildings and Field Observations

Figure 13 shows red pixels in the eastern part of the city. The source of these positive values are
unknown, if it is uplift, it is probably associated with urban growth and rapid construction projects or
natural uplift due to the rising of the water level. If it is not uplift, the positive values are probably
due to DEM artifacts. The mean deformation rate in the red rectangle in Figure 8 (the uplift area)
is +53 mm/year, while the minimum and maximum deformation rates are +6 and +146 mm/year,
respectively. According to recent landscape models, the built-up area will increase to 90% from 2005 to
2021 [56]. Figure 14 shows that the area northwest of Zafaraniye (the blue rectangle in Figure 8) is
considerably affected by land subsidence. This could be partially due to underground water extraction,
as there are many illegal deep wells here. Since the foundations of many buildings in this area are
deformed, the traffic and structural load is also an important contributor to local land subsidence.
Our field observations show that, because of the local subsidence, cracks have appeared on walls and
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there have been some major shifts of curbstones and tiles (Figure 14). It is difficult to quantify the
contribution of the subsidence factors in this area because a small-scale geological map of the urban area
is not available. The mean deformation rate in the blue rectangle is −20 mm/year. The minimum and
maximum deformation rates within the blue rectangle are +10 mm/year and−150 mm/year, respectively.
The pavement extracted from the image stacking method and auxiliary information contribute to the
total length calculation. The total length of pavement affected by subsidence is 65 km. The subsidence
area drawn in the blue rectangle also covers a dense built-up area of approximately 1.4 km2.Sensors 2020, 20, x FOR PEER REVIEW 15 of 21 
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Figure 12. (a) Relationship between geological classes and deformation rate; (b) relationship between
geological classes and interferometric coherence. The digits in red are the number of pixels in each class.
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Figure 14. The subsidence area in Zafaraniye. Examples of damage such as cracks on the walls and
deformed pavement show evidence of land subsidence.

5. Discussion

As mentioned, the road roughness mapping using one-wheel or QC techniques is a time-consuming
cost-intensive task. Thus, the comparison of the SAR backscattering values with IRI can be profitably
used for developing new algorithms and road maintenance purposes in the future. However, in this
study, the comparison does not prove exclusively that the road quality assessment is possible because
the correlation between the backscattering coefficient and IRI values is not high and also we did not
compare the results with other independent datasets. The backscattering coefficient could be one of the
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indicators of the road quality. For example in the U.S., secondary roads show a good correlation while
the interstate roads show little-to-no correlation with X-band backscattering coefficient [47]. Thus,
further works will reveal more aspects of the road mapping using SAR data.

In this study, our quota for X-band SAR dataset was limited up to 15 descending images. This is
marginally enough for a time series SBAS analysis. We performed SBAS-InSAR analysis with an
assumption that only vertical deformation is happening in the study area. Thus, the LOS results were
converted to vertical velocity. As mentioned before, the positive vertical values are probably uplift
areas, mainly associated with construction projects and land fillings. However, it could be related to
the use of SRTM DEM from the year 2000 (before the buildings were constructed) for InSAR analysis
of a period when buildings were already there. According to Crosetto et al., typically 15–20 images
are enough for time series analysis; it is even possible to use short dataset for X-band data because of
higher resolution and shorter wavelengths [43], but integration of ascending and descending datasets
with further images is necessary for an ideal SBAS analysis in future studies to produce a 3D velocity
map and reduce the level of uncertainties.

6. Conclusions

The main aims of the study were to assess pavement quality and the pavement area affected by
land subsidence in urban areas using SAR images. To achieve these goals, we needed to examine the
potential of SAR imagery for the segregation of pavements and buildings. The extraction of buildings
is not difficult as they have double bounce backscattering coefficient. However, extraction of the
pavement is challenging because traffic jams can seriously disrupt the backscattering signal. We tried
applying a minimum-based image-stacking method along with proximity analysis to extract pavement
from 15 HR SAR images. We conclude that the extraction of pavement is possible and additional data
such as reference OSM data and polarimetric SAR data will be useful for precise quality assessments of
the roads.

This study also showed that the progressive land subsidence observed from 2003 to 2010 is still
continuing in the Tabriz plain. Without necessary action or water policies, the land subsidence could
be harmful to critical infrastructure located in the plain, such as Tabriz power plant and Tabriz refinery.
The immature local subsidence inside the urban area detected by CSK and Sentinel-1 datasets is also a
potential threat to the buildings and pavement. Although cracks and minor damage to walls do not
exist on all of the buildings, without continuous monitoring, the number of buildings or pavement
damaged by urban subsidence will increase in the future. Thus, increasing the regular precise leveling
operations and the number of GPS stations inside the city is recommended.
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