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Abstract

The ectoparasitic mite Varroa destructor is one of the most destructive pests of the honey

bee (Apis mellifera) and the primary biotic cause of colony collapse in many regions of the

world. These mites inflict physical injury on their honey bee hosts from feeding on host

hemolymph and fat body cells/cellular components, and serve as the vector for deadly

honey bee viruses, including Deformed wing virus (DWV) and the related Varroa destructor

virus-1 (VDV-1) (i.e., DWV-like viruses). Studies focused on elucidating the dynamics of

Varroa-mediated vectoring and transmission of DWV-like viruses may be confounded by

viruses present in ingested host tissues or the mites themselves. Here we describe a system

that includes an artificial diet free of insect tissue-derived components for maintaining Var-

roa mites for in vitro experimentation. Using this system, together with the novel engineered

cDNA clone-derived genetically tagged VDV-1 and wild-type DWV, we demonstrated for the

first time that Varroa mites provided an artificial diet supplemented with engineered viruses

for 36 hours could acquire and transmit sufficient numbers of virus particles to establish an

infection in virus-naïve hosts. While the in vitro system described herein provides for only up

to five days of mite survival, precluding study of the long-term impacts of viruses on mite

health, the system allows for extensive insights into the dynamics of Varroa-mediated vec-

toring and transmission of honey bee viruses.

Introduction

The ectoparasitic mite, Varroa destructor (Anderson and Trueman, 2000) (Acari: Varroidae),
is the most harmful pest of the European honey bee, Apis mellifera (Linnaeus, 1758) (Insecta:

Apidae). Importantly, Varroa mites vector a number of honey bee viruses [1], including

DWV-A [2], Varroa destructor virus-1 (VDV-1, or DWV-B) [3] and DWV-VDV-1 recombi-

nants [4–7] (i.e., DWV-like viruses). These viruses, together with Varroa mites, are the most
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prevalent and widespread honey bee pathogens and linked to declines in honey bee health and

populations worldwide [1, 8–10]. DWV-like viruses are transmitted both vertically [11] and

horizontally [12], the latter of which includes the special case of Varroa-mediated transmis-

sion. Varroa-mediated transmission of DWV-like viruses can affect the genetic diversity and

elevate the virulence of DWV-like virus populations in honey bees [6, 12, 13], thus increasing

the potential harm they inflict to colonies. Despite their obvious importance, the mechanisms

that underlie Varroa-mediated vectoring and transmission of DWV-like viruses to honey bees

remain poorly understood. However, it is known that strains of viruses can differ in their abil-

ity to replicate in Varroa mites; while DWV-A appears to not replicate during vectoring by

Varroa mites [14], VDV-1 appears to do so [15].

Detailed studies of the vectoring and transmission of DWV-like viruses to honey bees can

be complicated by the interactions among multiple strains and recombinants comprising virus

populations. Additionally, nearly all Varroa mites have ‘background’ levels of potentially non-

biologically active DWV-like viruses, which can be high, and may mislead results from molec-

ular studies of Varroa-mediated vectoring and transmission of DWV-like viruses [14]. Robust

systems for tracking the growth and transmission routes for specific viruses as single strains,

recombinants, or mixed infections, are urgently needed.

Successful research into the dynamics of Varroa-mediated vectoring and transmission of

DVW-like viruses to honey bees requires: 1) specific viral strains that are genetically tagged

that allow tracking of the viruses during vectoring and transmission, and 2) an in vitro system

for maintaining Varroa mites that includes an artificial diet that is free of honey bee cells and

cellular components possibly having virus aggregates. Recently developed genetically tagged

DWV-like viruses can be used to distinguish between Varroa-transmitted tagged and inevita-

ble ‘background’ wild-type viruses and for tracking specific strains and/or recombinants of

DWV-like viruses [13–17]. A system that maintains Varroa mites by feeding them an artificial

liquid diet via a membrane has been the subject of investigation over several decades [18, 19].

Many previous attempts to maintain mites in vitro employed stretched-thin (~10 μm) parafilm

[18, 20] or synthesized chitosan [19] membranes, through which the mites’ short mouthparts

[21] would access a liquid diet. The devices used varied, but some were made of specialized

materials [18]. Although with some systems Varroa mites survived for up to five days, and

some also laid eggs, leakage and/or microbial contamination of diets reduced mite viability,

thus precluding their use in experiments requiring larger sample size [19, 22].

In this report, we describe a system developed for maintaining Varroa mites for in vitro
experimentation. The system is comprised of a device made of simple, common laboratory

components, a parafilm feeding membrane, and a diet having no components derived from

honey bees or any other insects tissues that may contain viruses. This system is particularly

suitable for research of Varroa-mediated vectoring and transmission of DWV-like viruses. We

used this system and a novel genetically tagged cDNA clone for Varroa destructor virus-1
(VDV-1 or DWV-B) to address a key question in honey bee-virus interactions. Specifically, we

tested whether VDV-1 particles introduced to the diet could persist and be acquired by the

feeding mites, then subsequently transmitted to pupae leading to an established infection.

Materials and methods

Design of infectious cDNA clone of Varroa destructor virus-1 (VDV-1) and

production of clone-derived inoculum

We designed a full-length infectious cDNA clone of a Californian VDV-1 isolate, GenBank

Accession number MN249174 (S1 Text). The cDNA had an introduced genetic marker, an

AsiSI restriction site, at position 277 nt, which distinguished the clone-derived VDV-1 from

PLOS ONE Varroa destructor mites vector and transmit honey bee viruses acquired from an artificial diet

PLOS ONE | https://doi.org/10.1371/journal.pone.0242688 November 24, 2020 2 / 13

was no additional external funding received for this

study. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript. USDA is an equal

opportunity provider and employer.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0242688


wild-type VDV-1 strains, thereby allowing us to trace transmission of this VDV-1 isolate. The

VDV-1 cDNA clone and clone-derived infectious virus particles were produced using a previ-

ously described approach [13] and detailed in S1 Text. In brief, the full-length cDNA clone of

the virus was produced using total RNA from honey bees sourced from California in 2016 (iso-

late CA-07-2016), which showed high VDV-1 and low DWV levels [23]. Both the two overlap-

ping cDNA fragments amplified by RT-PCR using specific primers and the synthetic gene

corresponding to the 277 nt 5’ part of the genomic RNA were assembled together in a plasmid

vector (S1 Table; S1 Text). The resulting full-length VDV-1 cDNA plasmid construct was used

to prepare the template for in vitro transcription. To produce clone-derived VDV-1 inoculum,

the purified in vitro RNA full-length VDV-1 transcript generated using the linearized VDV-1

cDNA plasmid was injected into the hemolymph of purple-eyed stage honey bee pupae. Pupae

were incubated for 4 d at +33 oC with 82.2 ±1.3% (SE) relative humidity (RH) to allow propa-

gation of the clone-derived virus infection. Tissue extracts containing the clone-derived VDV-

1 virus particles were collected by homogenizing infected pupae in PBS, and then filtering the

supernatant through a 0.22μm nylon syringe filter (Thermo Fisher, Waltham, MA). The VDV-

1 extract introduced to the artificial diet (below) contained the clone-derived VDV-1

(1.7 × 108 per μL) and background wild-type DWV (1.6 × 105 per μL) derived from the recipi-

ent pupae (see, S1 Text for additional details).

Formulation of the V-BRL diet

The base composition of the artificial diet, hereafter termed the V-BRL (Varroa-Bee Research

Lab) diet was similar to that reported by [19] and [20]. Briefly, the diet included 30% Schnei-

der’s medium, 30% CMRL-1000, 1% Hanks salt solution (without NaCO3, CaCl or MgSO4),

10% bovine serum, 4% Insect medium supplement (cell culture type), 10% TC-100 Insect

medium (with glutamine and NaCO3) and 15% sterile water (all from Sigma-Aldrich, St. Louis

MO). To minimize contamination, fresh diet was prepared in a sterile hood and stored frozen

(-20 oC) in small aliquots. No antibiotics or antifungal agents were included to avoid

compromising microbiota that may provide essential nutrients for mite nutrition since species

of Diplorickettsia, Arsenophonus, Morganella, Spiroplasma, Enterococcus, and Pseudomonas all

have been reported to inhabit Varroa mites [24].

Designs of device and feeding membrane sachet

Snap-cap polypropylene 1.5 mL microcentrifuge tubes were chosen for constructing the device

housing the mites (Fig 1). The tubes were cut crosswise near the mid-point that allowed a 1 cm

diameter opening. Cut surfaces were smoothed with sandpaper to avoid damaging the paraf-

ilm (American National Can Company, NY) membranes that would later be attached to the

cut edge of the tubes. The devices were sterilized prior to attaching the feeding membrane

sachet; while wearing sterile nitrile gloves, devices were transferred to a sterile laminar flow

hood, disinfected for 2 min with 1.0% bleach, followed directly by 2 min in 70% ethanol and 2

min rinsing in sterile water, and then exposed for 1 h to ultraviolet light. Following disinfection

and while still in the hood, each device was covered with a thin sheet of sterilized parafilm

stretched to an average thickness of 16.6 ±5.86 μm and wrapped over the open end of the

device. The membrane thickness was checked with a Marathon digital micrometer (Marathon

Corp., Canada). Ten microliters of the diet solution were pipetted onto the center of the paraf-

ilm membrane, and to complete the sachet, the second layer of sterile parafilm was sealed over

the membrane plus diet solution [25–27]. The snap-cap lid on the other side of the device was

opened to insert a female Varroa mite. Before closing, the lid was punctured with a sterile no.

1 stainless steel pin to form a minute hole (approximately 0.5 mm) to allow air to escape so the
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parafilm sachet would not rupture when the lid was snapped shut (Fig 1). The completed

devices were placed in a dark incubator (Thermofisher Scientific, San Jose, CA) set at

32.1 ± 0.3˚C, and having 82.2 ± 1.3% RH.

Obtaining Varroa mites and honey bee pupae for experiments

All mites and honey bee pupae used in these experiments were obtained from honey bee colo-

nies from apiaries on the grounds of the USDA-ARS Beltsville Agricultural Research Center

(BARC; Beltsville, Maryland, USA). The sugar roll method [28] was used to collect phoretic

mites from honey bee colonies that had not been subject to miticidal treatments. Following

collection, and after rinsing mites with tap water, they were placed on Petri dishes lined with

dry tissue paper. Mites were checked for activity prior to experimental selection, and only

active mites were used. Honey bee pupae were obtained from frames of capped worker brood

sourced from honey bee colonies regularly treated with miticides (Apivar1, Mann-Lake,

USA) according to manufacture instructions. White-to-red eyed stage pupae were collected by

first using a pin tool to remove the wax cap, then using soft forceps (BioQuip, USA), pupae

were grasped by the thorax and gingerly lifted out of their cells. Only Varroa mite-free pupae

were selected, and were used immediately for experiments then kept in an incubator (as

above).

Testing device performance and Varroa mite longevity

Three trials were conducted to evaluate the suitability of the system for maintaining mites for

experimentation. In the first trial, ten replicates were prepared with three Varroa mites in each

device. In the second trial, ten replicates were prepared; six with three mites and four with four

mites, for a total of 34 mites. In the third trial, 15 replicates were prepared; four devices with

two mites, four with three mites and seven with four mites each for a total of 42 mites. In each

trial 10μL of diet containing fluorescent microbeads were placed within the sachet. As a posi-

tive control for survival, female Varroa mites were allowed to feed on honey bee pupae. Pupae

Fig 1. Details of the device and membrane sachet comprising the in-vitro system used for maintaining Varroa mites during

experiments. (A). Diagram showing the design of the device housing the mites, as modified from a snap-cap 1.5 mL microcentrifuge

tube. The arrow shows parafilm membrane sachet with diet. A red asterisk indicates a hole in the lid for air pressure relief. Two mites are

shown attached to the inner membrane to feed on the diet. (B) Photo of the complete system, comprising the device housing the mites

and attached parafilm membrane sachet filled with 10 μL of artificial diet solution.

https://doi.org/10.1371/journal.pone.0242688.g001
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were collected from beehives, placed in clear gelatin capsules (Capsuline, Pompano Beach, FL)

with several mites, and mite and bee survival were monitored daily. Pupae were replaced after

3–4 d with fresh bee pupae to ensure that the pupal hosts had not deteriorated, transformed

into an adult bee, or were otherwise unsuitable, as described previously [29]. As a negative

control for mite survival, mites were housed in the devices with membrane sachets containing

only water. Replicate devices and controls were incubated as described above. Mite mortality

was recorded daily. Mites were recorded as ‘dead’ when they showed no physical response to

gentle prodding by a fine paint brush. Also, daily visual inspections of devices were made for

obvious signs of microbial contamination, excessive diet removal by leakage or evaporation of

the diet, and for obstructions blocking mites from accessing the diet.

Confirming mites fed on the artificial diet

Because mites defecate frequently when allowed to feed [30], as a gauge of mite feeding, the

number of mite excretory droplets deposits were recorded daily by inspecting the parafilm

membrane and walls of the devices under a Zeiss Axioskop 2 Plus compound microscope

(Zeiss Corp., Dublin, CA). Further confirmation of feeding came from examining mite feces

collected from devices housing mites fed on artificial diets with and without the addition of

fluorescent microbeads under a Zeiss Axio Imager.M2 (Dublin, CA) microscope set at 488

excitation/520 emission [30].

Acquisition of viruses by Varroa mites from the artificial diet

The filtered tissue extract introduced to the Varroa diet contained virus particles of the clone-

derived VDV-1 at a concentration of 1.7 × 108 genome equivalents/μL and background wild-

type DWV derived from the recipient pupae used for recovery of a clone-derived VDV-1 at a

concentration of 1.6 × 105 genome equivalents/μL. We supplemented the artificial diet with fil-

tered PBS tissue extract containing particles of the cDNA clone-derived VDV-1 and wild-type

DWV (80% diet, 20% filtered PBS tissue extract) (Fig 2). The virus-supplemented diet con-

tained 3.3×107 genome equivalents of the clone-derived VDV-1 and 3.2 × 104 genome equiva-

lents of wild-type DWV per μL diet. The diet supplemented with PBS (80% diet, 20% PBS)

containing no tissue extract was used as a control.

Fig 2. Application of the developed system for studying the vectoring of honey bee viruses by Varroa mites. A

schematic representation of the experimental design is shown. Mites were allowed to feed for 36 h either on diet

containing 1) cDNA clone derived particles of VDV-1, 3.3 x 107genome equivalents per μL, 2) wild-type DWV, 3.2 x

104 genome equivalents per μL, or 3) a control diet containing PBS free of viral particles.

https://doi.org/10.1371/journal.pone.0242688.g002
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Transmission of the acquired viruses to honey bee pupae

Following the 36h acquisition period the surviving mites were placed individually on a pink-

eyed honey bee pupa housed in gelatin capsules and placed in a dark incubator (see above) for

48h to allow for the transmission of the virus to the pupae. Pupae were then incubated for an

additional 72 h to allow virus replication (Fig 2). To determine whether viral transmission

occurred, total RNA was extracted from each of the pupae from the experimental (n = 15) and

control (n = 9) treatment groups. Next, the copy numbers of VDV-1 and DWV genomic RNA

in extracts were assessed with reverse transcription-quantitative polymerase chain reaction

(RT-qPCR) as reported in [23] and using the primers given in S1 Table. The levels of honey

bee actin quantified by the RT-qPCR were used to normalize the viral copy numbers across

experimental groups. To further demonstrate that the VDV-1 detected in the pupae was both

derived from the cDNA clone and acquired by the mites feeding on the artificial diet, the

RT-PCR fragment corresponding to the 5’ terminal 1200 nt was digested with the AsiSI restric-

tion enzyme (New England Biolabs). The AsiSI restriction site, which is not present in the

wild-type VDV-1 sequence, was introduced to the VDV-1 cDNA clone at position 281. The

digested and undigested PCR fragments were separated by electrophoresis in 1.2% agarose gel

and visualized using ethidium bromide staining.

Statistical analyses

We compared the survival of mites from the three trials fed on the artificial diet to that of

mites from both the positive and negative control groups using a Kaplan-Meier test (JMP, ver-

sion 12, SAS, Cary, NC). The qRT-PCR data were analyzed using one-way analysis of variance

(ANOVA) to determine whether significant variation existed between the copy number of

DWV, VDV-1, and honey bee actin mRNA in the pupae of different treatments. The number

of fecal pellets deposited per live mite per day was analyzed using one-way ANOVA.

Results

System integrity and Varroa mite survival

The system (Fig 1) allowed Varroa mites to feed on the artificial diet without honey bee-

derived components through a thin parafilm membrane. No evidence of microbial contamina-

tion, leakage or evaporation of the diet, or obstacles precluding mite’s access to the diet were

observed. The mean survival times (± SE) for Varroa mites from the longevity trials are

reported in Table 1; some mites survived 5 d feeding on the artificial diet (Fig 3; S2 Table).

In contrast to mites fed on the artificial diet, mites fed on bee pupae survived up to 25 days

and had an average survival time of 9.42 days (Fig 3, blue line; S2 Table). Mites housed in the

devices without diet survived an average of 1.06 ± 0.04 d and began dying 6 h of confinement;

within 24 hours 32 of the 34 mites in the group had died, and the remaining two mites died by

Table 1. Survivorship data for mites from trials with artificial diet and positive and negative controls.

Treatment group Number of mites Mean survival time (days) Standard error

Pupae (positive control) 24 9.42 0.90

Feeding device -Water(negative control) 32 1.06 0.04

Feeding device–Diet 106 2.10 0.09

Mean percent survival (± SE) for Varroa mites fed on honey bee pupae, artificial diet, or only water. The statistical

significance of the results was determined by the Wilcoxon Chi-square test (P< 0.001, χ2 = 84.49).

https://doi.org/10.1371/journal.pone.0242688.t001
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day two (Fig 3, black line). Contrary to poor survival by these mites, those fed on the artificial

diet survived significantly longer (Table 1; Fig 3, red line).

Evidence for feeding was supported by observing numerous excretory deposits (Fig 4A, S3

Table) from mites fed on honey bee pupae or the artificial diet; only minute amounts of excreta

was observed from mites provided only water, indicating a lack of feeding. Evidence for feed-

ing also came from finding FITC-labeled fluorescent beads in excreta of the mites fed on the

diet containing these fluorescent microbeads (Fig 4B), but not in excreta from mites fed on the

diet lacking the beads (Fig 4C). The daily average deposition of excreta was 2.55 ± 0.52 deposits

per mite feeding on the artificial diet. Statistical analysis (one-way ANOVA) of the excreta

data for each of the four days showed no significant differences in excreta per live mite per day

(df = 35, P = 0.379, Fig 4D).

Varroa-mediated vectoring and transmission of viruses to honey bee pupae

The levels of honey bee actin mRNA detected from the RT-qPCR analyses were similar

between pupae from the treatment and control groups (One-way ANOVA, P = 0.1395, S6

Table). One-way ANOVA of the virus accumulation in the control and treatment groups were

highly significant, (P<0.01) for DWV (F = 11.83, df = 23 P = 0.00234; Cohen’s d = 1.473107,

large effect size), and (P<0.001) for VDV-1 (F = 17.95, df = 23. P = 0.00034, Cohen’s

d = 2.009988, large effect size) (Fig 5A). Importantly, high levels of DWV and VDV-1 exceed-

ing 109 virus copies per pupa were observed only in the treatment group. High levels of VDV-

1 were observed in 7 of 15 pupae of the treatment group pupae, while only one pupa developed

high DWV levels in the control group (Fig 5A). This result could be explained by a 1000-fold

Fig 3. Trials testing the survival of Varroa mites fed on the artificial diet and positive and negative controls. Survival curves are

shown for trials of Varroa mites fed the artificial diet (red line) and curves for mites feeding on honey bee pupae (blue line) and mites

provided only water (black line). Data points on the graph represent the mean percent survival (± SE) in days for each trial.

https://doi.org/10.1371/journal.pone.0242688.g003
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difference between the levels of DWV and VDV-1 in the diets containing 3.2 × 104 and

3.3 × 107 genome equivalent per μL respectively. Notably, 6 out of 15 pupae in the treatment

group pupae containing more than 1010 genome equivalents of VDV-1 and reaching

1.38 × 1011 (Fig 5B, S6 Table). The amount of VDV-1 in a single pupa, therefore, was 388

times higher than the total amount of VDV-1 (3.3 × 108 genome equivalents) contained in the

10 μL of artificial diet. The engineered viruses did not have any significant effect on mite sur-

vival (S1 Fig, S4 and S5 Tables).

We confirmed that VDV-1 derived from the artificial diet replicated in the treatment group

pupae to high levels based on the diagnostic AsiSI restriction site (Fig 5B). This restriction site

was not present in the wild-type isolates of VDV-1 or DWV (Fig 5B, lane “wt”). Further evi-

dence showing that the VDV-1 transmitted to pupae was the cDNA clone VDV-1 acquired

from the artificial diet that came from digesting the RT-PCR fragment corresponding to the 5’

terminal 1200 nt with AsiSI restriction enzyme. All seven of the recipient pupae that developed

high virus levels showed that the AsiSI site was present in VDV-1 (Fig 5B). Notably, the sample

isolated from the pupa 27 of the treatment group contained high levels of both DWV and

VDV-1 (S5 Table), but only clone-derived VDV-1 was digested (Fig 5B, lane 27) which could

Fig 4. Evidence supporting Varroa mites fed on the artificial diet. (A) Photograph shows the parafilm membrane with a

live mite attached and numerous excretory deposits. (B) Micrograph showing fluorescent microbeads in mite feces

collected from devices housing mites provided diet containing microbeads. (C) Micrograph showing no fluorescent

microbeads in mite feces collected from devices housing mites provided diet containing no microbeads. (D) The mean (±
SE) total daily number of excretions deposited by mites on the membrane sachet. Measurement bar = 50 μM.

https://doi.org/10.1371/journal.pone.0242688.g004
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be explained by the presence of wild-type DWV and wild-type VDV1, genomes of which did

not have AsiSI restriction site.

Discussion

Here we report on Varroa-mediated transmission of DWV-like viruses to honey bee pupae by

employing a simple in vitro system that maintained Varroa mites on an artificial diet free of

honey bee-derived components. We demonstrated that DWV and VDV-1 virus particles

remained viable in an artificial diet medium, and that the viruses remained infectious in mite

Fig 5. Transmission of VDV-1 and DWV acquired by Varroa mites from artificial diet to honey bee pupa. (A)

Levels of clone-derived VDV-1 and wild-type DWV in honey bee pupae exposed to the Varroa mites which acquired

the virus from the diet. Black dots indicate virus load in individual honey bees. The columns show the average virus

genome equivalent per μL numbers for each treatment ±one standard deviation. Statistically significant differences

from post-hoc unpaired Student’s t-test are indicated with P-values above the bars. Numerical values underlying the

summary graphs are provided in S6 Table. (B) To confirm the VDV-1 clonal identity, the 1250 nt RT-PCR fragments

corresponding to the 5’-terminal region of DWV and VDV-1 RNA genomes were amplified with the primers specific

to both DWV and VDV-1 using RNA extracts from the experimental pupae with the virus levels exceeding 109

genome copies from the “Virus extract” group (S6 Table), and from the wild-type VDV-1 and DWV-infected pupae,

“wt”. The undigested 1250 nt fragments (left) and AsiSI-digested (right). Expected fragment sizes, undigested (black

arrow) and AsiSI-digested (red arrows), are shown on the left, DNA ladder sizes are shown on the right.

https://doi.org/10.1371/journal.pone.0242688.g005
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hosts and could be transmitted to honey bee host pupae. Notably, results showed that it could

take less than 36 h for Varroa mites to acquire sufficient numbers of viral particles from feed-

ing to transmit them to a honey bee host pupa, wherein they proliferated to high levels, e.g.,
1011 genome equivalents per bee (see, ‘Virus extracts’ in Fig 5A). In contrast, no viral transmis-

sion to host pupae occurred subsequent to mites feeding on the ‘Control diet’ supplemented

only with fluorescent microbeads.

A significant challenge for studying viral infection of honey bees is the tracking of specific

viral strains during Varroa-mediated vectoring and transmission, while also accounting for

the ‘background’ levels of DWV-like viruses present in both the recipient honey bee pupae

and the Varroa mites. This challenge was resolved by using cDNA clone-derived VDV-1 (also

known as DWV-B) that was tagged with a rare AsiSI restriction enzyme site, which allowed

the dynamics of this specific viral strain to be accurately tracked, and to differentiate it from

the ‘background’ viruses. For example, the significantly higher levels of wild-type DWV

(DWV-A) detected in pupae from the ‘Virus extract’ group and in the virus extract itself can

be accounted for by the additional wild-type DWV present in the pupae which was used to

generate the VDV-1 particles by injecting VDV-1 in vitro transcript. Indeed, the pupae

exposed for 36 h to mites previously fed on the diet lacking the virus had undetectable or low

levels of DWV and VDV-1, below 108 and 105 genome equivalents, respectively (Fig 5A),

although these mites were collected from the colonies harboring DWV. This latter finding sup-

ports the notion that DWV does not propagate nor persist in the Varroa mite vectors [14].

Although the longevity of Varroa mites using our system was often fewer than 5 days,

which is similar to data reported elsewhere [19, 20], it was sufficiently long for our experi-

ments. In contrast to the previous studies of in vitro systems for maintaining Varroa mites that

did not confirm mite feeding [18–20, 22], in our study, the accumulation of mite excreta and

the presence of the fluorescent microbeads acquired from the diet in mite excreta confirmed

that mites had accessed, and indeed fed on the artificial diet. Notably, the greatest number of

excretory deposits containing microbeads can be observed in the devices wherein mites had,

presumably, fed the most, and survived the longest (S3 Table). Thus, the important question

was not whether mites fed on the artificial diet survived as long as those fed on pupae [29], but

whether mites survived to acquire, vector and transmit the viruses.

The experiment of Varroa-mediated vectoring and transmission of DWV-like viruses to

honey bee pupae presented in this report validates the utility of the in vitro system for Varroa mite

research. We demonstrated that mites could acquire viruses from an artificial diet free of honey

bee cells and cellular components, then transmit virus particles to naïve hosts. Including such an

artificial diet is particularly important in the light of the recent finding that Varroa mites can

ingest honey bee cells (including fat body cells) rather than just hemolymph [14, 31]. Feeding

mites on a diet free from honey bee cells will provide definitive insights into which mite-vectored

viruses are capable of replicating and/or persisting in their mite carriers without the possible inter-

ference from viruses present in ingested cells. The in vitro system described in this report may be

used for studies of Varroa-mediated vectoring and transmission of other honey bee viruses [17,

32]. However, the limitations of the currently known artificial diets is a confounding obstacle to

other applications of the device where sustained mite survival and reproduction is needed. Further

improvements to the nutritional value of these artificial diets are warranted, so as to make it possi-

ble to maintain Varroa mites in vitro for prolonged periods and to promote their reproduction.

Supporting information

S1 Fig. Mite survival analysis of the virus acquisition and transmission experiment.

(PDF)

PLOS ONE Varroa destructor mites vector and transmit honey bee viruses acquired from an artificial diet

PLOS ONE | https://doi.org/10.1371/journal.pone.0242688 November 24, 2020 10 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242688.s001
https://doi.org/10.1371/journal.pone.0242688


S1 Table. Primers and the synthetic gene used in this study.

(XLSX)

S2 Table. Mite survival.

(XLSX)

S3 Table. Mite excreta data.

(XLSX)

S4 Table. Virus acquisition and transmission experiment: Mite survival summary.

(XLSX)

S5 Table. Virus acquisition and transmission experiment: Mite survival analysis.

(XLSX)

S6 Table. Virus acquisition and transmission experiment, RT-qPCR quantification of

VDV-1, DWV and honey bee actin.

(XLSX)

S1 Text. Design of the infectious cDNA clone of Varroa destructor virus-1 (VDV-1) and

production of the clone-derived VDV-1 inoculum.

(PDF)

S2 Text. Nucleotide sequence of the Varroa destructor virus-1 infectious cDNA construct

(GenBank accession number MN249174).

(PDF)

S1 Video. Varroa mite feeding on artificial diet supplemented with the particles of honey

bee viruses.

(TXT)

Author Contributions

Conceptualization: Francisco Posada-Florez, Eugene V. Ryabov, Jay D. Evans, Daniel E.

Sonenshine.

Formal analysis: Francisco Posada-Florez, Eugene V. Ryabov.

Funding acquisition: Yanping Chen, Jay D. Evans, Steven C. Cook.

Investigation: Francisco Posada-Florez, Eugene V. Ryabov, Daniel E. Sonenshine.

Methodology: Francisco Posada-Florez, Eugene V. Ryabov, Matthew C. Heerman, Daniel E.

Sonenshine.

Project administration: Steven C. Cook.

Resources: Eugene V. Ryabov.

Writing – original draft: Eugene V. Ryabov, Daniel E. Sonenshine, Steven C. Cook.

Writing – review & editing: Francisco Posada-Florez, Eugene V. Ryabov, Matthew C. Heer-

man, Yanping Chen, Jay D. Evans, Daniel E. Sonenshine, Steven C. Cook.

References
1. Le Conte Y, Ellis M, Ritter W. Varroa mites and honey bee health: can Varroa explain part of the colony

losses?. Apidologie. 2010; 41(3):353–63.

PLOS ONE Varroa destructor mites vector and transmit honey bee viruses acquired from an artificial diet

PLOS ONE | https://doi.org/10.1371/journal.pone.0242688 November 24, 2020 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242688.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242688.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242688.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242688.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242688.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242688.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242688.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242688.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242688.s010
https://doi.org/10.1371/journal.pone.0242688


2. Lanzi G, de Miranda JR, Boniotti MB, Cameron CE, Lavazza A, Capucci L, et al. Molecular and Biologi-

cal Characterization of Deformed Wing Virus of Honeybees (Apis mellifera L.). Journal of Virology.

2006; 80(10):4998–5009. https://doi.org/10.1128/JVI.80.10.4998-5009.2006 PMID: 16641291

3. Ongus JR, Roode EC, Pleij CWA, Vlak JM, van Oers MM. The 50 non-translated region of Varroa

destructor virus 1 (genus Iflavirus): structure prediction and IRES activity in Lymantria disp1r cells. Jour-

nal of General Virology. 2006; 87(11):3397–407. https://doi.org/10.1099/vir.0.82122-0 PMID: 17030876

4. Dalmon A, Desbiez C, Coulon M, Thomasson M, Le Conte Y, Alaux C, et al. Evidence for positive selec-

tion and recombination hotspots in Deformed wing virus (DWV). Scientific Reports. 2017; 7(1):41045.

https://doi.org/10.1038/srep41045 PMID: 28120868

5. Moore J, Jironkin A, Chandler D, Burroughs N, Evans DJ, Ryabov EV. Recombinants between

Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee

colonies. Journal of General Virology. 2011; 92(1):156–61. https://doi.org/10.1099/vir.0.025965-0

PMID: 20926636

6. Ryabov EV, Wood GR, Fannon JM, Moore JD, Bull JC, Chandler D, et al. A Virulent Strain of Deformed

Wing Virus (DWV) of Honeybees (Apis mellifera) Prevails after Varroa destructor-Mediated, or In Vitro,

Transmission. PLOS Pathogens. 2014; 10(6):e1004230. https://doi.org/10.1371/journal.ppat.1004230

PMID: 24968198

7. Zioni N, Soroker V, Chejanovsky N. Replication of Varroa destructor virus 1 (VDV-1) and a Varroa

destructor virus 1–deformed wing virus recombinant (VDV-1–DWV) in the head of the honey bee. Virol-

ogy. 2011; 417(1):106–12. https://doi.org/10.1016/j.virol.2011.05.009 PMID: 21652054

8. Dainat B, Evans JD, Chen YP, Gauthier L, Neumann P. Dead or Alive: Deformed Wing Virus and Varroa

destructor Reduce the Life Span of Winter Honeybees. Applied and Environmental Microbiology. 2012;

78(4):981–7. https://doi.org/10.1128/AEM.06537-11 PMID: 22179240

9. Highfield AC, El Nagar A, Mackinder LC, Laure M-LN, Hall MJ, Martin SJ, et al. Deformed wing virus

implicated in overwintering honeybee colony losses. Appl Environ Microbiol. 2009; 75(22):7212–20.

https://doi.org/10.1128/AEM.02227-09 PMID: 19783750

10. Nazzi F, Le Conte Y. Ecology of Varroa destructor, the major ectoparasite of the western honey bee,

Apis mellifera. Annual Review of Entomology. 2016; 61:417–32. https://doi.org/10.1146/annurev-ento-

010715-023731 PMID: 26667378

11. Amiri E, Kryger P, Meixner MD, Strand MK, Tarpy DR, Rueppell O. Quantitative patterns of vertical

transmission of deformed wing virus in honey bees. PLoS One. 2018; 13(3):e0195283–e. https://doi.

org/10.1371/journal.pone.0195283 PMID: 29596509.

12. Martin SJ, Brettell LE. Deformed Wing Virus in Honeybees and Other Insects. Annual Review of Virol-

ogy. 2019; 6(1):49–69. https://doi.org/10.1146/annurev-virology-092818-015700 PMID: 31185188.

13. Ryabov EV, Childers AK, Lopez D, Grubbs K, Posada-Florez F, Weaver D, et al. Dynamic evolution in

the key honey bee pathogen deformed wing virus: Novel insights into virulence and competition using

reverse genetics. PLOS Biology. 2019; 17(10):e3000502. https://doi.org/10.1371/journal.pbio.3000502

PMID: 31600204

14. Posada-Florez F, Childers AK, Heerman MC, Egekwu NI, Cook SC, Chen Y, et al. Deformed wing virus

type A, a major honey bee pathogen, is vectored by the mite Varroa destructor in a non-propagative

manner. Scientific Reports. 2019; 9(1):1–10. https://doi.org/10.1038/s41598-018-37186-2 PMID:

30626917

15. Gusachenko ON, Woodford L, Balbirnie-Cumming K, Campbell EM, Christie CR, Bowman AS, et al.

Green Bees: Reverse Genetic Analysis of Deformed Wing Virus Transmission, Replication, and Tro-

pism. Viruses. 2020; 12(5):532.

16. Gusachenko ON, Woodford L, Balbirnie-Cumming K, Ryabov EV, Evans DJ. Deformed Wing Virus

spillover from honey bees to bumble bees: a reverse genetic study. bioRxiv. 2019:2019.12.18.880559.

https://doi.org/10.1101/2019.12.18.880559

17. Ryabov EV, Christmon K, Heerman MC, Posada-Florez F, Harrison RL, Chen Y, et al. Development of

a honey bee RNA virus vector based on the genome of a deformed wing virus. Viruses. 2020; 12

(4):374. https://doi.org/10.3390/v12040374 PMID: 32231059

18. Bruce W, Henegar R, Hackett K. An artificial membrane for in vitro feeding of Varroa jacobsoni and

Acarapis woodi, mite parasites of honey bees. Apidologie. 1991; 22(5):503–7.

19. Tabart J, Colin M-E, Carayon J-L, Tene N, Payre B, Vetillard A. Artificial feeding of Varroa destructor

through a chitosan membrane: a tool for studying the host-microparasite relationship. Experimental and

applied acarology. 2013; 61(1):107–18. https://doi.org/10.1007/s10493-013-9675-9 PMID: 23423425

20. Bruce W, Chiesa F, Marchetti S, Griffiths D. Laboratory feeding of Varroa jacobsoni Oudemans on natu-

ral and artificial diets (Acari: Varroidae). Apidologie. 1988; 19(2):209–18.

PLOS ONE Varroa destructor mites vector and transmit honey bee viruses acquired from an artificial diet

PLOS ONE | https://doi.org/10.1371/journal.pone.0242688 November 24, 2020 12 / 13

https://doi.org/10.1128/JVI.80.10.4998-5009.2006
http://www.ncbi.nlm.nih.gov/pubmed/16641291
https://doi.org/10.1099/vir.0.82122-0
http://www.ncbi.nlm.nih.gov/pubmed/17030876
https://doi.org/10.1038/srep41045
http://www.ncbi.nlm.nih.gov/pubmed/28120868
https://doi.org/10.1099/vir.0.025965-0
http://www.ncbi.nlm.nih.gov/pubmed/20926636
https://doi.org/10.1371/journal.ppat.1004230
http://www.ncbi.nlm.nih.gov/pubmed/24968198
https://doi.org/10.1016/j.virol.2011.05.009
http://www.ncbi.nlm.nih.gov/pubmed/21652054
https://doi.org/10.1128/AEM.06537-11
http://www.ncbi.nlm.nih.gov/pubmed/22179240
https://doi.org/10.1128/AEM.02227-09
http://www.ncbi.nlm.nih.gov/pubmed/19783750
https://doi.org/10.1146/annurev-ento-010715-023731
https://doi.org/10.1146/annurev-ento-010715-023731
http://www.ncbi.nlm.nih.gov/pubmed/26667378
https://doi.org/10.1371/journal.pone.0195283
https://doi.org/10.1371/journal.pone.0195283
http://www.ncbi.nlm.nih.gov/pubmed/29596509
https://doi.org/10.1146/annurev-virology-092818-015700
http://www.ncbi.nlm.nih.gov/pubmed/31185188
https://doi.org/10.1371/journal.pbio.3000502
http://www.ncbi.nlm.nih.gov/pubmed/31600204
https://doi.org/10.1038/s41598-018-37186-2
http://www.ncbi.nlm.nih.gov/pubmed/30626917
https://doi.org/10.1101/2019.12.18.880559
https://doi.org/10.3390/v12040374
http://www.ncbi.nlm.nih.gov/pubmed/32231059
https://doi.org/10.1007/s10493-013-9675-9
http://www.ncbi.nlm.nih.gov/pubmed/23423425
https://doi.org/10.1371/journal.pone.0242688


21. Iovinella I, McAfee A, Mastrobuoni G, Kempa S, Foster LJ, Pelosi P, et al. Proteomic analysis of chemo-

sensory organs in the honey bee parasite Varroa destructor: a comprehensive examination of the

potential carriers for semiochemicals. Journal of proteomics. 2018; 181:131–41. https://doi.org/10.

1016/j.jprot.2018.04.009 PMID: 29653265

22. Milani N, Chiesa F., editor Suggestions for the artificial rearing of Varroa jacobsoni Oud. Present Status

of varroatosis in Europe and Progress in the Varroa mite control 1989; Luxembourg: Commission of

the European communities.

23. Ryabov EV, Childers AK, Chen Y, Madella S, Nessa A, Evans JD. Recent spread of Varroa destructor

virus-1, a honey bee pathogen, in the United States. Scientific Reports. 2017; 7(1):1–10. https://doi.org/

10.1038/s41598-016-0028-x PMID: 28127051

24. Hubert J, Kamler M, Nesvorna M, Ledvinka O, Kopecky J, Erban T. Comparison of Varroa destructor

and worker honeybee microbiota within hives indicates shared bacteria. Microbial ecology. 2016; 72

(2):448–59. https://doi.org/10.1007/s00248-016-0776-y PMID: 27129319

25. Akey DH, Beck SD. Continuous rearing of the pea aphid, Acyrthosiphon pisum, on a holidic diet. Annals

of the Entomological Society of America. 1971; 64(2):353–6.

26. Avila L, Chandrasekar R, Wilkinson K, Balthazor J, Heerman M, Bechard J, et al. Delivery of lethal

dsRNAs in insect diets by branched amphiphilic peptide capsules. Journal of controlled release. 2018;

273:139–46. https://doi.org/10.1016/j.jconrel.2018.01.010 PMID: 29407675

27. Dadd R, Krieger D, Mittler T. Studies on the artificial feeding of the aphid Myzus persicae (Sulzer)—IV.

Requirements for water-soluble vitamins and ascorbic acid. Journal of Insect Physiology. 1967; 13

(2):249–72.

28. Milbrath M. Varroa mite monitoring using a sugar roll to identify populations of varroa destructor in

honey bee colonies. American Bee Journal. 2016; 156(10):1119–22.

29. Egekwu NI, Posada F, Sonenshine DE, Cook S. Using an in vitro system for maintaining Varroa

destructor mites on Apis mellifera pupae as hosts: studies of mite longevity and feeding behavior.

Experimental and applied acarology. 2018; 74(3):301–15. https://doi.org/10.1007/s10493-018-0236-0

PMID: 29511937

30. Posada-Florez F, Sonenshine DE, Egekwu NI, Rice C, Lupitskyy R, Cook SC. Insights into the metabo-

lism and behaviour of Varroa destructor mites from analysis of their waste excretions. Parasitology.

2019; 146(4):527–32. https://doi.org/10.1017/S0031182018001762 PMID: 30409232

31. Ramsey SD, Ochoa R, Bauchan G, Gulbronson C, Mowery JD, Cohen A, et al. Varroa destructor feeds

primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of

Sciences. 2019; 116(5):1792–801. https://doi.org/10.1073/pnas.1818371116 PMID: 30647116

32. Grozinger CM, Flenniken ML. Bee viruses: Ecology, pathogenicity, and impacts. Annual Review of

Entomology. 2019.

PLOS ONE Varroa destructor mites vector and transmit honey bee viruses acquired from an artificial diet

PLOS ONE | https://doi.org/10.1371/journal.pone.0242688 November 24, 2020 13 / 13

https://doi.org/10.1016/j.jprot.2018.04.009
https://doi.org/10.1016/j.jprot.2018.04.009
http://www.ncbi.nlm.nih.gov/pubmed/29653265
https://doi.org/10.1038/s41598-016-0028-x
https://doi.org/10.1038/s41598-016-0028-x
http://www.ncbi.nlm.nih.gov/pubmed/28127051
https://doi.org/10.1007/s00248-016-0776-y
http://www.ncbi.nlm.nih.gov/pubmed/27129319
https://doi.org/10.1016/j.jconrel.2018.01.010
http://www.ncbi.nlm.nih.gov/pubmed/29407675
https://doi.org/10.1007/s10493-018-0236-0
http://www.ncbi.nlm.nih.gov/pubmed/29511937
https://doi.org/10.1017/S0031182018001762
http://www.ncbi.nlm.nih.gov/pubmed/30409232
https://doi.org/10.1073/pnas.1818371116
http://www.ncbi.nlm.nih.gov/pubmed/30647116
https://doi.org/10.1371/journal.pone.0242688

