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Abstract: Identification and sensing are two of the main tasks a wireless sensor node has to perform
in an Internet of Things (IoT) environment. Placing active powered nodes on objects is the most usual
approach for the fulfillment of these functions. With the expected massive increase of connected
things, there are several issues on the horizon that hamper the further deployment of this approach
in an energy efficient, sustainable way, like the usage of environmentally hazardous batteries or
accumulators, as well as the required electrical energy for their operation. In this work, we propose a
novel approach for performing the tasks of identification and sensing, applying visible light sensing
(VLS) based on light emitting diode (LED) illumination and utilizing retroreflective foils mounted on
a moving object. This low cost hardware is combined with a self-developed, low complex software
algorithm with minimal training effort. Our results show that successful identification and sensing
of the speed of a moving object can be achieved with a correct estimation rate of 99.92%. The used
foils are commercially available and pose no threat to the environment and there is no need for active
sensors on the moving object and no requirement of wireless radio frequency communication. All of
this is achievable whilst undisturbed illumination is still provided.

Keywords: visible light sensing; retroreflective foils; photonic sensors

1. Introduction

The Internet of Things (IoT) has become one of the main buzzwords in recent years,
which describes the interconnection of objects—both real physical objects as well as virtual
objects—by the means of various communication technologies in order to form a widely
distributed network, which shares information to perform an ever increasing number of
tasks and applications. The origin of the term, as well as the technological foundations,
emerged in the late 1990s. Several researchers and scientists outlined the vision of a massive
interconnection of objects via the Internet in this decade. The specific term, IoT, anyhow, is
nowadays attributed to Kevin Ashton [1]. In the early years, this term strongly referred to
the usage of Radio Frequency Identification (RFID) to perform tasks like identification and
tracking [1], but already in these early years, the concepts were designed to involve various
technologies and communications concepts. In [2] the elements of an IoT are described
as identification, sensing, communication, computation, services and semantics. Whilst
services and semantics refer to tasks that usually reside in higher layers of such an IoT
framework, for example, in a Cloud computing environment, identification, sensing and
communication can be seen as the lower levels of such a network [3]. Identification is
the task of uniquely determining various objects that are aimed to be recognized in an
IoT environment. The task of sensing describes the acquisition of data about the object,
which, in combination with the unique identifier, are finally communicated wirelessly.
Many technologies have evolved over time to be used in the context of IoT to perform the
task of communication, such as Wi-Fi, Bluetooth, RFID and many more [4]. Processing the
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acquired readings in order to extract higher-level information or to create the context of
the object is summarized in the task of computation. In most cases, in order to perform
the described tasks of identification, sensing and communication, active devices—often
referred to as Wireless Sensor Nodes (WSN) [5]—are placed on the object. The architecture
and components used to form these nodes are strongly dependent on the application
and services to be performed and consequently have reached a vast range of possible
configurations and capabilities, ranging from small and simple devices, for example an
RFID tag [6], to complex wearable devices such as smartwatches and so forth [7].

The increase in connected IoT devices worldwide is ongoing and is building mo-
mentum. Statista [8] forecasts over 30.9 billion connected devices by the year 2025. With
this massive increase on the horizon, there are many challenges emerging, ranging from
energy consumption and electronic waste to bandwidth limitations [9,10]. The Interna-
tional Energy Agency estimates the power used by IoT devices by 2040 to be more than
2000 TWh [11]. To reduce this energy consumption many solutions have been proposed,
which range from utilizing extended standby modes in the WSN to energy saving routing
schemes [12]. Active components on the WSN require some kinds of batteries or accumula-
tors. In order to provide the longest possible runtime of the node, energy saving schemes
as well as energy harvesting technologies have evolved [13]. Even with extended runtime,
the problem of electronic waste concerning IoT devices is still unresolved [9]. The accu-
mulators and batteries, which are often not easily detachable from the device, especially
lead to the problem of an increasing number of devices that require special treatment in the
recycling or disposal processes. As stated in [10], even in case that changing the batteries is
technically possible, the large number of nodes makes this process unfeasible and results
in a throwaway mechanism at the end of the node’s lifetime. With the widespread use of
actively communicating devices, even in cases where the communication demand is kept
minimal, the bandwidth of the used communication technologies is anticipated to become
a bottleneck [10]. Furthermore, in cases where the number of devices increases, as all
forecasts suggest, the interference between wireless Radio Frequency (RF) based communi-
cation technologies is anticipated to become an issue. To enable the further widespread
of the IoT and in order to provide solutions for the future massive increase in connected
devices, applications and services, innovative solution approaches are indispensable.

The advancements in the area of LEDs, photosensitive devices and their corresponding
electronic components and circuits have led to several technologies based on the utiliza-
tion of visible light. One of the most prominent one is the wireless transfer of data in
the visible light spectrum by modulating the intensity of a light source and consequently
demodulation at a photosensitive receiver to recover the transmitted data. This application
is referred to as Visible Light Communication (VLC) [14]. Another application, realized
on the base of light emitted from a luminaire, is called Visible Light Positioning (VLP).
With the help of VLP, a human or an object equipped with a VLP receiver unit, usually
consisting of a photosensitive device (e.g., photodiode (PD)), associated electronic circuits
(e.g., Transimpedance Amplifiers (TIAs)) and a processing unit, can be localized by measur-
ing and analyzing the impinging light on the receiver unit [15]. The technology of VLS is
more or less a general term describing various tasks on the basis of extracting information
from the received light intensities and in some cases from the spectral composition of
the light at a photosensitive device. The applications range from occupancy or presence
detection [16,17], identification [18], pose detection [19] to gesture recognition [20]. Similar
to this broad range of applications, the applied devices, the orientations of the light sources
and the receivers in relation to each other and the used algorithms also vary largely. In [21]
the scenarios of VLS are divided into four distinct categories. The main distinction is
done by separating Line of Sight (LoS) and Non Line of Sight (NLoS) scenarios and also
separating scenarios in which some form of modulation of the light is performed or not. In
this work, we will be dealing with a scenario in which an object reflects the light emitted
from the light source towards a photosensitive receiver. For this study we assume that the
light source itself is not modulated, but the object reflecting the light towards the receiver
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carries retroreflective foils, which modulate the intensity and the spectrum of the reflected
light according to the colors and the size configurations of the attached foils.

In [22], it is shown in an outdoor scenario that, by placing a pattern of black and white
foils on one side of a car, it is possible to decode this pattern successfully over a distance of
2.5 m to 4 m with only natural sunlight as the light source. The car was passing the receiver
unit with speeds of up to 53 km/h. The results show that the concept of VLS can be applied
successfully for moving objects. The key differences to the approach we are discussing in
the following are that in an outdoor scenario the size of the reflective area is not constrained
as strongly as in our indoor application scenario. Second, the reported light intensities
in the outdoor scenario—~3 kLux (cloudy day) and ~10 kLux (sunny day)—are also far
beyond the applicable light levels for an indoor scenario. Third, the work reported in [22]
was limited to “tags” consisting of black and white areas, whilst leaving out the possibility
of also incorporating the spectral composition of the reflected light into the algorithm in
order to generate a higher degree of freedom of possibilities for the variation (coding) of
the reflective “tags”.

Indoor positioning and the identification of objects equipped with reflective tags is
discussed, for example, in [23]. In this work, a set-up consisting of multiple luminaires
placed on the ceiling of a room, which act as the light sources, a complex receiver system
placed besides them and reflective tags on objects, is discussed in a theoretical/simulation
based approach. The reflective tags consist of multiple stripes of a reflective material that
reflects the light in a very narrow bandwidth. In parallel to the tag design, the receiver
system is also designed to incorporate photodiodes that have a very narrow sensitivity
range (~2 nm). In the simulation of the hardware design, the receiving photodiodes were
tuned with the help of a laser diode to this narrow sensitivity range. Once the photodiode
was tuned, it was sensitive to only the reflection of one of the stripes of the tags and recorded
this peak value. Then the photodiode was tuned to the next sensitivity range and the peak
value of the next stripe was recorded, and so forth. On the basis of a continuous tuning,
it was calculated that 2150 − 1 different tags could be identified. With different simulated
grid sizes, the achieved positioning error was reported to be in the range between 2 cm and
35 cm. This work demonstrates how highly accurate positioning and identification tasks
can be performed by utilizing the spectral variation of the reflected light, however, to do so,
very narrowband reflective tags and highly tuned photodiodes are necessary. This causes a
system of high complexity, which will require customized components such as the reflective
tag stripes. This is in strong contrast to our work, where we use off-the-shelf components
and a low complex hardware design in our experimental setup. Additionally, the object
was simulated as stationary during the acquisition period and not as moving. As we will
show in the following, the movement of the object and consequently its position in relation
to the sender–receiver system will strongly influence the intensity and composition of the
reflected light. This behavior will be one of the main characteristics for the determination
of the speed of the object itself.

Another interesting work in the field of VLS is given in [24], where by placing reflective
materials (mirrors or aluminum) on a toy car, the authors show that the localization of
this toy car can be achieved by exploiting the reflected light in a scenario with multiple
luminaires illuminating the scenario. Each of the light sources in this work modulated the
respectively emitted light to forward its unique ID. Based on the received reflected light
on multiple receivers, a determination of the position could be achieved. Furthermore,
the authors expanded the application scenario towards the identification of the single toy
car by placing a pattern, comprising of strongly reflective areas and strongly absorbing
(black) areas, on the car. With the main tasks of determining the position of the moving
object and its identification, this work shows how the technologies of VLC, VLP and VLS
can be realized in parallel without impeding each other. In contrast to our approach, the
speed of the object had to be calculated from the estimated positions and was not directly
inferred as in our approach. Also, the applicable number of different IDs is limited for
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such a configuration, because of the size requirements for the strongly reflective and the
strongly absorbing (black) areas.

In our previous work [18], we showed how, by placing different reflective foils on
the six sides of a small static cube, the different foils could be determined successfully by
utilizing a single RGB sensitive photodiode and a single LED light source. This previous
achievement of determining different reflective foils in a static setting is the starting point
for the expansion of the application scenario to a moving target in this study. The expansion
of the range of the applied foils and furthermore to take different size configurations of the
reflective areas into consideration are done to provide an extensive platform for the coding
of moving objects in order to identify them and to determine their speeds.

In particular, we will show how, by utilizing this platform for VLS, one can perform
the described tasks of identification, sensing and (backscattered) communication, required
in the lower levels of an IoT environment, without the need for any active components,
which again would require a battery or an accumulator placed on the object. This can
relieve some of the challenges anticipated for IoT. Furthermore, by utilizing the visible light
spectrum, the described tasks can be performed solely on the basis of the already existing
lighting infrastructure; therefore, no additional communication components—for example,
Wi-Fi Access Points—have to be placed in the infrastructure. In contrast to batteries and
accumulators, the used reflective foils do not contain any environmentally hazardous materials
and therefore can be easily disposed when necessary. By utilizing the visible light spectrum,
existing RF based communication systems can also be relieved from the communication effort
these tasks would cause, if they would be carried out in the RF spectrum.

This article is divided into the following sections. In Section 2, Materials and Methods,
the used materials and the experimental setup as well as the implemented algorithm are
described. In Section 3, the results of the experiments, both for the task of identification
as well as for the combination of the tasks of identification and sensing the speed, are
presented. Section 4 describes possible simplifications that could be undertaken in order
to reduce the demands for a future microcontroller unit (MCU) or field programmable
gate array (FPGA) based implementation. Section 5 finally summarizes and discusses the
achieved results and outlines future research challenges and directions.

2. Materials and Methods

This section is subdivided into 4 subsections, first the used electronic hardware (the
VLS unit) is described. Second, the utilized retroreflective foils of the vendors 3M and
Orafol are specified. In the third subsection the experimental setup is given. Finally, the
implemented algorithm as well as the conducted experiments are outlined.

2.1. VLS Unit

The main block of our experimental setup is our self-developed VLS unit with its
CREE MC-E LED [25] as the light source and the RGB sensitive photodiode Kingbright
KPS-5130PD7C [26] as the sensing device. The RGB sensitive photodiode has one common
cathode and three anodes corresponding to the channels (R, G, B). The three channels of the
photodiode are interfaced to three separate TIAs, transforming the currents induced by the
impinging light at the corresponding channels into voltage signals. Such a voltage signal can
then be easily sampled with an Analog-to-Digital converter (ADC), transforming it into the
digital domain. Please note that the design of the TIA was done in a way that a lower voltage
signal at the TIA output corresponds to a higher amount of impinging light. Therefore, a
value of zero at the TIA output corresponds to a saturation of the photodiode. The used
Cree LED consists of four separate white dies, which are all connected to the same input pin,
providing the electric supply. Although the VLS unit also incorporates a Field Effect Transistor
(FET) driver to allow for a modulation of the LED, in this work we did not modulate the
LED. Furthermore, to achieve better directionality of the emitted light of the LED, as well
as of the impinging light on the photodiode, we placed off-the-shelf reflectors over the LED
as well as over the photodiode. The reflector placed over the LED is a CA10928_BOOM of
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the vendor Ledil that offers an optical efficiency of 90% with 36 degrees full width at half
maximum (FWHM). The reflector over the photodiode is a Ledil C11347_REGINA with a ~9◦

spot beam. Further details can be found in [18,19]. Figure 1 shows a 3D model of the VLS
unit, showing the LED with the reflector (right) and the reflector placed over the photodiode
(left). The supply voltage of the TIA circuitry is 5 V, with a current of ~11.39 mA.
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2.2. Retroreflective Foils

A material is considered retroreflective, when it is reflecting radiation—in our case the
light—back to its source with minimal scattering. The application range of such materials
is broad, but probably the best-known application example in the visible light spectrum are
traffic signs. By placing retroreflective foils on the traffic signs, the incoming light from the
car is mostly reflected back towards the car and therefore can be seen by the driver. In the
following, we utilize the retroreflective characteristics of different colored foils. As shown
in Figure 1, the light source and the receiving RGB photodiode are placed closely together
on the VLS unit so that, by exploiting the attribute of retroreflection, one can assume that
the light emitted from the LED is mostly reflected backwards to the receiving element,
the RGB photodiode. Retroreflective foils were also chosen since they are available in a
broad range of colors as well as in different setups, like the ones from the vendors 3M and
Orafol. These foils are usually available as sheets of variable lengths and have an adhesive
backside, so that they can be placed very easily on objects. Overall, the utilized foils are
very easy to handle since they can be easily cut to the desired sizes and shapes. This is one
of the main advantages of such foils compared to other materials such as (colored) mirrors.
Five of the differently colored foils that were used for the study were purchased from the
vendor 3M (production family 4000 [27]). These colors and their respective production
codes are given in Table 1.

Table 1. Colors of the retroreflective foils of the vendor 3M and the corresponding production codes.

Vendor Color Production Code

3M Green 4097
3M Blue 4095
3M Yellow 4091
3M White 4090
3M Red 4092

From the vendor Orafol three different colors of the VC170 family [28], given in Table 2,
were used.
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Table 2. Retroreflective foils of the vendor Orafol with the corresponding colors and the production codes.

Vendor Color Production Code

Orafol White VC 170 #015
Orafol Yellow VC 170 #065
Orafol Red VC 170 #012

The internal buildup of the foils from both vendors is based on light-guiding mi-
crostructures to achieve the retroreflective characteristics. Figure 2 shows the used foils,
with Figure 2a showing the five 3M foils, whilst Figure 2b shows the three Orafol foils.
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Within the experimental setup, described in the following subsection, these foils were
placed on a moving object in different size configurations.

2.3. Experimental Setup

The moving object in the experimental setup is based on a LEGO train (60197 LEGO
City), which was adapted according to the requirements. Whilst leaving only the control
block, the motor and the wheels with its connected platform in its original state, the power
supply was changed to a rechargeable accumulator with a DC/DC converter to guarantee
a more stable supply, compared to the original battery based supply, and much longer
runtimes of the train. The body of the train is made up of black components to form a
cuboid, which is 22.3 cm in length, 4.7 cm in width and 8 cm in height. On top of the cuboid,
the retroreflective foils were placed in the center of the platform. In order to allow for an
easy installment and removal of the foils, the foils with dimensions of 0.7 cm × 4.7 cm
were placed with the adhesive side on black LEGO bricks. The upper side of these utilized
LEGO bricks is plain, whilst the lower side has the known LEGO connection. The different
size configurations of the reflective areas were built-up by placing up to four of these
LEGO bricks beside each other. In our experiments we varied the sizes of the reflective
areas from the smallest dimension of 0.7 cm × 4.7 cm (1 brick) to the largest dimension of
2.8 cm × 4.7 cm (4 bricks), in increments of 0.7 cm. In the following, we will use the names
of Area 1–0.7 cm × 4.7 cm, Area 2–1.4 cm × 4.7 cm, Area 3–2.1 cm × 4.7 cm and Area
4–2.8 cm × 4.7 cm for these different dimensions.

The greyish colored plastic rails, on which the train is moving, were set up to form a
track that resembles the number zero. The straight parts of this track are 115 cm in length.
The VLS unit was placed on a metallic bar facing downwards towards the rails over one of
the straight parts of the tracks. By this, the LED and PD are placed over the center width
of the rails with a distance of 68 cm between the VLS unit and the rails. Additionally, a
simple self-developed infrared light barrier, consisting of a single infrared LED and an
infrared sensitive photodiode, were placed alongside the rails under the center of the LED
light spot. This light barrier was used as a triggering mechanism for the data acquisition.
A detailed sketch of the experimental setup is shown in Figure 3.
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The speed and the direction of the train were controlled via a wireless Bluetooth based
controller unit. The direction of the train was kept constant throughout the experiments.
The speed could be controlled in distinct steps. The chosen speed steps in the experiments
are further on referred to as Speed 1, Speed 2, Speed 3 and Speed 4. The corresponding
average velocities of the train are given in Table 3.

Table 3. Speed steps applied in the experiments and the corresponding average velocities of the train.

Speed Steps Average Velocity

Speed 1 ~0.68 m/s
Speed 2 ~0.81 m/s
Speed 3 ~0.94 m/s
Speed 4 ~1.06 m/s

Applying faster speeds was not possible due to limitations by the utilized train
platform itself. But it can be outlined that the applied speeds are in good accordance with
the reported speeds of robotic platforms such as automated guided vehicles (AGV) used
in factory settings, for example, a max speed of 1 m/s for the Movexx AGV-Basic [29],
autonomous mobile robots in healthcare, for example, TUG T2 with a max, speed of
0.76 m/s [30] or social humanoid robots such as pepper with a reported maximum speed
of ~0.55 m/s [31]. This good analogy between the applied speed settings with the reported
speeds of robotic platforms shows that these speed settings are of relevance for a future
use of the approach to identify and estimate the speed of such robotic platforms.

In the experimental setup the LED, the TIA circuitry and the light barrier were supplied via
an external power supply. The LED was supplied with 3 V and 300 mA, resulting in ~690 Lux
at the surface of the reflective area. The light barrier was operated with 3 V and 100 mA. Each
of the three outputs of the TIA circuitry were connected to a channel of a Keysight DSOS404A
Digital Storage Oscilloscope. The sample rate of the Oscilloscope was set to 5 MS/s. Figure 4
shows the experimental setup in our laboratory with the LED switched on and the labeling of
the components, such as the train, the VLS unit and so forth.

2.4. Algorithm and Conducted Experiments

In [18], we showed the successful classification of differently colored reflective foils
placed on different sides of a small static cube with the VLS unit. In that work, we stored the
different characteristic reflections of the separate foils to build a training set. In the testing
phase, the actual impinging light on the photodiode and consequently the characteristic
spectral composition was compared to the stored training set in order to determine the foil
facing upwards, towards the VLS unit. In the scope of this work, this approach cannot be
utilized in a straightforward manner since it is obvious that the received reflections will
not be stable due to the movement of the object. In contrast to this previous work, the sizes
of the reflective areas are also varied in the present study and a larger number of different
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foils is used. In order to handle these issues, we developed a new solution approach that is
based on a time dependent training as well as assessment of the intensity and the spectral
composition of the received light at the RGB photodiode.
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In general, the designed algorithm consists of two phases—the offline (training) phase
and the online phase. During the offline phase, the algorithm acquires the characteristic
reflected values of the used foil in the respective size configuration and stores the output of
the three channels of the photodiode circuitry over time. The acquisition starts when the
train triggers the light barrier alongside the tracks and is fixed to a constant time period in
which the ADC is acquiring the output values of the photodiode circuitry. In combination
with the applied sample rate of the ADC; this results in a fixed number of samples that
are acquired after the triggering event. After repeating the training runs for one known
scenario (foil, size of reflective area and speed of the train) several times, a reference curve
for this scenario is built-up. The generation of the reference curve of a scenario is described
in the following paragraph.

After finishing the selected number of runs for the scenario the reference curve should
be built for, the output of the three channels of the photodiode circuitry over time is
available for every of these runs. Each run has the same number of acquired samples from
the ADC for each channel of the photodiode, starting with the index 1 (first acquired ADC
sample after the light barrier has been triggered) up to the constant maximum number of
samples. The constant maximum number of acquired samples results from the chosen time
period after the triggering event, in which the ADC should acquire the output values, and
of course the sample rate of the ADC. In the next step, the acquired values of the different
runs are summed up, depending on their index. This means the sample with index 1 of
run 1 is summed up with the sample with index 1 from run 2, the sample with the index 1
from run 3 and so forth. The sample with index 2 of run 1 is summed up with the sample
with index 2 of run 2, and so forth. After the summation, the resulting dataset has the
same number of values as a single run, with the difference that the values are now the sum
values over all runs. In the final step of the reference curve built-up, every value of the
dataset is divided by the number of runs. This results in a dataset that is consequently
named a reference curve and which comprises of averaged values.

To describe a scenario, we introduce a naming scheme, which will be used further on.
The naming scheme always has the vendor of the respective foil at the beginning, 3M or
Orafol. For the Orafol foils furthermore the abbreviation “O” is used instead of the full vendor
name. After the vendor name, the color of the respective foil is given (e.g., red, blue, etc.).
This is followed by the used size configuration, Area 1, Area 2, Area 3 or Area 4. At the end
of the respective names, the speed of the scenario is given (see Table 3). So, for example if
a scenario is named “3M blue Area 2 Speed 1”, this means that a blue 3M foil in the size
configuration of 1.4 cm × 4.7 cm has been placed on the train and that the train was moving at
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a speed of ~0.68 m/s. The training is repeated for all selected scenarios in order to form a set
of reference curves. In the online phase, in the first step, an unclassified dataset is compared
to the different reference curves of each channel by computing the Euclidian distance of each
sample point to the stored reference sample points. An unclassified dataset in this regard is a
run of a scenario, which should be classified. For each available reference curve, the Euclidian
distances between the sample points are computed. In the second step of the online phase,
that reference curve, which yields the minimal sum value for the corresponding color channel,
is reported as the classification result of this color. Consequently, in the third step of the online
phase, a simple majority vote among the three color channels based classification results yields
the final classification. If no majority can be achieved, the result is reported as undecided and
consequently counted as a wrong classification. So, the output of the online phase will either
be a classification result (the estimated scenario) or the report that the scenario cannot be
estimated due to an undecided vote. The whole algorithm was implemented in GNU/Octave
and was run on a conventional office laptop. In our current algorithm implementation, the
data acquisition is started when the triggering event is initiated (train passes the light barrier).
From the triggering event on, 2.5 million samples of all the three color channels were stored in
a binary file format to form the respective dataset. The storing of the dataset to a file was done
by a function of the Keysight oscilloscope, where automated trigger actions can be defined
as soon as a triggering event has occurred. These 2.5 million samples correspond to 500 ms,
which is a sufficient time frame for the train to move through the LED spot beam and the
detection area of the photodiode for the chosen speed settings. The binary file format was
chosen for an easy import in the GNU/Octave program.

The experiments in this work were conducted in one of our laboratory rooms, with the
shades closed to completely block ambient sunlight. Furthermore, during the experiments
we turned off the ambient light in this room, leaving only the LED of the VLS unit as the
single light source.

For the generation of the results presented in this work, we used the following work-
flow. The first step is the manual placement of the chosen foil with the selected size
configuration at the specified location in the middle of the train platform. The second step,
after placing the train on the rails, is to start the movement of the train with the chosen
speed via the wireless control unit. When the train crosses the light barrier, the first dataset
is stored, when the train crosses the light barrier again, the second dataset is stored and so
on. Once a sufficient number of datasets for this configuration of the foil and the selected
speed has been recorded, the workflow is repeated beginning again with the first step of
placing the next chosen foil with its selected size configuration on the train, until all of the
potential scenarios are recorded. In our experimental setup, we conducted 20 runs for each
scenario. The thereby created files are numbered with indexes ranging from 1 to 20. These
files are transferred to the laptop for the execution of the algorithm. For the algorithm
execution and assessment of the performance, the available 20 datasets for each scenario
are split into 10 datasets that generate the reference curves and into 10 datasets that are
used as the online phase of the algorithm as the unclassified datasets. Since the correct
scenario is known for every dataset used in the online phase, it can be easily assessed
whether the output of the online phase is correct or not. All datasets with an even number
as an index are used to generate the reference curves, whilst all files with an odd number
as an index are used as online datasets.

Examples of such generated data are shown in Figure 5, where on the left side (a) the
data for one single run of the scenario “O yellow Area 4 Speed 4” are shown. In the middle
(b) the computed reference curve for this scenario after 10 runs is given. On the left side
(c) the computed reference curve of a different foil at a different speed level, namely the
scenario “3M red Area 4 Speed 1”, is shown. The x-axis shows the sample number, whilst
the y-axis shows the measured output voltage of the corresponding color channel.
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From the curves shown in Figure 5a–c, several conclusions can be drawn. By com-
paring Figure 5a to Figure 5b, it becomes obvious that by accumulating and building the
average over 10 runs, the noise level in the generated reference curve can be reduced. The
comparison of Figure 5b to Figure 5c demonstrates how the speed of the moving object
is affecting the reference curve. Whilst in Figure 5b, the reflective area is leading to a
distinct change in the spectral composition of the impinging light after ~500,000 samples
(~100 ms) after the triggering event (Sample 1), at a lower speed as shown in Figure 5c, this
change can be observed at ~800,000 samples (~160 ms). Analyzing the reference curves
of the scenarios can furthermore give a detailed insight into the differentiation between
the scenarios. This can be achieved in a similar way as to that described for the online
phase of the algorithm, by computing the sum values of the Euclidian distances. For every
sample in the reference curve, the Euclidian distance to the corresponding sample of a
different reference curve can be computed. By applying this to all samples between the two
reference curves and building the sum, a measure of how similar these two reference curves
are is derived. In the following example, the reference curves of all possible scenarios at a
distinct speed level were built. Since the different scenarios include all in all 8 different
foils, each of them with 4 size configurations, this will lead to 32 different scenarios for this
speed level. Therefore, by building the sum value of the Euclidian distances of one scenario
against all the remaining scenarios, a vector of 1 × 31 is generated. Building this vector
for every scenario results in a 31 × 31 matrix containing the sums of Euclidian distances
between the scenarios. By choosing one particular scenario (row of the matrix), it can be
investigated how well this scenario can be distinguished from the other scenarios (columns
of the matrix). Figure 6 shows an example for the scenario “3M red Area 2 Speed 4” as a bar
chart, where the y-axis is the absolute number of the sum of the Euclidian distances for the
respective color channels (shown with their respective color), against the other scenarios
with the same speed setting, given on the x-axis.

In Figure 6, it is clearly observable that the most distinguishable scenario is “3M white
Area 4 Speed 4”. This is based on two facts. First, the white foil reflects the impinging light
for the whole spectrum and second the reflective area has the double size, which leads
to a higher intensity of the reflection. Another observation that can be made is that the
spectral composition of the reflected light leads to a significant distinguishability between
the colored foils. For example, the 3M blue foil differs the most from the 3M red foil in
the signals received in the red channel. Additionally, scenarios that have very little sum
values in one or two color channels can also be identified. These scenarios are more likely
to cause misclassifications since the reference curves in the respective color channels are
more similar. Another possibility is to generate the comparison regarding the different
speed levels of the train. With this comparison a good insight can be generated about how
distinguishable the speed levels are. Figure 7 shows the bar chart for the scenario “3M red
Area 2 Speed 4” compared to the other three applied speed levels of this scenario, with the
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same representations as in Figure 6, where the y-axis gives the absolute number of the sum
of the Euclidian distances for the respective color channels.
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Figure 7. Sum of Euclidian distances between the scenario “3M red Area 2 speed 4” and the scenarios
with the other speed levels for this foil and size configuration.

Figure 7 shows the influence of the speed on the Euclidian distance. It is clearly
observable that the larger the speed difference, the better is the distinguishability. This is a
clear consequence of the time-dependent difference of the reference curves, as can be seen
from comparing Figure 5b,c.

Overall, this comparison, based on the reference curves, can be used in future work in
more critical and challenging environmental settings, for example, lower illumination, to
pinpoint scenarios that will still be distinguishable.

3. Results

We started to generate the results that determine the amount of correct classifications
of the scenarios by training and testing scenarios with the same speed. As described in the
previous section, 20 runs per scenario for four speed levels of the train were performed. If
one considers scenarios with the same speed, this leads to overall 32 reference curves and
320 test cases (10 per scenario).
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The results for Speed 1 show that all 320 test cases are determined correctly. Only in
3 runs of the scenario “O yellow Area 2 Speed 1” the decision was not reached by having
three out of three but having two out of three.

The results for Speed 2 still yield all determinations as correct. For Speed 3, the correct
determination rate is also 100%. At the highest speed level, Speed 4, the results show that 4
determinations are incorrect. The incorrect results are two runs of the scenario “3M blue
Area 3 Speed 4” and two runs of the scenario “3M red Area 2 Speed 4”. For all of these
incorrect results, the classifications were marked as undecided. To recap, an undecided
output means that no majority vote for the three color channels had been reached. With the
overall 320 test cases, an incorrect classification of 4 test cases yields a correct estimation
rate of 98.75 %. The reason why incorrect results only occur at the highest speed level is
based on the much shorter period of time the reflective area is in the detection area of the
VLS unit. As the train moves faster through the detection area, also the time period in
which a meaningful reflection from the reflective area is received is much shorter, please
compare Figure 5a–c. Consequently, the amount of data points that allow for a distinction
between the scenarios are less, since the last third of the samples of the reference curves are
acquired when the train has already left the detection area. Nevertheless, these data points
will play an important role in determining the speed of the train. Table 4 summarizes the
results for the correct determinations of the scenarios for the different speed levels.

Table 4. Results of the scenario determination for the different speed levels.

Speed Level Total Number of Test Runs Absolute Number of
Correct Determinations

Absolute Number of
Incorrect Determinations

Speed 1 320 320 0
Speed 2 320 320 0
Speed 3 320 320 0
Speed 4 320 316 4

Overall, these results show that our solution approach, utilizing retroreflective foils in
different size configurations on a moving target, can perform the task of identification very
reliably. Only at the highest speed setting, four incorrect classifications out of 320 occurred.
Since these determinations are caused by an undecided vote of the three color channels and
not a classification as a wrong scenario, we further improved the determination process for
the case that an undecided vote occurs.

3.1. Optimization of the Decision Process

For cases where the vote is undecided, a second level of decision-making was imple-
mented in order to break the tie and to reach a decision. In this second level, the sum value
of the Euclidian distances of the three estimates is the decisive factor. This means that, in
a case where an undecided vote occurs, the color channel that yields the minimal value
of the computed sum value to its chosen reference curves overrules the votes of the other
color channels, and consequently this decision is then compared to the real scenario in
order to determine a correct or incorrect classification.

We applied this rule and reran the estimation at the highest speed level to determine
the effect of this second level decision making. The results show that all four undecided
results reach a correct estimation with this second level decision. The enhancement of
the decision process improves the overall results to 100% correct identifications of all the
scenarios at all speeds.

3.2. Identification and Speed Determination

In the previous assessments, the main goal was to show the capabilities of the system
for the task of identification. In this section, the task of performing the determination
of the speed of the scenario under test is added. For this purpose, it is necessary to
add all the available scenarios to the training dataset. This means that instead of having
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32 reference curves the unknown scenario is compared to 128 reference curves (32 per
speed). The unknown scenario is then compared to this reference curves by computing the
sum of the Euclidian distances as described in the Algorithm description section, including
the optimization of the decision process, as described in Section 3.1. We reused the same
datasets as in the previous tests.

Since 10 runs per scenario were used in the online phase, in total 1280 classifications
were done during the online phase. A result is considered correct when the vendor of
the foil, the color of the foil, the size configuration and the speed level as determined, all
conform to the real scenario settings.

The results show that, except for one run of the scenario “O red Area 2 Speed 4,” all
the classifications were correct. The scenario was misclassified as “O red Area 2 Speed
3”. A detailed investigation showed that, in this case, the foil and the size configuration
were identified correctly, but the speed was misclassified. Since the speed of the train
can be set to a certain level, but can vary within a specific margin, the misclassification
happened because of such a variation, which led to the wrong determination. The fact that
the speed of the moving object can also be determined solely by the received reflections of
the used foils is achieved by the time depending comparison of the reference curve with
the unknown scenario by the means of the sum of the Euclidian distances. As described
earlier, the reference curves at higher speed levels tend to have no meaningful data after
~2/3 of the acquired 2.5 million samples, since the train has already left the main detection
area. In comparison, at slower speeds in this time period still higher levels of reflected light
from the foils are received. This difference causes that the sum of the Euclidian distances is
high and therefore leads to the clear distinguishability of the scenarios.

The achieved results prove that our solution approach provides highly accurate estima-
tions and is capable of performing not only the identification task but also fulfills the sensory
task of speed estimation of the moving object, without the need for any active component on
that object. Table 5 summarizes the achieved results and the experimental setting.

Table 5. Results of the combined execution of the identification and speed estimation task.

Total Number of
Trained Scenarios Total Number of Test Runs Absolute Number of

Correct Determinations
Absolute Number of

Incorrect Determinations

128 1280 1279 1

4. Implementation Considerations

The results show the general validity of our approach, but for an MCU or FPGA based
implementation, the two following issues must be seen as critical:

1. Sample rate
2. Required memory size

In our experiments, we used a sample rate of 5 MS/s on the Keysight oscilloscope.
Although the utilization of such high sample rates for an FPGA or MCU based implemen-
tation is possible, the design and proper operation requires a certain amount of expertise.
From the thorough inspection of the attained data, we deduced that a reduction of the
sample rate is possible without deteriorating the performance of the system. Utilizing a
lower sample rate would furthermore follow our overall low complexity design approach.
To show the effects of lowering the sample rate in direct comparison to the initially used
5 MS/s, we reused the same data as before, but resampled the signals, acquired by the
oscilloscope and stored in the corresponding files, in the GNU/Octave software.

In terms of required memory for the used implementation in Section 3, we acquired
2,500,000 samples per color channel. After building, the reference curves, these 2.5 million
samples per channel must be stored in order to be available in the online phase of the
algorithm. For the combined estimation of the foil and the size configuration alongside
the estimation of the speed, we need to store 128 of these training datasets. Considering a
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16-bit representation of the numbers, this results in a minimal memory requirement of the
embedded processing unit of 640 MB. This memory must be accessible during the whole
online phase of the algorithm continuously. Reducing the sample rate would also affect the
required memory size directly since the amount of sample points of the reference curves
will decrease.

Figure 8 shows the total number of incorrect determinations (out of the 1280 test runs)
in comparison to the applied sample rates, starting from the left side of the figure with the
highest applied sample rate of 5 MS/s.
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Figure 8 shows that, with a reduction of the sample rate down to ~83 kHz, the same
good results with regard to the tasks of identification and speed estimation can still be
achieved. Below this value, the results start to become volatile, which can be observed
by the fact that the number of incorrect classifications increases to 2 at 71.429 kHz, but
at 50 kHz this number drops again. The reason for this behavior is due to the fact that
at these low sample frequencies only an insufficient number of data points is generated.
At these low rates, the outcome of the reference curve generation and the online test is
basically affected by chance, whether the acquired data points map the course of the curves
detailed enough or not. If it is not detailed enough, this will deteriorate the distances
between the scenarios and therefore also deteriorate the performance of the algorithm.
As already mentioned, if at a certain sample rate (see 50 kHz) this detail is acquired by
chance, the algorithm still can distinguish the scenarios. Since such a contingency must
be avoided in order to guarantee a stable output, the sample rate with the chosen speed
of the object should be kept at 100 kHz or higher. Further analysis of the results for the
“volatile” sample rates shows that down to 25 kHz only the scenarios with the highest
speed levels are affected, whilst the performance regarding scenarios at lower speed levels
remains stable. The reason for this is obvious—at lower speeds the curves peak values
span over larger time periods and therefore even at lower sample rates the characteristics
of the curves are mapped out correctly. Below 25 kHz, also scenarios at lower speed levels
are affected. This leads to the possibility that when the speed of the object is known to be
low, the sample rate can also be decreased further.

Regarding the speed of the object, it was observed that at 100 kHz and above the
highest speed of ~1.06 m/s has no negative effect on the results. It must be noted that a
further increasing of the speed level of the object will cause more incorrect determinations
due to the shorter time period the foils are reflecting light towards the photodiode. This
negative effect will be even the larger the lower the applied sample rate is. Especially when
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the size of the reflective area is small, more incorrect results must be anticipated when the
speed of the object is increased above the value of ~1.06 m/s applied in the experiments.

To relate these findings to the considerations regarding the necessary sample rate
and the required memory size, one can draw the conclusion that by reducing the sample
rate to 100 kHz, the design and operation of such ADC circuits is unpretentious and also
the components in this range are cheaper. For the required memory size this means that,
at 100 kHz, one reference curve consists of 50,000 samples. If we apply the same 16-bit
representation, this would lead to an overall memory requirement of all the reference
curves of only 12.8 MB instead of 640 MB. This expands the range of applicable processing
units and also the components can be expected to be cheaper.

5. Discussion

In this study, we investigated a system that can perform the tasks of identification
and speed estimation of a moving object, which solely rely on the assessment of reflected
light from different retroreflective foils placed on the moving object. We showed that, by
employing an algorithm approach that is based on reference curves to describe a certain
scenario (type of foil, size of reflective area and the speed of the object) and relate an
unknown scenario to the established reference curves, not only the foil but also the size of
the foil and the speed can be determined with highest accuracy. The mathematical method
for establishing the mapping and consequently computing a robust decision parameter
is based on the computation of the Euclidian distances between the reference curves and
the unknown scenario. By applying this method, a time dependent measure of how well
a reference curve and the unknown scenario match can be generated. Building the sum
value of the Euclidian distances finally generates a single parameter for each color channel
that yields the best match for the unknown scenario.

The experimental results prove that this method results in a large number of correct
estimations, with only 1 misclassified scenario out of 1280 tests. In the study, we utilized
eight different foils in four different size configurations, which results in 32 distinguishable
markers that can be placed on an object. The applied speeds of the moving train are in good
agreement with the speeds of robotic platforms such as AGVs, and so forth. Therefore we
would like to outline that our system can be of direct relevance in settings where a mobile
robot needs to be identified, without the need for any active communicating components
(e.g., Bluetooth or Wi-Fi), by simply placing the foils on the robot and performing the
necessary training. Besides the identification and differentiation of different robots (e.g.,
one wears reflective foils of larger size and the other reflective foils of smaller size) and
their speeds, it is also feasible that the moving direction (forward, backward) should be
differentiable, simply by the sequence of differently colored foils (e.g., blue follows red
for a forward movement while for a backward movement in this case red follows blue).
One of the limitations of our approach is the way the object passes through the detection
area, which in our setup is given by the rails the train moves on. For future work, it will
be necessary also to investigate scenarios where the paths through the detection area can
vary. Nevertheless, in current real world applications like autonomous mobile platforms in
factory or warehouse settings, the number of paths a robot moves on is also limited, thus
again showing similarities with our proposed setup.

In the present study, we focused on the task of identification and speed estimation of
the object in the absence of ambient light. In order to outline how this limitation could be
overcome, we would like to refer to [18,32]. In [18] we showed how, by a simple correction
step, the influence of artificial ambient light (fluorescent tubes) can be compensated for by
recording the changed ambient conditions for only one scenario and inferring the necessary
compensation. This compensation can be applied to the trained scenarios, without the
need for a complete retraining of the system. Another possibility to deal with ambient
light is not to utilize the raw values from the photodiode for the corresponding channels,
but to compute relative parameters describing the impinging light on the photodiode.
In [32] we investigated the determination of the direction of a rotation performed by a
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robotic arm, based on visible light sensing of retroreflective foils placed on the robotic
arm. In [32] we utilized the same foils as in this work, with the difference that not the
raw values were utilized but rather relative values. The utilized relative parameters are
the ratios of three channels against each other (Red/Green, Red/Blue and Green/Blue)
and the difference between the channels (Red–Green, Red–Blue and Green–Blue). The
experimental results showed a good resilience of these parameters against the influence
of ambient light (switching on artificial lighting by fluorescent tubes in addition). Since
in [32] the same foils were used, we can reason that this approach is also directly applicable
to the application scenario discussed in this work.

One of the envisioned applications of our proposed system could be in a factory or
warehouse with many autonomous mobile robots moving along certain tracks or paths.
The number of moving objects that need to be identified along with their respective speeds
will clearly be higher than the 32 different scenarios we showed in this work. In order to
enable a higher number of distinguishable scenarios, three possibilities can be outlined.
First, incorporating also foils with diffuse reflective behavior, since it can be anticipated
that these foils will be clearly distinguishable from the retroreflective foils due to the
changed intensity of the impinging light on the receiver, caused by the diffuse reflecting
foils. Second, combining retroreflective foils of different colors, for example, 2.1 cm of red
foil and 2.1 cm of blue foil.

The third approach would be to increase the size of the area of one reflective foil
beyond the maximum area of 2.8 cm × 4.7 cm used in this work. This is the most straight-
forward approach, but it must be noted that this solution can only be applied to a certain
extent without further adaption of the system. In this work, we limited the timespan in
which the object moves through the detection area and consequently in which the values
are acquired by the photodiode. In a case where the size of the reflective area is largely
increased, it is foreseeable that this timespan must be adjusted to generate a meaningful
reference curve, since the algorithm relies on the fact that the reflections of the foil are
also captured when the foil leaves the detection area. With the shown reduction of the
requirement regarding the necessary sample rate, an extension of the timespan should not
result in extensive additional computational resource demand, but still will increase the
memory requirement.

6. Conclusions

In our work, we showed that visible light sensing of retroreflective foils on a moving
object can successfully achieve the tasks of identification and speed estimation of a moving
object, without the need for placing any actively powered device or component on the ob-
ject. The results show that, with our utilized low complex hardware and the implemented
algorithm, stable and reliable results in real world experiments can be accomplished. The
retroreflective foils are cheap, immediately available, easy to apply and do not include
environmentally hazardous components or materials, as compared to batteries or accumu-
lators used in actively powered WSN. Our presented solution approach is a good candidate
to relieve the problems on the horizon, such as bandwidth saturation, e-waste or power
consumption, regarding the expected massive increase in IoT devices and applications.
Besides, all the required tasks can be taken over by the obligatory room lighting, which by
exploiting LEDs for lighting, is a highly energy-efficient technology for itself [33].

By analyzing the requirements for an MCU or FPGA based implementation of our
system, we were able to show further possibilities to reduce the demands regarding sample
rate and memory size. Pursuing our investigations, in future works we will expand the
scope of this work to enable the identification of more than the shown 32 scenarios (foil
and size configuration), as well as the exploration of applying machine learning based
approaches to support identification and speed recognition.
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