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Abstract

In the last decade, there has been tremendous progress in identifying genetic anomalies

linked to clinical disease. New experimental platforms have connected genetic variants to

mechanisms underlying disruption of cellular and organ behavior and the emergence of

proarrhythmic cardiac phenotypes. The development of induced pluripotent stem cell-

derived cardiomyocytes (iPSC-CMs) signifies an important advance in the study of genetic

disease in a patient-specific context. However, considerable limitations of iPSC-CM technol-

ogies have not been addressed: 1) phenotypic variability in apparently identical genotype

perturbations, 2) low-throughput electrophysiological measurements, and 3) an immature

phenotype which may impact translation to adult cardiac response. We have developed a

computational approach intended to address these problems. We applied our recent iPSC-

CM computational model to predict the proarrhythmic risk of 40 KCNQ1 genetic variants. An

IKs computational model was fit to experimental data for each mutation, and the impact of

each mutation was simulated in a population of iPSC-CM models. Using a test set of 15

KCNQ1 mutations with known clinical long QT phenotypes, we developed a method to strat-

ify the effects of KCNQ1 mutations based on proarrhythmic markers. We utilized this

method to predict the severity of the remaining 25 KCNQ1 mutations with unknown clinical

significance. Tremendous phenotypic variability was observed in the iPSC-CM model popu-

lation following mutant perturbations. A key novelty is our reporting of the impact of individ-

ual KCNQ1 mutant models on adult ventricular cardiomyocyte electrophysiology, allowing

for prediction of mutant impact across the continuum of aging. This serves as a first step

toward translating predicted response in the iPSC-CM model to predicted response of the

adult ventricular myocyte given the same genetic mutation. As a whole, this study presents

a new computational framework that serves as a high throughput method to evaluate risk of

genetic mutations based-on proarrhythmic behavior in phenotypically variable populations.
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Author summary

In the last decade, there has been tremendous progress in identifying genetic mutations

linked to clinical diseases, such as cardiac arrhythmia. Many experimental platforms have

been developed to study this link, including induced pluripotent stem cell-derived cardio-

myocytes (iPSC-CMs). IPSC-CMs are patient-derived cardiac cells which allow for the

study of genetic variants within a patient-specific context. However, experimentally iPSC-

CMs have certain limitations, including: (1) they exhibit variability in behavior within

cells that are apparently genetically identical, and (2) they are immature compared to

adult cardiac cells. In our study, we have developed a computational approach to model

40 genetic variants in the KCNQ1 gene and predict the proarrhythmic risk of each variant.

To do this, we modeled the ionic current determined by KCNQ1, IKs, to fit experimental

data for each mutation. We then simulated the impact of each mutation in a population of

iPSC-CMs, incorporating variability across the population. We also simulated each vari-

ant in an adult cardiac cell model, providing a link between iPSC-CM response to mutants

and adult cardiac cell response to the same mutants. Overall, this study provides a new

computational framework to evaluate risk of genetic mutations based-on proarrhythmic

behavior diverse populations of iPSC-CM models.

Introduction

The impact of genetic variation on cardiac electrical activity is increasingly understood

through identification and characterization of genetic anomalies in cardiac ion channel encod-

ing genes, and their causal relationship to patient phenotype [1–3]. Understanding how varia-

tion in cardiac genes impacts cardiac function is important for treating and understanding

complex genetic and inherited disorders, distinguishing between benign and hazardous vari-

ants of unknown significance (VUS), and revealing differential responses to drug interventions

[4, 5]. For example, mutations in the KCNQ1 gene have been linked to cardiac repolarization

abnormalities, including long QT syndrome (LQTS) [6], although the impact of specific muta-

tions is often unknown. Genetic defects in KCNQ1 linked to LQTS, known as LQT1, cause a

decrease in the slow delayed rectifier potassium current (IKs), resulting in prolongation of the

action potential at the cellular level and clinical prolongation of the QT interval [7].

Induced pluripotent stem-cell derived cardiomyocytes (iPSC-CMs) have been utilized as a

novel in vitro tool to reveal insights into patient-specific disease mechanisms [8–10].

iPSC-CMs constitute a powerful approach because they are patient-derived cells that retain the

genetic information of the donor patients or cell line and can show patient-specific genotype-

phenotype relationships, including genetic disease phenotypes such as LQT1 [11–16].

iPSC-CMs also have unique potential to provide a human physiological context to evaluate the

impact of a genetic mutation in an in vitro human cardiac environment [17]. iPSC-CMs have

further proven to be a powerful tool in evaluating VUS and linking genetic variants to their

clinical outcomes [18, 19]. However, evaluating the true significance of VUS mutations will

require more than a patient-specific understanding, as a VUS may result in varied phenotypes

both within families and across populations [20, 21]. Currently, evaluation of VUS in

iPSC-CMs population studies are limited by the relatively low throughput approach of patch-

clamp evaluation of cell-specific response [18, 19, 22]. Understanding how variants differen-

tially impact the diverse range of patient genetics across a population will be critical to under-

standing the clinical significance and treatment of genetic disorders.
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The development of computational models that incorporate parameter variation, as a means

to explore all possible population phenotypes, provide a high-throughput way to analyze cardio-

myocyte phenotypic variability [23–25]. Population-based modeling can link known effects of

genetic mutations in a single patient, or an experimental cell model, to the differential effect of a

genetic mutation across a population of patients [26, 27], depending on the collective expression

of all cardiac ion channels [28, 29]. Population-based modeling provides a high-throughput

method to examine trends across diverse cellular phenotypes, while also allowing for mechanis-

tic insights into individual rare events observed in a particular model.

Vanoye et al. recently published a novel dataset of KCNQ1 mutations expressed in Chinese

hamster ovary (CHO) cells, characterized using automated planar patch clamp [30]. The func-

tional changes in KCNQ1 for each mutation can be implemented as relative changes in our

previously developed iPSC-CM IKs model. Using a high-throughput population-based compu-

tational modeling approach, we analyzed differential mutant impact across diverse whole-cell

iPSC-CM phenotypes. We also considered KCNQ1 mutations with known clinical phenotypes

and developed a framework to computationally predict the severity of KCNQ1 mutations.

Additionally, the matched genetic variant models were incorporated into an adult myocyte in
silico to predict mutation impact across a continuum of maturation. In the future, the

approach can be expanded to any cardiac target, genetic perturbations, pharmacological inter-

ventions, and the complex behavior produced by multi-drug or mutant interactions.

Results

iPSC-CM Wild-Type Model Population

The recently developed Kernik et al. 2019 iPSC-CM population provides an ideal system to

analyze cell-to-cell variability in response to genetic mutations within the human physiological

system [31]. The iPSC-CM experimental system has been developed for studying genetic per-

turbations in the true physiological background of a human myocyte [8, 10, 13, 32], and are

being increasingly utilized in the study of VUS [18, 19]. Utilizing a computational model of

iPSC-CM to study the role of cell-to-cell variability in response to genetic mutations is the best

way to ensure an available system for model validation in future studies. The Kernik 2019 pop-

ulation of iPSC-CM models includes experimentally observed variation in kinetic parameters

and maximal conductance for five key ionic currents: IKr, ICaL, INa, IK1, and If. The resulting

population predicts a wider range of whole-cell action potential morphology, which is shown

to be predictive of the experimentally observed range of iPSC-CM action potential morpholo-

gies [31]. Utilizing this population of iPSC-CM models with kinetic variation allows for the

comparison of cell-to-cell variability in response to genetic mutations, including how mutant

kinetics manifest differently depending on kinetics of all other ionic currents. Moreover, inves-

tigating the same genetic perturbations in adult cardiac myocyte models and comparing to

clinical phenotypes, when known, provides additional evidence to support the use of the

iPSC-CM model system for study of genetic perturbation.

Test Set 1:Mutant Model Optimization
We first compiled a set of KCNQ1 mutations that have been identified in terms of both their

effect on the IKs channel and in terms of patient phenotype. This set of mutations is defined as

test set 1 (TS1). To analyze the impact of mutations characterized in TS1, experimental data

from Vanoye et al. was used to develop a computational model of IKs that incorporated the

kinetic effects of each mutation [30]. For each mutant the IKs model (Eqs 1–3) were fit to the

relative change in GKs, V1/2, and k between the wild-type (WT) and mutant KCNQ1. Models

were optimized to fit measurements by Vanoye et al. recorded using automated patch clamp
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[30]. The resulting activation curves (xact,1) and I-V curves for the WT model and each TS1

IKs mutant model are shown in Fig 1A and 1B, respectively. All of the TS1 mutations have

known clinical phenotypes in patients, as detailed in the ClinVar database [33]. Based on Clin-

Var assessments of TS1 mutations, nine mutants are LQTS pathogenic (Y111C, L114P, P197L,

C122Y, E160K, R174C, I204F, A344V, V110I), one mutant is LQTS likely pathogenic (A300T),

one mutant is short QT pathogenic (F279I), one mutant is atrial fibrillation pathogenic

(S209P), and one mutant is likely benign (V207M). Six of the pathogenic mutants in TS1,

which result in insufficient current to measure KCNQ1 current density or V1/2 (Vanoye et al,

supplemental table S4a [30]), were modeled as complete IKs block (GKs = 0pA/pF).

Test Set 1: Predicted Impact of LQT1 on APMorphology
For each mutant in TS1, we replaced the wild-type IKs model in our control population of

iPSC-CM models with the optimized mutant IKs model. This resulted in a population of

Fig 1. Model optimization to test set 1 data. The iPSC-CM IKs model was optimized to experimental data for

KCNQ1 mutations in test set 1 (TS1). TS1 includes only mutations with known clinical phenotypes. Experimentally

observed change relative to the wild-type in Vanoye et al. was used to fit each mutant IKs model [1]. Models were

optimized to data for V1/2, k, and current density. (A) Steady-state activation curves and (B) Current-voltage (I-V)

relationships are shown for each mutant model in TS1. Additionally, complete IKs block (GKs = 0) was included to

represent mutations resulting in insufficient current density to allow measurement. Complete block is not included in

panel A, for clarity.

https://doi.org/10.1371/journal.pcbi.1008109.g001
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iPSC-CM models for each mutation. For a selection of mutations, a subset of APs are shown

for the WT and mutant in Fig 2A–2C. It can be seen that some cells within the population are

more susceptible to mutations, with several iPSC-CM models showing considerably more pro-

longation in action potential duration (APD). Total IKs block and the I204F mutation fall into

this category. For each model in each mutant population, AP morphology markers were mea-

sured and compared to WT behavior in the same cellular model. The results of this analysis for

APD50 and APD90 are shown in Fig 2D.

The TS1 mutations resulted in a population of 11091–10887 models that were spontane-

ously beating and fully repolarizing (AP amplitude over 70 mV, resting voltage over 40 mV,

and no repolarization abnormalities). Models with repolarization failures did occur and are

included in the study as exemplars of pathogenic behavior. The models which developed repo-

larization failure after implementing each mutation were tracked and reported as a percentage

of the total WT population in Table 1. Severe mutants had the highest percentage of models

excluded from the population due to repolarization abnormalities.

Previous studies have suggested that utilizing only AP prolongation as an indicator of criti-

cal change to AP morphology is an inadequate indication of proarrhythmic phenotypes [34,

35]. To further analyze the predicted impact of KCNQ1 mutations on iPSC-CMs, each cell in

each mutant population was also simulated for 40 beats with a physiological noise current. The

beat to beat variability of APD90 (defined in methods) and triangulation of the APs (APD90-

APD30) was analyzed following a simulation with applied noise. The bar graph in Fig 2D

shows the result of this simulation for each mutation as a percent change compared to the

wild-type population, as well as the change in APD90 and APD50 compared to the wild-type

population.

TS1: Development of an LQTS Severity Indication

After comparing iPSC-CM AP morphology and temporal responses to perturbation by

KCNQ1 mutations, we developed a framework to categorize the predicted severity of response

to each mutant. We considered three criteria in developing a severity test to classify each IKs

mutation. We considered the following criteria for each cell in each mutation population:

1. Increase in the triangulation across 40 beats with physiological noise in the mutant com-

pared to the WT.

2. Increase in average beat-to-beat variation across 40 beats with physiological noise in the

mutant compared to the WT.

3. Increase in APD90 compared to the WT.

For each mutant population, we considered the percent of cellular models which surpassed

a given threshold for the three criteria above. Using this framework with a 4% threshold, we

stratified the mutation populations in TS1 to determine the severity of each mutation. The

results of this stratification are shown in Fig 3A for TS1. We tested a range of thresholds (4, 5,

8, 10, 15, and 20% change) and saw the same relative stratification of TS1. A comparison of 3

tested thresholds (4%, 8%, and 10%) are shown in Table 1. The table shows the level of clinical

of severity (colored in red, yellow, blue and green) based on the ClinVar assertion for each

mutation.

In Fig 3B, we show examples of how the criteria and thresholds were applied for example

mutant populations. Percent change compared to WT was calculated for each of the three cri-

teria (Fig 3B, left: triangulation and beat-to-beat variation; Fig 3B, right: beat-to-beat variation

and APD90). All cells in the example mutant population are shown in Fig 3B as individual dots
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Fig 2. Population-based modeling results for test set 1 mutations in iPSC-CMs computational models. (A) For a random subset of

the model population (n = 2818), APs are shown for wild-type (grey) and complete IKs block (0 GKs, red). (B) For a random subset of

the model population (n = 2826), APs are shown for wild-type (grey) and the I204F mutant (orange). (C) A random subset from the

model population (n = 2826) are shown for APs for wild-type (grey) and the V207M mutant (purple). (D) For each mutant cell in TS1,

action potential duration 90% (APD90), APD50, action potential (AP) triangulation, and APD90 beat-to-beat variability were computed

relative to the wild-type. AP Triangulation (APD90-APD30) and beat-to-beat variability (|APD90,n-APD90,n+1|, for beat n) were

averaged over 40 beats with a physiological noise current. The bar graph shows the mutant population average and standard deviation

for each output. APs for mutations highlighted with colored stars are shown in panel A-C.

https://doi.org/10.1371/journal.pcbi.1008109.g002
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in the scatter plot. The model cells that met all three criteria above the 4% threshold are

highlighted in red for the IKs knockout, yellow for the F278I mutation, and green for the

V207M mutation. All cells below the threshold criteria are indicated by a grey dot. Comparing

the most severe mutant (0 GKs) and a low severity mutation (V207M), there is a much-

increased spread in cellular outputs (grey and colored) for the severe mutation. This spread is

due to the greater change in AP behavior, compared to WT, for each cell in the severe mutant

population. Additionally, there are many more highlighted red points for the severe knockout

mutation, than green highlighted points for the predicted low severity mutation (V207M).

The six KCNQ1 mutations which had insufficient current density to optimize the IKs model

(with either�0% current density measured experimentally relative to WT, or V1/2 could not

be determined), have all been classified as pathogenic LQTS mutations in the ClinVar data-

base. Four mutations (I204F, A344V, V110I, and A300T) classified as LQTS mutations (patho-

genic or likely pathogenic) had sufficient experimental data to optimize a mutant IKs model.

Three of these mutations have all been observed to prolong patient QT interval and are classi-

fied as pathogenic LQTS in the ClinVar database (I204F, A344V, V110I). Additionally, A300T

has been observed to prolong the QT interval in a clinical study, but it is either a recessive vari-

ant or has incomplete penetrance in patients [36]. These 4 mutant populations, as well as the

population with 0 GKs, were predicted to fall into the highest severity stratification in our

computational analysis, as shown in Fig 3A.

One mutation included in TS1 is classified as a likely benign variant in the ClinVar database

(V207M) and falls in the benign stratification shown in Fig 3A. Finally, there are two muta-

tions which are classified as pathogenic, but for diseases other than LQT (non-LQT patho-

genic) as follows: The S209P mutation falls at the lowest severity stratification of our analysis

Table 1. Comparison of ClinVar and Computational Results for TS1.

Mutations ordered by size of subpopulation above threshold: Repolarization Failure (%)

4% 8% 10%

Y111C� Y111C� Y111C� 4.7

L114P� L114P� L114P� 4.7

P197L� P197L� P197L� 4.7

C122Y� C122Y� C122Y� 4.7

G179S� G179S� G179S� 4.7

R231C� R231C� R231C� 4.7

L236R� L236R� L236R� 4.7

R174C� R174C� R174C� 4.7

I204F I204F I204F 4.4

A344V A344V A344V 4.3

V110I V110I V110I 4.0

A300T A300T A300T 3.8

F279I F279I F279I 3.5

V207M V207M V207M 3.0

S209P S209P S209P 2.9

LQTS

LQTS Likely Pathogenic

Non LQTS pathogenic

Likely Benign

�modeled as GKs = 0A/F

https://doi.org/10.1371/journal.pcbi.1008109.t001
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and clinically has been associated with atrial fibrillation (AF). In the clinical study, an AF

patient with the S209P mutation, the affected patient had no difference in corrected QT (QTc)

interval compared to the unaffected family members [37].

Finally, there was one mutation (F279I) in TS1 which was not clearly categorized by our

analysis. Interestingly, there is also some lack of clarity in other experimental studies character-

izing this mutation. Clinically, F279I has been classified as a short QT syndrome mutation in

Fig 3. Demonstration of an LQTS severity framework for test set 1. (A) Stratification of LQT severity using threshold criteria for

APD90, Triangulation, and Beat-to-Beat Variability. Red corresponds to the most severe LQTS mutations, green corresponds to

benign mutations for LQTS, and yellow highlights the region of severity which cannot be classified utilizing the known clinical

phenotypes. (B) Three example mutant populations with colors indicating the subpopulation of cells meeting the set criteria. Red

highlighted points in the top row represent the 8.97% of model cells in the 0 GKs population surpassing the 4% threshold for all three

criteria. Yellow highlighted points in the middle row represent the 1.71% of model cells in the F279I population surpassing the 4%

threshold for all three criteria. Green highlighted points in the bottom row represent the 0.09% of cells in the V207M population

surpassing the 4% threshold for all three criteria.

https://doi.org/10.1371/journal.pcbi.1008109.g003
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the clinical study by Moreno et al., where they also examined the impact of the mutation on

current density in COS7 cells with mutant vs. WT KCNQ1 and observed a gain of current den-

sity [38]. This is the opposite effect for F279I mutant KCNQ1 current density observed in the

Vanoye et al. data used to optimize our mutant model. The Vanoye et al. data showed a 32%

reduction in current density with the F279I mutation. Our framework predict that F279I falls

in the range that cannot be clearly classified as pathogenic or benign. This range is highlighted

in yellow, between the dashed lines, in Fig 3A.

Based on the 4% threshold and the ClinVar assertions, we determined “cut-offs” for patho-

genic and benign mutants, represented as the dashed lines in Fig 3A. The cut-off for patho-

genic mutants was set for mutants with more than 4.6% of model cells surpassing the above

three criteria (top dashed line, Fig 3A). The cut-off for benign mutants was set for mutants

with less than 0.25% of model cells surpassing the above three criteria (lower dashed line, Fig

3A).

Test Set 2: Comparison of phenotypic variability within mutation
populations
Using the model optimization process shown in Fig 1 for TS1, we optimized the iPSC-CM

model IKs to reflect kinetics and density measured from test set 2 (TS2) mutants. Only muta-

tions with sufficient current density to measure V1/2 were included in the analysis. The opti-

mized models of IKs for each mutation are shown in Fig 4A and 4B. A population of iPSC-CM

models was made for each TS2 mutant, as described above for TS1.

Analyzing the cellular models within the TS2 mutant populations reveals profound pheno-

typic variability resulting from a given mutation. For example, individual cellular responses to

two high severity LQTS mutations in TS2 are shown in Fig 4C–4H. The T104I and P197S

mutations resulted in the largest mean APD90 prolongation (T104I) and the largest increase in

AP triangulation (P197S). In comparing populations containing each of these mutants, we

observed that some individual iPSC-CM models within the population were more sensitive to

T104I (Fig 4C–4E), while a subset of different iPSC-CM models from the same population are

profoundly sensitive to P197S (Fig 4F) and exhibit extensive cellular level disruption. Still,

other example models are similarly impacted by both mutations (Fig 4G and 4H).

To further analyze mechanisms of differential response to the T104I and P197S mutations,

we examined the underlying currents and response to a physiological noise current for the

example models shown in Fig 4C and 4F. The ionic current behavior underlying the AP in

each of these two cells are shown in Fig 5A and 5B. In example cell 1, the T104I mutation

causes longer AP prolongation than P197S (Fig 5A). This difference in AP prolongation is

driven primarily by the larger depletion in total IKs current caused by the T104I mutation.

Example cell 1 exhibits similar mutant response when both mutations are modeled by GKs

scaling alone (S1 Fig). Additionally, when the physiological noise current is applied (Fig 5C),

P197S maintains a shorter APD than the same cell with the T104I mutation (Fig 5D). How-

ever, the opposite trend in AP prolongation is observed in example cell 2. In cell 2, P197S pro-

longs the AP more than T104I (Fig 5B). The shift in the time course of IKs during the AP

caused by the P197S mutation results in an earlier peak IKs, with near 0pA/pF IKs at the end of

the AP (Fig 5B, orange, Time > 500ms). Example cell #2 model is more sensitive to the deple-

tion in repolarizing current at the end of the AP, in part due to the balance of IKr and ICaL.

Thus, the lack of IKs at the end of the AP in the P197S model results in the more severe AP pro-

longation for the P197S mutant compared to the T104I mutation. This is most clearly illus-

trated by the net current (IKr + IKs + ICaL) during the AP (Fig 5B, bottom panel), with the

P197S mutation resulting in less net repolarizing current late in the AP. If the P197S and
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Fig 4. Model optimization for test set 2 (TS2) and sample APs comparing selected mutations in TS2. (A) Steady-states activation

and (B) IV relationships resulting from optimization of the iPSC-CM IKs model to fit experimental results for TS2 mutations. (C-H)

Wild-Type (black), T104I mutant (blue), and P197S mutant APs are shown for several sample iPSC-CM models within our

population. Mutations were selected to demonstrate the greatest average APD90 prolongation (T104I) and greatest average increase in

triangulation (P197S) in TS2. (C-E) A selection of computational models from the population that showing more impact of the P197S

mutation than the T104I mutation. (F) One computational model from the population responds to the T104I mutation with more AP
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T104I mutants are modeled as GKs scaling alone (S1 Fig) the increased P197S prolongation is

not observed. Thus, this increased AP prolongation due to P197S is captured due to the

mutant model optimization to kinetic parameters (V1/2 and k). When the physiological noise

current is applied, as shown in Fig 5E, the P197S mutation causes some APs to have repolariza-

tion abnormalities, as indicated by orange stars. As cell #2 is shown to be sensitive decreased

new current late in the AP, the physiological noise current in the P197S mutant model is suffi-

cient to prolong the AP further, and cause EADs.

Test Set 2: Predicted LQTS Severity

Using the populations of iPSC-CMs models we predicted and classified the severity of each

mutation in Test Set 2 (TS2) by applying the framework developed for TS1. The results of this

analysis are shown in Fig 6A, where the color gradient indicates severity from high (red) to

unclear phenotype (yellow) to mild (green). Fig 6B shows a more detailed analysis of the three

exemplar mutations (one from each category, severe, unclear and mild LQTS risk) from TS2

where impacts were simulated in a population of iPSC-CM models. The categorization criteria

(increase in beat-to-beat variability, APD90 prolongation, and increase in triangulation) as

shown in Fig 6B.

The predicted severity of each mutation is compared to the Vanoye et al. predicted severity

in Table 2. Vanoye et al. used the patch clamp acquired current density data for each KCNQ1

mutation to categorize severity of each mutation (Severe loss of function (LOF) mutations at

<25% of WT current density, mild LOF 25–75% WT current density, etc.). Table 2 also shows

the percentage of the wild-type model population excluded due to lack of spontaneous beating

or repolarization failures for each mutant population. In general, severe mutations caused

more repolarization abnormalities in the model population, resulting in a higher percentage.

Notably, GOF mutations (P197L, R109L, and H105L) also caused an increase in the num-

ber of models with repolarization failure. Characterization of the GOF mutations are shown in

Table 3. GOF function mutation severity was examined using the same 4% threshold for beat-

to-beat variation and triangulation criteria, as done for the LOF mutations. The criteria for

APD90 was defined as the subpopulation of models with a 4% or more shortening of AP dura-

tion, compared to WT. However, without available clinical pathogenic characterization of

GOF mutations, it is not possible to validate the predictions of pathogenic severity as was done

for the comparison of TS1 and TS2 for LQT1.

The increase in repolarization failure occurs in part because the increase in IKs due to GOF

mutations can also cause increase in resting voltage of the AP. GOF mutations P197L, R109L,

and H105L cause an average increase in maximum diastolic potential (MDP) of 0.5, 0.13, and

0.08 mV, respectively compared to WT. Severe LOF mutations I227L and V162M cause an

average decrease in MDP of -0.13 and -0.16mV, respectively compared to WT. Due to sponta-

neous beating of all iPSC-CM models in the wild-type population, and the wide variability in

our model populations, some model cells are highly sensitive to small changes in resting mem-

brane voltage. An example of repolarization failure caused in part by instability in the resting

membrane voltage is shown in Fig 7A. Repolarization failure was defined as failure to reach

AP amplitude above 70 mV (see methods). Stabilizing the membrane voltage by simulating the

same cell with an increase in IK1 can rescue the repolarization failure, as shown in Fig 7B.

Increase in IK1 has also been shown to stabilize the iPSC-CM AP in several experimental stud-

ies [39–41].

prolongation than in response to the P197S mutation. (G-H) Example computational models from the population with similar

response to both the T104I and P197S mutation.

https://doi.org/10.1371/journal.pcbi.1008109.g004
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Fig 5. Comparison of ionic currents and response to physiological noise current in T104I and P197S mutant

models. Sample action potentials from simulated cells with differential response to the T104I and P197S mutations are

shown with their underlying currents. (A) Example cell #1 shows more AP prolongation in response to the T104I

mutation. The underlying behavior of IKr, IKs, and ICaL is shown during the AP, as well as the sum of these three

currents (IKr + IKs + ICaL). (B) Example cell #2 shows more AP prolongation in response to the P197S mutation. The
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underlying behavior of IKr, IKs, and ICaL is shown during the AP, as well as the sum of these three currents (IKr + IKs

+ ICaL). (C) Example of the physiological noise current applied to the cellular models to track beat-to-beat variability in

response to noise. (D) Response of example cell #1 with physiological noise current. (E) Response of example cell #2

with physiological noise current. The application of low amplitude noise current reveals repolarizations abnormalities

in the P197S mutation, as indicated with orange stars.

https://doi.org/10.1371/journal.pcbi.1008109.g005

Fig 6. Prediction of LQTS severity in test set 2 using a population-based approach. The severity sorting framework was applied to

test set 2 (TS2). TS2 includes mutations with unknown clinical phenotypes. (A) Predicted stratification of LQTS severity for TS2. Red

corresponds to the most severe LQTS mutations, green corresponds to benign mutations for LQTS, and yellow highlights the region of

severity which cannot be classified utilizing the framework developed with TS1. (B) Three example mutant populations showing the

subpopulation of cells meeting the set criteria. Red highlighted points in the top row represent the 7.28% of cells in the I227L

population which surpass the 4% threshold for all three criteria. Yellow highlighted points in the middle row represent the 1.96% of

cells in the A150T population which surpass the 4% threshold for all three criteria. Green highlighted points in the bottom row

represent the 0.16% of cells in the F127L population which surpass the 4% threshold for all three criteria.

https://doi.org/10.1371/journal.pcbi.1008109.g006
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Our model predictions are in good agreement with the reported data in the literature for

the mutations in TS2 [42–49]. Interestingly, R195Q and Q107H were classified as mild LQTS

mutations in the recent study by Vanoye et al, whereas our method (which utilized the Vanoye

data) rather suggested a severe pathogenic phenotype, consistent with other in silico
approaches [42, 43]. Additionally, while Vanoye et al. classified the T153M mutation as a mild

loss of function, the cellular level iPSC-CM computational model method predicts T153M to

be benign. In the simulated T153M mutant population, 0.14% model cells are above all three

Table 2. Comparison of Vanoye et al. and Computational Results for TS2.

Vanoye et al. Analysis Computational Modeling Results

Mutation Current Density (%,

exper.)

Mutation (Colored by Vanoye

Classification)

Models meeting criteria

(%)

Modeling Severity

Prediction

Repolarization Failure

(%)

P197S 0.17 P197S 9.94 Severe LQTS 6.1

R192C 0.21 I227L 7.22 Severe LQTS 4.4

T104I 0.22 V162M 7.05 Severe LQTS 4.0

I227L 0.22 T104I 6.83 Severe LQTS 4.4

C136F 0.23 R192C 4.86 Severe LQTS 4.5

V162M 0.24 V215G 4.73 Severe LQTS 3.9

V215G 0.33 Q107H 4.55 3.8

Q107H 0.36 R195Q 4.55 3.9

V241I 0.44 E146K 4.44 3.8

K218E 0.46 V241I 3.70 3.0

R195Q 0.49 C136F 3.51 4.4

T144A 0.5 K218E 3.21 3.7

A150T 0.58 A150T 1.93 3.6

M210I 0.63 L187P 1.95 3.5

E146K 0.65 T169M 1.06 3.4

T169M 0.65 T144A 1.00 3.4

V133I 0.67 V129I 0.74 3.3

T153M 0.67 M210I 0.72 3.4

L187P 0.68 A150G 0.62 4.1

F127L 0.8 V133I 0.36 3.6

V129I 0.83 P197L 0.23 Benign LQTS 12.3

A150G 0.93 R109L 0.23 Benign LQTS 11.1

H105L 1.31 T153M 0.14 Benign LQTS 3.0

P197L 1.47 F127L 0.16 Benign LQTS 5.3

R109L 2.23 H105L 0.09 Benign LQTS 6.3

Severe LOF Mild LOF

Near Normal Normal
Severe GOF

https://doi.org/10.1371/journal.pcbi.1008109.t002

Table 3. Computational Results for GOF mutations.

Mutation Models meeting SQT criteria (%) Repolarization Failure (%)

P197L 9.56 12.3

R109L 2.37 11.1

H105L 0.01 6.3

https://doi.org/10.1371/journal.pcbi.1008109.t003
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prediction criteria, and similarly our model predicts 0.09% model cells above all criteria for

V207M mutant, a TS1 clinically benign mutant. This is consistent with the likely benign ratio-

nale discussed in the ClinVar entry for the T153M mutation [44]. Similarly, our approach pre-

dicted the C136F mutation to be less severe than the Vanoye et al. classification. Based on the

distribution of the severity of mutations in TS1, C136F falls into the range of risk outputs

which are not predicted by our framework as conclusively pathogenic or benign. This may be

due to the fact that mutations within this range have incomplete penetrance or require addi-

tional environmental, pharmacological, or genetic perturbations to cause a pathogenic pheno-

type. This is consistent with the literature for five other mutations in TS2 which fall within this

range (C136F [45], A150T [46], T144A [47], L187P [48], and K218E [49]).

It should be noted that the expression of these mutant channels is expected to vary from

cell-to-cell and patient-to-patient. Furthermore, TS1 and TS2 variants were characterized by

Vanoye et al. in a homozygous state, as opposed to being co-expressed with the WT channel in
vitro. Within the homozygous state there is some experimentally observed variation parame-

ters, including current density. This variability was not included in TS1 and TS2. S2 Fig (S2

Fig) shows example APs resulting from simulating variability in mutant maximal conductance.

Example Cell 1 from Fig 5, is simulated using the base mutant model from TS2, compared to

mutant models with variable current density within 2-times the experimentally observed stan-

dard error. While variation in the maximal conductance will cause some variation in disease

phenotype, this variation is relatively small compared to the range of WT phenotypes included

in the model population. To study the heterozygous state, test set mutants were expressed with

the WT allele and characterized in Vanoye et al., as a model system for determining autosomal

dominant traits. Based on the homozygous variant data, as discussed previously for TS1 and

TS2, the selected mutants were all characterized as pathogenic in Vanoye et al. and our model

system. Additionally, we have simulated model populations with IKs optimized to the

Fig 7. Example of repolarization irregularity in gain of function (GOF) mutant. (A) Sample action potential

showing repolarization irregularity in P197L mutant, a GOF mutation, compared to wild-type. (B) Stabilization resting

potential by increased in GK1. GOF mutant causes expected shortening of AP duration, and increase in GK1 prevents

repolarization irregularity.

https://doi.org/10.1371/journal.pcbi.1008109.g007
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experimental data collected from the WT/variant heteromultimeric channels, as shown in S3

Fig (S3 Fig.). Consistent with the Vanoye et al. results, the mutant phenotype was consistently

less severe when the model is fit to the WT/variant data, rather than the variant/variant data as

shown in Figs 4 & 6. However, only one mutant characterized in the WT/variant system has a

known clinical pathogenic phenotype (G314S), and the majority of variants characterized have

a similar impact on the model population, compared to the known pathogenic variant (S1

Fig.). Three mutants (I227L, V162M, G179A) seem to have a less severe whole-cell impact in

the heterozygous system, consistent with the conclusions from Vanoye et al. As only one

mutant with known clinical phenotype (G314S, pathogenic) was characterized in this hetero-

zygous system, it is not presently possible compare a clinically know and unknown set of

mutants, as was done for TS1 and TS2 in this study.

Validation of KCNQ1 mutation effects in adult ventricular model

In this study, we have examined the effects of a variety of KCNQ1 mutations in two test sets,

TS1 and TS2 by predicted the impact of individual mutants in iPSC-CMs models. However,

an important drawback of the iPSC-CM approach as both an experimental and simulated

model system is that there is no clear way to determine how the model outputs will relate to

adult phenotypic manifestation of genetic variants. For this reason, we next developed an

adaptation for the computational models of KCNQ1 mutants that we tested in the iPSC-CMs

models to allow for prediction of their effects on the adult cardiac ventricular myocyte (model

formulation is described in the methods). Fig 8A shows the predicted relationship between

APD90 and APD triangulation for each mutation in the Mann et al. optimization of the

O’Hara-Rudy (ORd) adult ventricular cell model[50, 51]. The Mann et al. global optimization

of the ORd model results in increased model APD prolongation is response to pathogenic

LQT mutations, as compared to the original ORd Model. Interestingly, the mutations which

were predicted to result in the most severe phenotypes in the iPSC-CM modeling approach

also show the largest increase in AP duration and triangulation in the adult ventricular cell

model. The mutation effects on the AP are shown for example mutations in Fig 8B–8D, and

the trend across all 33 mutations analyzed is in consistent agreement with the predictions from

the iPSC-CM population.

Discussion

Induced pluripotent stem-cell derived cardiomyocytes (iPSC-CMs) are a promising reagent

utilized in a variety of methods to reveal human cardiac behavior in a physiological context

and expand understanding of cardiac disease and drug response. Currently, the use of

iPSC-CMs is limited by three main factors: (1) difficulty in representing phenotypic variability

experimentally, (2) low throughput electrophysiological measurements, and (3) the immature

phenotype may not accurately represent adult cardiac behavior in all conditions. In this study

we developed a computational modeling and simulation approach to address all three limita-

tions and serve as a complementary approach to in vitro studies.

We utilized experimental data describing KCNQ1 kinetics and current density in CHO

cells to develop computer models of normal and mutant cardiac slowly activating delayed rec-

tifier potassium current IKs. Through development of these computational models, the impact

of each mutation can be observed within the cellular context, in order to reveal the mutation

effect on whole-cell behavior. The wild-type and mutant current models were incorporated

into populations of iPSC-CM computer models that we recently developed and described [31].

By making predictions across a population of computer models representing the observed

range of cell-to-cell variation in iPSC-CM electrophysiology, we were able to predict the
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Fig 8. The predicted impact of IKs mutations from test set 1 and test set 2 in the O’Hara- Rudy computational model of the

adult ventricular cardiomyocyte. (A) Each mutated IKs model was adapted for the adult ventricular cardiomyocyte model by

incorporating relative changes in gating. APD90 and triangulation of the Mann et al. optimization of the O’Hara-Rudy

computational model of the adult ventricular cardiomyocyte with each mutant IKs model is shown for three pacing rates with basic

cycle lengths (BCL) or 750 ms, 1000 ms, and 1250 ms. Starred mutations (�) are from test set #1 (TS1), remaining mutations are

from test set #2 (TS2). The color of each mutation is determined by the designated classifications in the iPSC-CM model

populations, as shown for TS1 (Fig 3A) and TS2 (Fig 4A). (B) The adult ventricular cellular model AP for wild-type (grey, dashed)

and I204F mutant (red) at cycle length (CL) 750 ms. (C) The adult ventricular cellular model AP for wild-type (grey, dashed) and

A150T mutant (yellow) at CL = 750 ms. (D) The adult ventricular cellular model AP for wild-type (grey, dashed) and F127L

mutant (green) at CL = 750ms.

https://doi.org/10.1371/journal.pcbi.1008109.g008
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impact of mutations on a computer-based representation of diverse genetic backgrounds and

thus observe rare events. The framework allowed for an efficient mode of analysis for many

the range of emergent behaviors arising from mutations. The range of observed behaviors

indicate that population modeling has some advantages over previously developed approaches

which focus on average cellular level impacts of mutations [52].

Experimental data describing functional impacts of mutations with known clinical pheno-

types were labeled test set 1 (TS1). Data from this group of mutations was used to develop a

computational framework for assessing LQTS severity. By applying random parameter varia-

tion from within experimentally reported data ranges to develop a population of iPSC-CM

models [31], we predicted a wide range of phenotypic responses to each mutation.

We stratified the TS1 iPSC-CM mutant model populations by severity through tracking the

fraction of model cells that exhibited diseased phenotypes. We tracked multiple parameters

including AP prolongation, AP triangulation, and beat-to-beat variability. The model correctly

separated mutations that were observed clinically to be pathogenic or benign. Using these

results and the clinically observed outcomes for the TS1 mutants, we determined pathogenic

“cut-offs” and then applied them to predict the severity of mutations in test set 2 (TS2). We

also assessed the impact of all mutants in the adult setting by simulating their effects in the

O’Hara-Rudy adult cardiac ventricular myocyte model. It was notable that the predicted

impacts of individual mutations in the immature iPSC-CM mutant model populations were

consistent with the predictions that emerged in the adult model cell populations, suggesting

that the iPSC-CM model system may indeed provide valuable and relevant genotype pheno-

type information.

Comparing the predictions from experimental data in Vanoye et al., where the authors uti-

lized ionic current as the severity indicator and our computational model framework that

relies on whole-cell membrane potential predictions (Table 2), reveals some differences arising

from the two approaches. While Vanoye et al. classified the T153M mutation as a mild loss of

function, the cellular level iPSC-CM computational model method predicts T153M to be

benign. It should be noted that the Stanford Center of Inherited Cardiovascular disease sub-

mission in ClinVar for this disease categorizes the mutation as likely benign due to its com-

mon minor allele frequency (MAF) in the general population, but a lack of confirmed LQTS

diagnosis [44]. The consistent prediction of the computer model with the ClinVar database

may indicate the importance of a population-based approach where emergent cellular level

phenotype predictions suggest that most genetic backgrounds mask the impact of the

mutation.

The Q107H and R195Q mutations have previously been studied in mechanistic studies,

which predicted the mutations to be likely pathogenic in alignment with our prediction of

these mutants near the pathogenic range. For Q107H, a structural modeling study concluded

that the mutation would destabilize folding, suggesting a disease mechanism [42]. Addition-

ally, the KCNQ1 mutation R195Q was evaluated by Clemens et al. and showed that 6 of 8 in sil-
ico phenotyping algorithms utilizing genetic sequence information classified the R195Q

mutation as pathogenic [43]. The iPSC-CM model population, by accounting for the impact of

other ionic currents, compensatory behavior in the whole-cell, and variability in response

between patients and cells, allows for a more specific interpretation of risk (and associated

score) for mutations between the severe and benign classifications. The predictions suggest

that both Q107H and R195Q fall near the border of severe and mild LQT severity scores (Fig

6) and may be pathogenic for a fraction of patients dependent on the underlying genotype.

The cellular level predictions seemed to even account for incomplete penetrance in a popula-

tion, which is consistent with recessive A300T mutations from TS1 [36], and resulted in a simi-

lar LQTS severity score (A300T = 4.8, Q107H = 4.6, R195Q = 4.6).

PLOS COMPUTATIONAL BIOLOGY A computational model of iPSC-CMs for high throughput risk stratification of KCNQ1 mutants

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008109 August 14, 2020 18 / 28

https://doi.org/10.1371/journal.pcbi.1008109


There are additional instances where the cellular level iPSC-CM computational modeling

and simulation approach did not agree with the Vanoye et al. classification. An example is the

C136F mutation. Based on the distribution of the severity of mutations in TS1, C136F falls

into the range of risk outputs which are not predicted by our framework as conclusively patho-

genic or benign. The range of mild mutations (yellow, Table 2), has an interesting clinical

prevalence in the literature. Three mutations (C136F [45], A150T [46], and T144A [47]) have

each respectively been identified in a single patient diagnosed with LQTS using genotyping of

LQTS patients. However, existence of a mutation in a single patient is insufficient information

to conclude pathogenicity. Although a single mutation in an LQTS-susceptible gene in a

patient exhibiting prolonged QTc may indicate causality, other interpretations include; (1) the

patient has other contributing factors, including genetics, making them especially sensitive to

a mutation, or (2) the patient has a completely separate genetic mutation causing the disease

phenotype.

The alternative gene cause is exemplified in the case of another mutation in TS2: V133I.

The V133I mutation, which our method predicts to be near benign, was identified in a patient

case of sudden cardiac death (SCD). However, it was subsequently discovered that the KCNQ1

V133I was unlikely to be the cause of the SCD, and it was instead caused by a separate patho-

genic desmin contractile protein mutation [53]. This serves as an example where low-through-

put clinical observation in a single patient is insufficient to predict pathogenicity. However, in

combination with the methods presented in this study, we can suggest that a mutation is suffi-

cient to cause disease or suggest the likelihood of an alternative explanation for a given

phenotype.

Two other TS2 mutations (L187P and K218E) which fall within the predicted mild pheno-

type range (yellow, table 2 and Fig 6A) suggest that these mutations may require additional

contributing factors to cause pathogenicity. Zhang et al. studied the L187P mutation in a fam-

ily with some members showing QTc prolongation, but 58% of family members possessing the

L187P mutation had normal to borderline prolonged QTc [48]. This suggests a mild clinical

penetrance of the L187P mutation, which resulted in a VUS classification in ClinVar. The

incomplete penetrance of the L187P mutations may be due to additional gene modifiers, envi-

ronmental factors, or other patient-to-patient variations which protect against or promote the

LQT phenotype in some family members. Prior studies have shown that LQT mutations often

show incomplete penetrance [54, 55], and additional gene modifiers can amplify potentially

pathogenic mutants [56–59].

Another example of mutations that depend on additional perturbations to cause LQTS are

acquired, or drug-induced, Long QT (aLQTS) mutations, where mutations are only associated

with disease phenotypes in the presence of drugs. In TS2, the K218E mutant was associated

with the development of arrhythmias in the presence of dofetilide [49]. Genetic mutations

linked to drug-induced QT prolongation have been observed for many LQT related genes

[60–64], and the mechanisms of these aLQTS mutations has been explored in silico [65, 66].

The iPSC-CM mutant model framework can be readily expanded to include genetic and drug

impacts in future studies.

The evidence shows mutations such as L187P and K218E, which are classified as mild in

the iPSC-CM mutant model predictions, can cause LQTS with concomitant genetic predispo-

sition or additional perturbations. It is possible that other mutations with a similar predicted

outcome (V241I, C136F, A150T, T144A, and T169M) require additional perturbations to

exhibit pathogenic phenotypes. Due to the broad parameter space we sampled in the iPSC-CM

computational model population, we did identify some instances that are particularly suscepti-

ble to LQT and may be representative of naturally occurring genotypes which possess predis-

position to LQT [67]. Patients with multiple mutations in LQTS genes have increased risk of
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life-threatening cardiac events, so it is also possible that a single mutation is safe for most

patients but in combination with additional mutations becomes life threatening [68].

There are several limitations of this study which may impact the severity of the characterized

mutations. The experimental data used to characterize these IKs models was conducted in a

homozygous system, despite that LQTS is often inherited in an autosomal dominant manner. As

experimental characterization of the complete TS1 and TS2 mutations were not been conducted

in the heterozygous state (co-expression of mutant and WT KCNQ1), It is also not possible to

know if in humans, the heterozygous state results in 50% transmission of mutant and WT alleles,

as multiple other states are possible including dominant negative effects and mosaicism. Vanoye

et al. did include an analysis of the most severe homomeric channel phenotypes in the WT/

mutant heteromultimeric channels, as modeled in Supplemental S3 Fig (S3 Fig.). Furthermore,

even in the homozygous state, there can be variability in the maximal current density, as

observed in Vanoye et al. and simulated in S2 Fig (S2 Fig.). Many other factors which may also

impact the severity of these mutations, including activation of the sympathetic nervous system.

Since sympathetic nervous systems has been shown to increase the severity of these mutations,

we would anticipate an increase in severity of mutation. However, as we have only made predic-

tions for TS2 relative to TS2, and both test sets were conducted experimentally under the same

conditions. In the future, this computational modeling approach could be expanded to include

contributions from these pathways, as has been done in other models of cardiomyocytes[69, 70].

Finally, the prediction of the mutation effects in the adult model system represents a first

step toward utilizing phenotypic variability in iPSC-CM modeling to make predictions in the

adult system. In the near future, deep learning based “translation” approaches to convert

iPSC-CM modeling results to adult cardiomyocyte response can be used to expand the method-

ology presented in this study. The analysis of LQT1 mutants in the adult model serves a valida-

tion of the utility of modeling mutations in the iPSC-CM system, while utilizing the phenotypic

variability incorporated in the iPSC-CM model system to examine cell-to-cell variability in

response to mutations. An ideal system would model iPSC-CM mutations, use the iPSC-CM

model system to extrapolate population-based iPSC-CM response to mutations, and translate

the iPSC-CM population to an adult patient-population of models. Utilizing the currently avail-

able experimental data and iPSC-CM modeling approaches, this study is a first step toward

applying iPSC-CM phenotypic variability to understand variation in disease expression.

The modeling approach applied in this study serves as an in silico complement to existing

methods to linking genotype to phenotype. We have utilized experimental and clinical data to

develop IKs mutant models and determine the range of pathogenic and benign behaviors in

the model framework. Together this allowed for the simulation of the impact of LQT1 muta-

tions and VUS on diverse phenotypes and predict the severity of mutations without known

clinical outcomes. Finally, by using a computational model to simulate the impact of mutations

from both the immature iPSC-CM models to the O’Hara-Rudy adult ventricular cardiac myo-

cyte model, we have demonstrated the impact of mutations across the continuum of aging. In

the future, the approach can be expanded to examine additional cardiac mutations or pharma-

cological interventions. Furthermore, a population-based approach will be critical in identify-

ing patient phenotypes that are particularly susceptible to unintended drug effects and

developing multi-drug treatments to mitigate those effects.
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Methods

IKs Model Optimization

As described in our previous study of an iPSC-CM model [31], IKs gating was modeled using

single-exponential rate functions such that:

IKs ¼ GKs � x
2

act � ðVm � EKÞ Eq ð1Þ

xact;1 ¼
1

1þ
x3

x1
eV

1
x4
� 1
x2

ð Þ
¼

1

1þ x6eV�x7
Eq ð2Þ

tx;act ¼
1

x1eV=x2 þ x3eV=x4
þ x5 ¼

1

x1eV�x2
� xact;1

� �

þ x5 Eq ð3Þ

Model parameters x1-5 and GKs were optimized for each mutation simulated. IKs mutants

were optimized based on the shift in V1/2 and k (slope) of steady-state activation (xact,1), and

the current density (GKs). Experimental data reporting the change in each parameter between

cells expressing the wild-type (WT) and mutated KCNQ1 channel, as reported in Vanoye et al,

were used for model optimization. For example, for the I204F mutation Vanoye et al. reported

a 14.8 mV positive shift in V1/2 between the control and mutant experimentally measured acti-

vation curves. Thus, our I204F IKs model was fit to a 14.8 mV shift in V1/2 from our previously

published WT iPSC-CM IKs model. Similarly, the changes in k and current density compared

to WT, as measured experimentally in Vanoye et al., was used to further constrain the steady-

state activation curve and determine GKs, respectively.

Defining Test Sets of Mutations

All mutations modeled were characterized experimentally in Vanoye et al. [30]. The experimen-

tal study included a training set of mutations and a test set of mutations, which served as the

basis of the two sets of mutations modeled in this study: test set 1 (TS1) and test set 2 (TS2). TS1

includes the 15/30 mutations in the Vanoye et al. training set with known clinical phenotypes in

the ClinVar database [33]. Of these mutations 8/15 mutations were modeled as complete IKs

block (GKs = 0), due to insufficient current to characterize these mutations experimentally.

TS2 includes all mutations in the Vanoye et al. test set (25/48 mutants) which had sufficient

experimental data to optimize the IKs model (V1/2, k, and current density). The remaining 23

mutations included in the Vanoye et al. test set had insufficient current to characterize a

model, and would be modeled as complete IKs block, as done in TS1. For clarity we did not

include Vanoye et al. test set mutations which resulted in complete IKs block (E115G, G119R,

Y125D, H126L, L131P, L134P, S140R, F167del, R174H, R174L, W176R, G186C, G189A,

G189E, R190P, R195P, D202G, Q234P, L236P, L236R, G245R, G179A, and S225W). Muta-

tions in TS2 have unknown or conflicting clinical assessments in the ClinVar database.

Implementation of Model Populations

To analyze the impact of individual mutants on whole cell electrical behavior in the simulated

iPSC-CM, we incorporated each IKs mutation in a population of iPSC-CM models developed

previously in Kernik et al. [31]. We utilized the model population which included variation in

five major ionic currents (INa, ICaL, IKr, IK1, and If). In Kernik et al. (2019), variation was mod-

eled by fitting the model to multiple experimental kinetic datasets to predict phenotypic vari-

ability in the electrical response of the whole-cell model. This model population can serve to
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represent phenotypic variability in response to LQT mutations. The published control model

population did not include variation in the IKs model parameters. Here, we applied to pertur-

bations to the IKs parameters to replicate the effect of each mutation and then tested the impact

of the IKs mutant in the population. For example, for the I204F mutant, every cell in the simu-

lated iPSC-CM population contains the six parameters that were optimized to the experimen-

tal data for I204F.

The simulated iPSC-CM population comprised 11422 model cells described in Kernik et al.
[31]. All “wild-type” cells were deemed to have met the inclusion criteria if they were sponta-

neously beating and fully repolarizing (AP amplitude over 70 mV, resting voltage below

-40mV, no alternans, and no repolarization abnormalities). Each IKs mutation was then incor-

porated into each cell in the population and the simulation was allowed to run until steady-

state was achieved. Steady state was defined by a<1% change in minimum ion concentrations

between the first and last beat of a 50s simulation run. Steady-state conditions were the same

as defined for the control iPSC-CM population in Kernik et al. After reaching steady-state

(ranging from 60-600s), a 20s simulation was run starting at steady-state initial conditions,

and AP morphology markers were analyzed. Additional AP properties were then analyzed

during simulation with physiological noise, as described in the next section. Severity indication

analysis was conducted using the model subpopulation that retained normal repolarization

with the mutation based on the inclusion criteria: AP amplitude over 70 mV, no alternans, and

no repolarization abnormalities. This was done in part to account for the impact of the ele-

vated resting potential within the model population, as observed in iPSC-CMs.

Instability of the resting voltage and spontaneous beating due to a lack of IK1 is a critical con-

sideration when utilizing iPSC-CMs as a model cell-type [39]. Due to the lack of IK1, and result-

ing elevated resting potential in some iPSC-CMs, a fraction of LQT1 mutant iPSC-CM model

cells do not produce a complete AP after loss of repolarizing current in LQT. These “incom-

plete” APs were identified as APs with amplitude <70mV. Similar abnormalities are seen exper-

imentally, where injected IK1 was required to observe drug-induced APD prolongation in some

iPSC-CMs [41, 71], or APD prolonging drugs were observed to stop spontaneous beating in

iPSC-CMs [72]. However, cessation of spontaneous beating is not inherently a proarrhythmic

quality of cardiac cells, as normal adult ventricular cardiomyocytes do not beat spontaneously

[73]. To remain consistent between our previous analysis of the wild-type iPSC-CM model pop-

ulation and to allow comparison of mutant and wild-type outputs in each cellular model, mod-

els with repolarization abnormalities were not included in our severity analysis. However,

models which developed repolarization failures in the mutant population were tracked, and the

percentage of models with repolarization failures are listed in Tables 1 and 2.

Physiological Noise Current

Each model cell was subject to a physiological noise current application, with noise applied

after steady state was reached. Each cell was simulated for 40 beats with physiological noise

current applied, and the final beat was saved for analysis. Simulations for test set 1 were under-

taken for variable duration (20, 30, and 40 beats with physiological noise). The duration of the

simulation did not impact the results. The noise current (INoise) was formulated as additive

Gaussian white noise of amplitude 0.045 pA/pF. This amplitude was determined by matching

the amplitude of INoise based on prior calculations of physiological noise current in cardiac

myocytes [74]. For each simulation with INoise, beat-to-beat variability and triangulation were

analyzed. Beat-to-beat variability was defined as the absolute value of APD90,n-APDn90,n+1

averaged for beat n = 1 to beat n = 39. Triangulation of each beat is calculated as APD90-

APD30 for each action potential.
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Adult Ventricular Models

The O’Hara-Rudy (ORd) ventricular model, as optimized by Mann et al. for LQT, was used to

predict adult response to mutants, referred to as the Mann-ORd model [50, 51]. From the orig-

inal ORd model, the Mann-ORd model used in this study includes scaling factors for GKs,

GCaL, the sodium-calcium exchanger (INCX), and the sodium-potassium pump (INaK), opti-

mized in Mann et al. to recapitulate the LQT phenotype in adult ventricular cardiomyocytes.

GKs from the iPSC-CM WT model was scaled by a factor of 3.5 to adapt the iPSC-CM IKs

model to the Mann-ORd whole-cell model. This scaling factor was determined by replacing

the ORd IKs model with the iPSC-CM IKs WT model, and scaling GKs to maintain APD90 from

the baseline Mann-ORd model (APD90 = 248 ms at BCL = 750 ms) For each mutant IKs

model, the same GKs scaling factor was used to convert the iPSC-CM IKs mutant model to the

adult mutant IKs model. All other parameters from the iPSC-CM IKs mutant models were

retained in the adapted adult mutant models.

Supporting information

S1 Fig. Comparison of ionic currents in T104I and P197S mutants modeled with GKs scal-

ing only. Sample action potentials from simulated cells with T104I and P197S mutations mod-

eled by only scaling GKs. GKs scaling factors were the WT-normalized Vanoye et al. current

density measurements (Table 2). Example cell WT models are the same as in Fig 5 (A) Exam-

ple cell #1 shows more AP prolongation in response to the T104I mutation, similar to mutant

response shown in Fig 5. The underlying behavior of IKr, IKs, and ICaL is shown during the AP,

as well as the sum of these three currents (IKr + IKs + ICaL). (B) Example cell #2 shows nearly

identical prolongation in response to T104I and P197S mutations, unlike the model with

mutant IKs kinetics. With mutant kinetics, as shown in Fig 5, there was more prolongation

with the P197S mutant. The underlying behavior of IKr, IKs, and ICaL is shown during the AP,

as well as the sum of these three currents (IKr + IKs + ICaL).

(TIF)

S2 Fig. Simulated APs for WT example cell 1 (as shown in Fig 5) compared with the base

mutant model (as simulated for TS2, shown in Fig 5), and mutant models with ±4% and

±8% change in GKs scaling factor. GKs is scaled to 16%, 20%, 24%, 28% and 32% of WT GKs

for the -8%, -4%, base mutant, +4%, and +8% simulated traces, respectively.

(TIF)

S3 Fig. The severity sorting framework was applied to KCNQ1 mutants characterized in

the WT/variant heteromultimeric channel. The G314S mutant is the only included mutant

characterized as clinically pathogenic, and is highlighted in red. (A) Predicted stratification of

LQTS severity based on percentage of population meeting all three criteria for each mutant.

(B) Table summarizing simulated results for each mutant. Models meeting criteria is the same

as shown in panel A. Repolarization failure is determined as done for TS1 and TS2 in Tables

1–3.

(TIF)
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