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Synchronization enhancement 
of indirectly coupled oscillators 
via periodic modulation in an 
optomechanical system
Lei Du, Chu-Hui Fan, Han-Xiao Zhang & Jin-Hui Wu

We study the synchronization behaviors of two indirectly coupled mechanical oscillators of different 
frequencies in a doublecavity optomechanical system. It is found that quantum synchronization 
is roughly vanishing though classical synchronization seems rather good when each cavity mode 
is driven by an external field in the absence of temporal modulations. By periodically modulating 
cavity detunings or driving amplitudes, however, it is possible to observe greatly enhanced quantum 
synchronization accompanied with nearly perfect classical synchronization. The level of quantum 
synchronization observed here is, in particular, much higher than that for two directly coupled 
mechanical oscillators. Note also that the modulation on cavity detunings is more appealing than that 
on driving amplitudes when the robustness of quantum synchronization is examined against the bath’s 
mean temperature or the oscillators’ frequency difference.

As one of the most attractive phenomena in physics and even the whole natural science, spontaneous synchro-
nization of coupled oscillators has been explored with intense interests recently in various fields like nonlinear 
dynamics1–6, cavity optomechanics7–11, quantum information processing (QIP)12,13, Bose-Einstein Condensates14, 
atomic ensembles15–17 and so on. The synchronization phenomenon was discovered earliest in a classical clock 
pendulum system by Huygens in the 17th ury18 and has been successfully extended to the quantum regime now19, 
e.g., for realizing the synchronous manipulation of quantum information and quantum states. In particular, 
Yamada et al. proposed to use the Lyapunov index as a qualitative criterion in order to determine whether the 
classical synchronization is reached for coupled oscillators20. Subsequently, Mari et al. put forward an effective 
synchronization measure for continuous variable (CV) quantum systems19 with two directly coupled microscopic 
oscillators taken as a good example. Investigations on quantum synchronization in optomechanical systems soon 
achieved great success with relevant experiments done to verify the theoretical predictions21–23, which laid a 
favorable foundation for the further studies and applications.

According to the existing studies, synchronization behaviors between mechanical oscillators usually occur 
in two ways: (i) they exchange energy directly owing to an effective coupling so that their oscillations tend to be 
accordant after a long enough time8,19; (ii) they are restricted to evolve towards a generalized synchronization, 
e.g., by the Lyapunov control of external fields in the absence of a direct coupling9,24. But a mechanical oscillator 
may also be synchronized to a reference drive25,26, thereby allowing the synchronization of uncoupled mechanical 
oscillators in the presence of identical driving fields. Generally speaking, optomechanical systems with directly 
coupled oscillators have a stronger maneuverability in achieving quantum synchronization than those with indi-
rectly coupled oscillators. That is, indirectly coupled oscillators typically exhibits more poor synchronization 
behaviors and involves more complicated control strategies than directly coupled oscillators. On the other hand, 
we note that proper time-periodic modulations can open new possibilities for achieving optimal quantum control 
strategies and has been used to enhance various quantum effects like squeezing and entanglement in optome-
chanical systems27,28. Then one essential question arises: may time-periodic modulations also help to enhance 
quantum synchronization of indirectly coupled oscillators? The main aim of this work is thus to seek a positive 
answer with the quantum synchronization measure approaching perfect (→1.0), far beyond that for directly 
coupled oscillators (~0.3)19.
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Here we study the dynamic evolution of two mechanical oscillators interacting with different cavity modes via 
the radiation pressure in a double-cavity optomechanical system. The two cavities are coupled by an optical fiber 
through the inside mirrors and driven by two optical fields through the outside mirrors. It is shown that the two 
oscillators exhibit quite poor synchronization behaviors with the quantum part being negligible though the classi-
cal part being passable when the double-cavity optomechanical system suffers no temporal modulation. Exerting 
periodic modulations on detunings of both cavity modes or on amplitudes of both driving fields, we find that 
rather satisfactory synchronization behaviors can be observed with the quantum part being greatly enhanced and 
the classical part approaching perfect. To be more specific, the optimal quantum synchronization can be ~0.92 
(~0.74) in the case of double cavity-detuning (driving-amplitude) modulation when the oscillators’ frequency dif-
ference is not too large at a low enough bath’s mean temperature. The advantage of cavity-mode modulation over 
driving-field modulation is further confirmed by an examination on the robustness of quantum synchronization 
against the bath’s mean temperature and the oscillators’ frequency difference.

Model and Methods
The optomechanical system under consideration is illustrated in Fig. 1. Two Fabry-Pérot cavities are coupled 
by an optical fiber between the inside mirrors and driven by two fields through the outside mirrors. Each cavity 
contains a tiny mechanical oscillator interacting with a corresponding cavity mode via the radiation pressure. 
A time-periodic modulation may be applied upon both external driving fields27,29 via the acousto-optical effect 
or both internal cavity modes via the piezo-electric effect30. Then it is straightforward to write down the total 
Hamiltonian after a frame rotating
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where  = 1 has been set for convenience. We have also assumed that (i) the two driving fields have the same 
frequency ω and the same amplitude E (ii) the two driving fields (cavity modes) are modulated in the same way 
with a common frequency ΩD (ΩC) and amplitude Dη  ( Cη ). In addition, j cjΔ = ω − ω  is the detuning of the j th 
cavity mode with ωcj being the mode frequency; mjω  is the frequency of the j th mechanical oscillator; aj

† (aj) is the 
creation (annihilation) operator of cavity mode cjω , satisfying the commutation relation a a[ , ]j j jjδ=′ ′

† ; qj (pj) is the 
dimensionless position (momentum) operator of mechanical oscillator ωmj, satisfying the commutation relation 

δ=′ ′q p i[ , ]j j jj ; g is the optomechanical coupling constant due to the radiation pressure and assumed to be equal 
in both cavities for simplicity; λ is the coupling constant of cavity modes through an optical fiber.

Using the above Hamiltonian and considering relevant dissipation processes, we can further attain the follow-
ing quantum Langevin equations27,31,32
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with k being the common decay rate of both cavity modes while γm being the common damping rate of both 
mechanical oscillators. Moreover, aj

in describes the input noise operator of one cavity mode, exhibiting a zero 
mean value and satisfying the correlation relation † † δ δ〈 + 〉 = −′ ′ ′
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the stochastic noise operator of one mechanical oscillator, exhibiting a zero mean value and satisfying the corre-
lation relation t t t t n t t( ) ( ) ( ) ( ) (2 1) ( )j j j j m b jj

1
2

ξ ξ ξ ξ γ δ δ〈 + 〉 = + −′ ′ ′
′ ′ ′  under the Markovian approximation. Here 

~n exp k T exp k T[ ( / ) 1] [ ( / ) 1]b m b m b1
1

2
1ω ω= − −− −   is the mean phonon number determined by the mechan-

ical bath’s mean temperature T 35–37.

Figure 1.  Schematic illustration of an optomechanical system with two mechanical oscillators of frequencies 
ωm m1, 2 contained in different optical cavities. Each cavity mode a1,2 may be excited by a driving field of 
amplitude E and result in a deviation q1,2 of one oscillator from its equilibrium position due to the radiation 
pressure. The two cavity modes are further coupled through an optical fiber described by the constant λ. One 
may adopt the piezoelectric effect to modulate the mode detunings or the acousto-optical effect to modulate the 
driving amplitudes so that the oscillators’ synchronization behaviors can be enhanced.
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To solve Eq. (2), we adopt a mean-field approximation8,9,27,28 to express relevant operators as sums of the 
(large) mean values and the (small) fluctuation terms, i.e., o O oj j jδ= +  with ∈o q p a( , , )j j j j . In this way, the 
quantum Langevin equations can be divided into a set of classical nonlinear differential equations
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for the fluctuation terms δoj. In Eq. (4), we have neglected the second-order smaller terms including δ δa aj j
†  and 
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Figure 2.  Mean values of quantum Sq (red-solid) and classical CQ Q,1 2
 (blue-dashed) synchronization measures 

versus coupling constant λ (a); driving amplitude E (b) in the absence of external modulations. Relevant 
parameters are ωΔ = = .1 0m1 1 , 1 005m2 2ωΔ = = . , g = 0.005, γ = .0 005m , k = 0.15, λ = 0.05, and E = 100.
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where η= Δ + Ω +F t gQ[1 cos( )]C C1,2 1,2 1,2. Note, in particular, that M1,2 and thus M is intrinsically 
time-dependent via F1,2 and therefore A1,2 [see Eq. (3)].

As proposed by Mari et al.19, we can gauge the synchronization level of indirectly coupled mechanical oscilla-
tors through a figure of merit
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as a measure of the pure quantum synchronization with the classical contributions excluded. This quantum figure 
of merit has the maximal value 1.0 corresponding to the complete synchronization as limited by the Heisenberg’s 
uncertainty principle.

The calculation of S t( )q  involves a few quadratic terms δq t( )j
2 , δ δq q t( )1 2 , δp t( )j

2 , and δ δp p t( )1 2  so that we have to 
introduce a 8 × 8 covariance matrix

V t u t u t u t u t( ) 1
2

( ) ( ) ( ) ( ) (11)ij i j j i= 〈 + 〉

Figure 3.  Mean values of quantum Sq (red-solid) and classical CQ Q,1 2
 (blue-dashed) synchronization measures 

versus modulation frequency ΩC with 2 0Cη = .  (a,c); modulation amplitude ηC with ΩC = 4.0 (b) and ΩC = 3.0 
(d) which have been checked to be the optimal choice. A periodic modulation is applied upon only one cavity 
mode in panels (a,b) while upon both cavity modes in panels (c,d). Other parameters are the same as in Fig. 2.
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and attain its dynamic equation 8,29,38,39

= + +V MV VM N (12)T

directly from Eq. (5). In the above N diag n n[0, (2 1), , , 0, (2 1), , ]m b m bγ κ κ γ κ κ= + +  is a diagonalized 8 × 8 
coefficient matrix answering for the correlation relation of noise operators and satisfying δ − ′N t t( )ij
=〈 + 〉′ ′n t n t n t n t( ) ( ) ( ) ( ) /2i j j i . Hence S t( )q  can be expressed in a more concise form
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Solving Eqs (3), (5) and (12) together under a given initial condition, it is then easy to examine the quantum 
synchronization of indirectly coupled mechanical oscillators. Note, however, that a good quantum synchroniza-
tion is meaningful only when the optomechanical system is asymptotic stable, i.e., when all eigenvalues of the 
coefficient matrix M have negative real parts after a temporary evolutionary process according to the 
Routh-Hurwitz criterion40. In this regard, we would have a stable limit-cycle solution, representing a periodic 
oscillation, for Q t( )j  and P t( )j .

Finally, we introduce a widely used measure known as the Pearson factor for the classical synchronization41–44.
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+Δ . The Pearson factor is bounded from 1.0 to −1.0 cor-
responding to the complete synchronization and the complete anti-synchronization, respectively. In fact, CQ Q,1 2

 
and Sq are regarded here as the first-order and second-order synchronization criteria, respectively, for the two 
indirectly coupled mechanical oscillators.

Results and Discussion
In this section, we examine via numerical calculations how to enhance the quantum synchronization in the pres-
ence of a good classical synchronization by periodically modulating the cavity modes or the driving fields. In what 
follows, we will use CQ Q,1 2

 and Sq to represent the mean values of classical and quantum synchronizations after the 

Figure 4.  Time evolution of classical synchronization CQ Q,1 2
 (a), quantum synchronization Sq (b), oscillator 

positions Q t( )1,2  (c), and oscillator momenta P t( )1,2  (d) in the case where both cavity modes are modulated with 
the optimal parameters ΩC = 3.0 and 2 6Cη = .  as found in Fig. 3. Other parameters are the same as in Fig. 2.
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system has evolved into the stable state19. We will also set ωΔ =j mj to attain self-sustained mechanical oscilla-
tions (a prerequisite of synchronization) with blue-detuned driving fields25,26,45.

We start by considering the simple case without periodic modulations and illustrating relevant results in 
Fig. 2. It is clear that quantum synchronization is negligible in the absence of periodic modulations though it is 
possible to have rather good classical synchronization when the two cavity modes are coupled by an optical fiber 
and driven by two optical fields of identical amplitudes. To be more specific, CQ Q,1 2

 may approach 1.0 when the 
coupling constant λ and the driving amplitude E are suitably chosen while Sq always tends to vanishing as long as 
E is not too small. When E is small enough, however, Sq may approach 1.0 while CQ Q,1 2

 decreases greatly, indicat-
ing that the classical phase-space trajectory is not a limit cycle. So we choose E = 100 in the following calculations 
to guarantee limit-cycle solutions for our optomechanical system. In the regime of limit-cycle solutions, we then 
examine whether periodic modulations on cavity modes and driving fields27,28,30 can be exploited to enhance 
quantum synchronization of mechanical oscillators.

Modulation on cavity modes.  We first consider the periodic modulation on cavity lengths and thus mode 
frequencies with, e.g., piezoelectric transducers attached to outside mirrors30. That is, the driving fields have a 
constant amplitude (η = Ω =0, 0D D ) while the cavity detunings vary periodically in time. We plot in Fig. 3 mean 
values CQ Q,1 2

 and Sq for classical and quantum synchronizations as a function of ηC or ΩC for a single cavity-mode 
modulation (a, b) and a double cavity-mode modulation (c, d), respectively. Figure 3(a) and (b) show that the 
quantum synchronization can be slightly enhanced for appropriate values of Cη  or ΩC in the presence of somewhat 
modified classical synchronization. Figure 3(c) and (d) show that quite good synchronization behaviors exist in 
both quantum and classical regimes for appropriate values of Cη  or ΩC. It is thus clear that double cavity-mode 
modulation has a considerable improvement in enhancing quantum synchronization as compared to single 
cavity-mode modulation. In particular, the optimal values are C 1 0Q Q,1 2

≈ .  and S 0 84q = .  at Ω = 3C  with η = 2C  
in Fig. 3(c); ≈ .C 1 0Q Q,1 2

 and S 0 92q = .  at 2 6Cη = .  with ΩC = 3 in Fig. 3(d). We also find from Fig. 3(c) that good 
quantum synchronization occurs when ΩC is an integral multiple of ωm because in this case it is easier to transfer 
energy from external modulations to mechanical oscillations. But the peak positions may change from 

ωΩ =/ 3, 4, 5C m  to other integers depending, e.g., on the value of ηC (not shown). In addition, the modulation 
effect may sudden fail, i.e., Sq and CQ Q,1 2

 become invariant, when ΩC exceeds a critical value. Finally we find from 

Figure 5.  Mean values of quantum Sq (red-solid) and classical CQ Q,1 2
 (blue-dashed) synchronization measures 

versus modulation frequency ΩD with η = .0 5D  (a,c); modulation amplitude ηD with ΩC = 3.0 (b) and ΩC = 4.0 
(d) which have been checked to be the optimal choice. A periodic modulation is applied upon only one driving 
field in panels (a,b) while upon both driving fields in panels (c,d). Other parameters are the same as in Fig. 2.
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Fig. 3(d) that, when Cη  is large enough, Sq and CQ Q,1 2
 exhibit unstable oscillations as a result of the additional 

optomechanical instability due to parametric amplification27.
To have a deeper insight into the synchronization behaviors, we further examine in Fig. 4 time evolutions of 

relevant mechanical variables and synchronization measures in the case of an optimal double cavity-mode mod-
ulation with ΩC = 3 and η = .2 6C . Figure 4(a) and (b) show that both CQ Q,1 2

 and Sq reach a stable state of slight 
oscillation after a (different) transient evolution. As a further evidence, classical positions Q1 and Q2 are found to 
oscillate exactly in phase when entering the stable state as shown in Fig. 4(c). The same conclusion holds for clas-
sical momenta P1 and P2 as shown in Fig. 4(d). Therefore, by periodically modulating cavity detunings in a suita-
ble way, it is viable to produce a rather ideal level of both quantum and classical synchronizations between two 
mechanical oscillators with different frequencies. Corresponding limit-cycle trajectories in the P Q1 1  (red) and 
P Q2 2  (blue) spaces are illustrated in the inset of Fig. 4(a).

Modulation on driving fields.  We then consider the periodic modulation on amplitudes of the driving 
fields, e.g., via acousto-optical modulators. That is, the cavity modes have a constant detuning (η = Ω =0, 0C C ) 
while the driving amplitudes vary periodically in time. We plot in Fig. 5 mean values CQ Q,1 2

 and Sq for classical and 
quantum synchronizations as a function of ηD or ΩD for a single driving-amplitude modulation (a, b) and a double 
driving-amplitude modulation (c,d), respectively. Once again we find that (i) quantum synchronization can be 
slightly enhanced with somewhat modified classical synchronization in the case of single driving-amplitude mod-
ulation; (ii) both quantum and classical synchronizations are quite satisfactory in the case of double 
driving-amplitude modulation. In particular, the optimal values are ≈ .C 1 0Q Q,1 2

 and = .S 0 57q  in Fig. 5(c); 
C 1 0Q Q,1 2

≈ .  and = .S 0 74q  in Fig. 5(d). By comparing Fig. 5(c,d) with Fig. 3(c,d), it is clear that double 
cavity-mode modulation is more favorable than double driving-field modulation for achieving an ideal level of 
quantum and classical synchronizations. One common feature of double driving-field and cavity-mode modula-
tions is that optimal quantum synchronization occurs when the modulation frequency is an integral multiple of 
the oscillator frequency before a critical value.

We further show in Fig. 6 that the time evolution of relevant mechanical variables and synchronization meas-
ures in the case of an optimal double driving-amplitude modulation with ΩD = 4 and η = .0 8D . From Fig. 6(a) and 
(b) we can see that both CQ Q,1 2

 and Sq reach a stable state of slight oscillation after a (different) transient evolution, 
longer than that in Fig. 4(a) and (b). As a further evidence, classical positions Q1 and Q2 and classical momenta 
P t( )1  and P t( )2  are found to oscillate exactly in phase when entering the stable state as shown in Fig. 6(c) and (d). 

Figure 6.  Time evolution of classical synchronization CQ Q,1 2
 (a), quantum synchronization Sq (b), oscillator 

positions Q t( )1,2  (c), and oscillator momenta P t( )1,2  (d) in the case where both driving fields are modulated with 
the optimal parameters ΩC = 4.0 and 0 8Dη = .  as found in Fig. 5. Other parameters are the same as in Fig. 2.



www.nature.com/scientificreports/

8Scientific REPOrTS | 7: 15834  | DOI:10.1038/s41598-017-16115-9

Therefore, by periodically modulating driving amplitudes in a suitable way, it is also viable to produce very good 
quantum and classical synchronizations between two mechanical oscillators with different frequencies. Two cor-
responding limit-cycle trajectories are illustrated in the inset of Fig. 6(a).

Comparison of two modulations.  Now we examine the robustness of quantum synchronization in both 
cases of cavity-mode and driving-field modulations against the bath’s mean temperature T and the oscillators’ 
frequency difference Δm. This is based on the consideration that a slight increase of T and mΔ  may result in a large 
decrease of Sq so that it is meaningful to check how Sq decays until negligible.

We plot Sq versus mean temperature T in Fig. 7(a) and frequency difference Δm in Fig. 7(b) for the optimal 
modulations on cavity detunings (red-solid) or driving amplitudes (blue-dashed). That is, each point represents 
the maximal value of Sq, for a given value of T or Δm, obtained by choosing the optimal values of Cη  and ΩC or ηD 
and ΩD. Figure 7(a) shows that the quantum synchronization is quite robust (i.e., does not change too much) 
against the temperature before ~ ωT k/m b1 . However, it decays quickly after this point and tends to be vanishing 
when the temperature is around ω=T k1000 /m b1 . It is also clear that the optimal modulation on cavity modes 
always results in a better quantum synchronization than that on driving fields. Figure 7(b) shows that the quan-
tum synchronization Sq is quite robust against the frequency difference Δm for an optimal cavity-mode modula-
tion because Sq doesn’t decrease too much even if Δm increases from 0.005 to 0.045. However, the quantum 
synchronization Sq decays in a much quicker way for an optimal driving-field modulation and already exhibits a 
vanishing value around Δm ~ 0.045. It is also worth noting that the optimal level of quantum synchronization 
observed here (~0.92 or ~0.74) is much higher than that for two directly coupled oscillators (~0.3)19 for the same 
frequency difference Δm = 0.005.

Conclusions
In summary, we have considered a double-cavity optomechanical system containing two independent mechanical 
oscillators for enhancing both quantum and classical synchronizations with two kinds of temporal periodic mod-
ulation. Our numerical results show that appropriate modulations on cavity detunings or driving amplitudes can 
result in greatly enhanced quantum and classical synchronizations. To be more specific, the quantum synchroni-
zation Sq can be up to ~0.92 (~0.74) in the case of cavity-detuning (driving-amplitude) modulation accompanied 
with a roughly perfect classical synchronization ≈C 1Q Q,1 2

 when the oscillators’ frequency difference is 
Δm = 0.005 and the bath’s mean temperature is T = 0. An examination of the robustness of Sq against Δm and T 
shows that the cavity-mode modulation is always more appealing in achieving a preferable quantum synchroni-
zation behavior than the driving-field modulation. We expect that our results may be extended to more compli-
cated multi-cavity optomechanical systems, in which an array of highly synchronized mechanical oscillators can 
serve as a useful resource of, e.g., quantum communication and quantum control.
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