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Abstract
The study of infectious disease has been aided by model organisms, which have helped to

elucidate molecular mechanisms and contributed to the development of new treatments;

however, the lack of a conceptual framework for unifying findings across models, combined

with host variability, has impeded progress and translation. Here, we fill this gap with a sim-

ple graphical and mathematical framework to study disease tolerance, the dose response

curve relating health to microbe load; this approach helped uncover parameters that were

previously overlooked. Using a model experimental system in which we challenged Dro-
sophila melanogaster with the pathogen Listeria monocytogenes, we tested this framework,

finding that microbe growth, the immune response, and disease tolerance were all well rep-

resented by sigmoid models. As we altered the system by varying host or pathogen genet-

ics, disease tolerance varied, as we would expect if it was indeed governed by parameters

controlling the sensitivity of the system (the number of bacteria required to trigger a

response) and maximal effect size according to a logistic equation. Though either the patho-

gen or host immune response or both together could theoretically be the proximal cause of

pathology that killed the flies, we found that the pathogen, but not the immune response,

drove damage in this model. With this new understanding of the circuitry controlling disease

tolerance, we can now propose better ways of choosing, combining, and developing

treatments.

Author Summary

It is an intuitive assumption that the severity of symptoms suffered during an infection
must be linked to pathogen loads. However, the dose–response relationship explaining
how health varies with respect to pathogen load is non-linear and can be described as a
“disease tolerance curve;” this relationship can vary in response to the genetic properties
of the host or pathogen as well as environmental conditions. We studied what changes in
the shape of this curve can teach us about the underlying circuitry of the immune
response. Using a model system in which we infected fruit flies with the bacterial pathogen
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Listeria monocytogenes, we observed an S-shaped disease tolerance curve. This type of
curve can be described by three or four parameters in a standard manner, which allowed
us to develop a simple mathematical model to explain how the curve is expected to change
shape as the immune response changes. After observing the variation in curve shape due
to host and pathogen genetic variation, we conclude that the damage caused by Listeria
infection does not result from an over-exuberant immune response but rather is caused
more directly by the pathogen.

Introduction
The clinical goal of treating infectious diseases is to reduce the levels of sickness experienced by
infected hosts. One approach to studying this problem is to quantitate illness by correlating the
dose response of pathology to pathogen load; graphs like these are called “disease tolerance
curves” [1–6]. We argue that the shape of the dose response curves and the underlying mathe-
matical functions producing these curves can teach us how to alter the health-by-microbe rela-
tionship. For example, if disease tolerance curves are linear, we need only discover the
molecular mechanisms that control the curves’ slopes. If these curves have a more complex
shape—for example, a sigmoid shape—then we will need to measure more variables.

Since there are not universally agreed upon definitions for many of the words we use to
describe the immune response and health, we start by defining the following terms: vigor, resis-
tance, resilience, and tolerance. “Vigor” is the health of an uninfected individual, and “resis-
tance” describes the host’s ability to limit microbe load [1–6]. We use “resilience” to describe
the ability of infected hosts to return to their original healthy condition, much in the same way
the word is used to describe the way a perturbed ecological system returns to its origin [7,8].
For example, a resilient host may suffer from an infection but would easily bounce back to
health, whereas infection in a non-resilient host might lead to permanent disability or death.
We apply the term resilience to an infected individual because we can follow the path that indi-
vidual takes from health through sickness and back. “Disease tolerance” is the dose response
curve summarizing the pathogen loads that are required to produce a range of host responses.
Disease tolerance differs from resilience in that tolerance is an emergent property of popula-
tions, while resilience is a property of an individual; disease tolerance measures how resilience
changes across a population as pathogen load is varied. Disease tolerance, by definition, cannot
be measured in a single individual [9]. The model described in this paper shows how these dis-
tinctions between resilience of individuals and tolerance of populations disappear once we
understand infection dynamics to the point that we can predict how a population would
behave knowing the properties of an individual.

To study disease tolerance we used a simple infection system in which we injected a patho-
gen (Listeria monocytogenes) into a fruit fly (Drosophila melanogaster) [10–14]. These L.mono-
cytogenes-infected flies suffer from a variety of ailments, including alterations in their circadian
rhythm, cold-coma recovery, climbing ability, feeding behavior, metabolism, and death
[12,15–17]. To determine the disease tolerance curve, we plot the survival rates of the infected
flies against microbe loads measured 2 days post infection (DPI). We used this system because
it allowed us to measure large numbers of samples and to take advantage of the genetic tools
and the understanding of innate immunity available for this model organism.

Our immediate goal is to define the mechanisms controlling tolerance. We start with a sim-
ple mathematical model representing feedbacks between microbe growth, the immune
response, damage, and health, modeling each using logistic equations. We then measured the
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ground-truth of these models using a D.melanogaster/L.monocytogenes infection that can lead
to lethal outcomes. We experimentally measured microbe growth, the immune response, and
disease tolerance and found that each of them was well described by sigmoid curves, suggesting
that we need at least three variables to describe each. In the case of tolerance, this meant that
we had to measure host vigor, the number of bacteria required to injure the host, and the maxi-
mum death rate achieved by the fly. In the case of antimicrobial peptide (AMP) transcript pro-
duction, we measured basal levels, the number of bacteria required to induce transcripts to
50% of their maximum value, and the maximum transcript level. We examined how alteration
of the values of the parameters in the model changed the output of the model to distinguish
between changes that we might see if microbes or the immune response were the principal
mediators of damage. Upon testing a variety of D.melanogaster natural variants and mutants
along with some L.monocytogenesmutants, we concluded that, in this system, the bacteria and
not the immune response is responsible for the damage caused by the infection. When we
monitored how disease tolerance changed as we varied host or pathogen properties, we found
the tolerance curve changed shape in the manner predicted by the model; for example, the
number of bacteria required to damage health changed, while the vigor and maximum death
rate remained constant. We demonstrate that this dual approach of measuring and modeling
full-length disease tolerance curves can reveal previously unrecognized parameters controlling
disease tolerance.

Results
We started by making a graphical model to explain four parameters: microbe load, the immune
response, microbe-induced damage, and health (Fig 1). We modeled the immune response so
that it could both limit microbe growth and kill microbes. We previously found thatMycobac-
terium marinum infected flies waste upon infection and predicted that the day they died they
would have exhausted their glycogen and fat stores [18,19]. We also found that L.monocyto-
genes infected flies waste during infection [15]; to explain death, we used these empirical data
to imagine that there was a store of “health” that could be depleted by the infection. In our
model, both the immune response and the microbes can cause damage, which depletes health
and increases the death rate. Immunopathology directly affects health, while microbes secrete
damage effectors that impact health.

We built a simple mathematical model based on the graphical model largely using sigmoid
functions to define each parameter (see Experimental Procedures) to help define our assump-
tions about the mechanisms governing disease tolerance. This was an obvious choice for
microbe growth and the immune response, as these equations are well described in classical
mathematical models of infections [20]. We used the same mathematical function to describe
microbe-induced damage, since we anticipate that the shape of the curve is due to some enzy-
matic rate-limiting step that will likely follow sigmoid Michaelis-Menten kinetics [21,22].

To determine the ground-truth of this model, we measured the behavior of microbes, the
immune response, and health in a model system in which we inject L.monocytogenes into the
body cavity of D.melanogaster. We chose this model infection because it is simple to obtain the
measurements we need to define resistance and disease tolerance and because we have a collec-
tion of host mutants that we know affect resistance and tolerance to L.monocytogenes [10–12].
We can readily measure microbe loads by homogenizing whole flies at any point in the infec-
tion to plate them to determine colony-forming units (CFU). We can determine the health of
the infected flies by measuring the median time to death following infection.

When L.monocytogenes is injected into flies that are incubated at 29°C, the resulting bacte-
rial growth is best described as logistic (Fig 2A, logistic adjusted r2 = 0.594, adjusted linear and

HowMany Parameters Does It Take to Describe Disease Tolerance?

PLOS Biology | DOI:10.1371/journal.pbio.1002435 April 18, 2016 3 / 21



adjusted exponential r2 < 0.1) with a maximum growth rate of 0.1656 log10 (CFU)/h. L.mono-
cytogenes loads reach a plateau at 24 h post infection.

We wanted to define the relationship between AMP levels to a given microbe load to under-
stand how many parameters we need to use to measure the immune response. Because bacteria
grow rapidly to reach their plateau, and wounding flies to introduce bacteria causes an immune
response on its own, we reasoned it would be difficult to measure the immune responses at
intermediate microbe loads by simply injecting flies with different amounts of microbes.
Instead, we took flies that had high levels of bacteria and slowly cured them of the infection so
that we could measure the relationship between AMP transcripts and microbe load essentially
at steady state. The fly immune response cannot clear L.monocytogenes on its own; therefore,
to clear the bacteria we transferred infected flies to fly media containing 1 mg/ml of ampicillin

Fig 1. Visualizing infections in individuals, in pure lines and diverse populations. (A) A simple model in which microbes induce an immune response,
which in turn limits microbe growth and kills the microbes. Both microbes and immune effectors can cause damage in this model.

doi:10.1371/journal.pbio.1002435.g001
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Fig 2. Listeria monocytogenes growth characteristics in the fly. (A) L.monocytogenes growth dynamics
during infection. w1118 flies were injected with 1,000 CFUs. Individual flies were homogenized and plated, and
bacterial colonies were counted at each time point. The data are fit with a logistic curve with a maximal growth
ceiling of approximately 17,000 bacteria and a growth rate of 0.1659/h. The dotted lines indicate the 95%
confidence interval. (B) L.monocytogenes dynamics during antibiotic treatment. Flies were injected with 100
CFUs and treated with ampicillin. The data are fit with a plateau followed by a one-phase decay with a half-life
of 2.4 d. The dotted lines indicate the 95% confidence interval. (C) Survival curves for treated and untreated
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2 DPI. We observed that L.monocytogenes clearance followed exponential decay dynamics (Fig
2B, adjusted r2 = 0.7140). L.monocytogenes infection in the fly decreases survival, but ampicil-
lin-treated flies lived just long as uninfected flies (Fig 2C).

Having developed a method to slowly decrease microbe loads, we performed the following
experiment: We injected one set of flies with phosphate buffered saline (PBS), fed them with
ampicillin, and followed them regularly to serve as wounding, aging, and antibiotic treatment
controls. We took a second set of flies and injected L.monocytogenes. This group was split in
two; one portion was fed ampicillin to clear the microbes, and the other was not. We collected
flies for plating to determine microbe loads, and for RNA preparation to run a microarray at
regular intervals (S1 Fig).

We analyzed the expression of the known and presumed AMPs with respect to microbe
loads and found that AMPs are expressed according to a sigmoid relationship with respect to
microbe load. We plotted the expression of AMPs to CFU levels in the fly and found the rela-
tionship between AMP transcription and microbe load is best fit by a four-parameter sigmoid
(Fig 3A). Accordingly, each AMP transcript has a baseline (bottom plateau), maximal concen-
tration (top plateau), effective bacterial concentration producing a half maximal effective con-
centration (EC50), and slope. We observe that the AMPs expressed during infection differ in
their EC50 (Fig 3B) over a range of about 100-fold (20–2,000 CFUs). AMP expression does not
continue to increase as microbe number increases past a certain point, and each AMP tran-
script reaches a characteristic plateau. Each AMP transcript can thus be characterized by its
maximum expression in relation to its baseline, and this relationship varies over an 8-fold
range between AMPs. We observed no significant relationship between EC50 and maximum
expression, suggesting that EC50 and maximum expression can vary independently of each
other. We found an exponential relationship between Hill slope and EC50 (Fig 3D), suggesting
that AMPs requiring large numbers of bacteria for induction turn on in a switch-like manner,
while those turned on at low microbe loads are turned on gradually. This gives us insight into
the tuning of the fly’s immune response; overall, AMPs will be turned on gradually at microbe
loads below 100 bacteria per fly but will rapidly increase as loads pass 1,000 bacteria per fly.

Though AMPs had a rather simple sigmoid relationship with microbe load, this was not the
case for many other genes modulated during infection. Some of these other gene expression
patterns showed hysteresis, by which we mean that gene expression depends upon past condi-
tions and not only the immediate conditions. For example, gene expression for these hysteretic
transcripts had one pattern as the fly moved from health to sickness and another as the fly
returned from sickness to health. This hysteresis can be useful because it helps us define differ-
ent states of the infection. To visualize the “disease space” traversed by infected flies and to
identify the different states of the infection process, we used topological data analysis (TDA). It
is common practice when clustering data to plot the data using some sort of tree structure, as is
done with hierarchical clustering or spade analyses [23,24]. This makes good sense when deal-
ing with data for a developing system in which the animal or cell enters a new state, but it is
problematic when dealing with a system that returns to its original state; resilient systems
should not be fit by a tree and are better described by loops. Topological data analysis is sensi-
tive to the topology of the data and will not arbitrarily linearize a loop and then force it to fit a
tree [25,26]. Instead, the analysis simply clusters related data points, represented as nodes on a
network graph, and the shape of that graph reveals the connections between the time points

flies demonstrate that antibiotic treatment led to recovery of the flies, which lived as long as wounding control
flies. Data are reported in S1 Data.

doi:10.1371/journal.pbio.1002435.g002

HowMany Parameters Does It Take to Describe Disease Tolerance?

PLOS Biology | DOI:10.1371/journal.pbio.1002435 April 18, 2016 6 / 21



(for recent examples see [27–29]). In the case of a resilient system, such as flies recovering from
an infection, we find this graph forms a loop.

Fig 4 shows the TDA graph we built to describe our data, and 4A describes the three basic
treatment groups in the dataset (uninfected, infected, and antibiotic-treated). In Fig 4B, the
phase curve is colored by CFU (blue indicates low and red indicate high microbe loads). The
green arrow indicates progression from health to infection and back, moving clockwise around
the figure. Uninfected flies are at the top of the figure, and the figure progresses through acutely
wounded flies, sick flies, and on to recovering flies, which link back to the original uninfected
flies. Infection was initiated by the injection of 100 CFU, and L.monocytogenes levels increase
following this. The path followed by moribund flies deviates from recovering flies to form a
spur on the loop (marked as section iv). Flies that received ampicillin decrease in CFUs, and
flies that have low CFUs loop back to overlap with uninfected controls.

To determine which genes show altered expression in different parts of the disease map, we
performed fuzzy c-means clustering on this dataset to identify genes with similar expression
patterns (S2 Fig, S2 Table). We then performed gene ontology analysis on each cluster to iden-
tify characteristic physiological changes within the cluster (S3 Table) and then asked about the
expression patterns of these genes on the TDA graph. Acute stress response genes, such as heat
shock protein 26, were activated immediately after injection and then quickly returned to

Fig 3. Antimicrobial peptide expression dynamics. (A) AMP dose response curve. Expression of AMPs was determined by microarray. Fold change is
plotted relative to log microbe load (grey: uninfected control, black: infected, no treatment, red: infected, ampicillin treatment). The data are fit with a four-
parameter sigmoid model. Adjusted r2: Drosomycin = 0.9521, Attacin A = 0.8509,Cecropin A = 0.8933. The dotted lines indicate the 95% confidence
interval. (B) EC50 of antimicrobial peptides. Error bars mark the 95% confidence interval. (C) Maximum expression level of antimicrobial peptides. Error bars
mark the 95% confidence interval. (D) Relationship between Hill slope and EC50. The data are fit with an exponential growth function with an adjusted r2 =
0.5126. Data are reported in S1 Data.

doi:10.1371/journal.pbio.1002435.g003
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Fig 4. Disease space analysis of infected and recovering flies. (A) Infection map colored by treatment groups. The network was built using Ayasdi Core
(data from S1 Table). Samples with similar expression patterns are binned together. Nodes are bins of individual samples. Bins containing the same sample
are connected by edges. Cyan is the overlap of uninfected and no treatment groups, and orange is the overlap of ampicillin treatment and no treatment
groups. (B) Infection map colored by CFU. The green arrow marks disease progression. Pathways of upregulated genes are numbered. Phases of infection
are indicated by Roman numerals. (C) Infection map colored by heat shock protein 26. (D) Infection map colored by Attacin A. (E) Infection map colored by
CG3117 (peptidase and death gene). (F) Infection map colored by CG32444 (aldose-1 epimerase and recovery gene).

doi:10.1371/journal.pbio.1002435.g004
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baseline levels (Fig 4B and 4C). AMP expression follows CFU (Fig 4B and 4D). We identified
groups of genes that are highly expressed by flies in the spur approaching death (Fig 4B and
4E) and recovering from infection (Fig 4B and 4F). The transcripts for these “morbidity genes”
(clusters 1, 2, 11, 12, 22, 35, 43) continue to increase even when microbe levels plateau. Gene
ontology analysis of fuzzy c-means clusters containing these morbidity genes did not yield sig-
nificantly enriched terms. Among the top 50 differentially expressed morbidity genes, Bteb2
and run are predicted to encode proteins with DNA binding activity. CG3117 has predicted
protease activity, and diedel is a putative negative regulator of JAK/STAT signaling. By con-
trast, the recovery genes (clusters 18, 20, 23, 25, 29, 30) are enriched for sugar and fatty acid
metabolism genes that are turned up above baseline upon recovery.

The Shape of a Disease Tolerance Curve
To measure a disease tolerance curve, we recorded the response of the host to a broad range of
initial pathogen doses. We did this by injecting L.monocytogenes into flies over a range of ten
to 100,000 bacteria and allowing the infected flies to die. We injected L.monocytogenes into the
hemocoel of flies and monitored bacterial numbers 2 DPI to measure the ability of the fly to
resist microbe growth when challenged with a range of infection intensities (Fig 5). We deter-
mined the median time to death (MTD) for each inoculum and used this time as a measure-
ment of health (Fig 5B). Plotting microbe load versus MTD produced a curve that was readily
fit by a four-parameter logistic sigmoid model (r2 > 0.96) (Fig 5C).

Occasionally, tolerance curves are fit with mathematical functions, but the reason these
functions are chosen is that they fit the data and not that they are dissected for further biologi-
cal insights [5,30–32]. More typically, tolerance is visualized as a linear system, which requires
just two parameters, vigor and slope [5,11]. In contrast, our sigmoid model provides four
parameters (Fig 5D). In addition to vigor and slope used to describe a line, the sigmoid model
adds the parameters of EC50 and maximum effect. The EC50 of the system is the number of
microbes present at day 2 that cause a 50% change in MTD. Maximum effect is defined by the
sigmoid’s asymptotic tail at high microbe loads. This defines a maximum death rate, suggesting
that there is a previously unrecognized rate-limiting step for death.

In the model shown in Fig 1A, depletion of health could be induced either by bacterial dam-
age effectors or indirectly by self-harm caused by the resistance response. We modeled the two
possibilities by observing how the shape of the curve changed as we altered the model such that

Fig 5. Disease-tolerance curves are sigmoid. (A) Dose-dependent growth of L.monocytogenes during infection. Wild-type flies injected with 10–100,000
L.monocytogenes were homogenized and then plated 2 d post-infection to determine microbe loads. (B) Dose-dependent survival of L.monocytogenes-
infected flies. Kaplan-Meier curves were plotted for flies injected with 10–100,000 L.monocytogenes. (C) Disease-tolerance curve. Pairs of microbe load and
survival data for 63 microbe load/MTD pairs were plotted. This curve was fit with a four-parameter sigmoid model (r2 > 0.96). (D) A cartoon showing the
parameters used to describe a sigmoid disease-tolerance curve including vigor, slope, EC50 (sensitivity), and maximal severity, as well as the measurement
of phenotypic range. Data are reported in S2 Data.

doi:10.1371/journal.pbio.1002435.g005
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either the resistance response or bacteria were the sole cause of damage. We concentrated on
changes in the rate that the immune response was turned on (τ), and the inflection points for
the relationships between microbe density and the rates of immune induction and microbe-
induced damage induction (σI and σM) (Fig 6A–6D, S4 Table). In the case in which resistance
mechanisms drove damage (Fig 6A and 6C) and bacterial damage was set to zero, changes in τ
or the inflection point for microbe-induced immunity caused shifts in both the EC50 and
microbe loads. The effect is more extreme when the inoculum is far below the microbial carry-
ing capacity, as this gives the immune response an opportunity to control microbe loads. This
results in a reciprocal mechanistic link between resistance and tolerance in which one is always
high when the other is low. In the model in which bacteria drive damage, a loss of resistance
results in high microbe loads and health pegged at maximum severity (Fig 6B). Shifts in the
EC50 of the bacterial damage-driven system, in which resistance-induced damage is set to zero,
are caused by changes in the inflection point for bacterial-induced damage, as might be
expected for differentially virulent strains of microbes or hosts that are better at neutralizing
bacterial toxins (Fig 6D). In this second case, there is no mechanistic reciprocal link between
resistance and tolerance, and the two vary independently of each other.

Testing the Mathematical Model for Disease Tolerance
To test whether the shape of the disease tolerance curve in this host–pathogen pairing was
driven by immunological damage or microbial damage, and to determine how the parameters
of a sigmoid disease-tolerance curve varied, we measured the tolerance curves for a collection
of Drosophilamutants that we previously showed differ in their resistance and tolerance
defenses to L.monocytogenes [10–12]. We also tested natural variant flies from the Drosophila
Genetics Reference Panel that were preselected because they showed extreme changes in their
response to L.monocytogenes infections [33,34]. In addition, we tested L.monocytogenes
mutants that altered pathogenesis in the fly [11]. These data supported the model in which bac-
teria caused damage in the system and did not support the immunological damage model.

A mutation in the D.melanogaster gene CG2247 was found previously to reduce the fly’s
ability to both survive an infection and control L.monocytogenes growth [11]; here, we found
that at 2 DPI, even CG2247mutant flies injected with just ten bacteria had the same high
microbe loads as flies injected with 100,000 bacteria, supporting the idea that these mutants
alter resistance. This is visible in the tolerance curves, in which all of the points from infected
mutant flies clustered on the bottom asymptote of the parental tolerance curve (Fig 6E–6H, S5
Table). An additional example of a fly strain with poor resistance is shown in the supplemen-
tary data (S3 Fig and S5 Table). Since flies suffering a loss of resistance showed no change in
the maximum death rate of the infection, these results support the model in which bacteria are
responsible for damage.

RNAseq analysis of CG2247mutant flies suggests a molecular mechanism for the observed
phenotype. We observed that in wild-type flies, the transcripts encoding the enzymes required
to generate a reactive oxygen response against L.monocytogenes dropped over the course of the
infection but recovered upon antibiotic treatment (S6 Fig) [11,35]. In contrast, these transcripts
dropped to 10-fold lower levels in CG2247mutants and did not recover to their original levels.
We observed a reduction in the characteristic dark spots resulting from the action of this
immune response (S6 Fig). We conclude that mutations in this gene disrupt the melanization
immune response.

The disease-tolerance curve for the natural variant D.melanogaster strain, RAL 359, showed
a reduction in the EC50 of the system without a change in resistance [33]. RAL 359 was as capa-
ble as our lab control strain w1118 in controlling L.monocytogenes growth; however, low doses
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Fig 6. Predicted and observed variation of tolerance curves. (A–D) Predicted changes in infection tolerance curves as the rate of immune effector
production (τ) and the inflection points for microbe-induced immunity or damage are altered in the immunological damage model (α only) and the bacterial
damage model (ϕ only). Each line is the sigmoid fit of values computed by the model. The colors represent the value of the altered parameter, moving from
violet to blue to green to red as the value increases. (E–H) Tolerance curve of a resistance-deficient fly strain (CG2247) infected with wild-type L.
monocytogenes. (I–L) Tolerance curve of a natural variant D.melanogaster strain infected with wild-type L.monocytogenes. (M–P) Tolerance curve of L.
monocytogenes ΔactAmutants injected into w1118 control flies, (M–P). Microbe loads are recorded in (E), (I), and (M). Survival curves are recorded in (F), (J),
and (N). Tolerance curves for the condition being tested are reported in (G), (K), and (O), with the corresponding data points in blue. The tolerance curve for
w1118 is shown in black without data points. Panels (H), (L), and (P) show illustrations of the changes in parameters seen in the tolerance curves. Data are
reported in S2 Data.

doi:10.1371/journal.pbio.1002435.g006

HowMany Parameters Does It Take to Describe Disease Tolerance?

PLOS Biology | DOI:10.1371/journal.pbio.1002435 April 18, 2016 11 / 21



of the microbe had a larger effect on health in this strain than in the control. This shifted the
EC50 from 922 to 83 colony-forming units per fly (Fig 6I–6L and S5 Table). The vigor and max-
imum death rate of these two strains was similar. This shift in EC50 was a common phenotype,
as shown in S4 and S5 Figs.

Changing the virulence of the L.monocytogenes also altered the EC50 of the system. Mutant
L.monocytogenes lacking the virulence factors actin assembly-inducing protein (ActA) or lis-
teriolysin O (LLO) had previously been shown to kill flies more slowly than wild-type L.mono-
cytogenes (Fig 5C versus Fig 6O) [11]. The tolerance curves for flies infected with an ΔactA
mutant showed a shift in the EC50 from 922 to 5,753 (Fig 6M–6P and S5 Table). We observed a
ceiling for the number of L.monocytogenes that can be maintained in a wild-type infected fly
(Figs 2A and 5A) and hypothesize that this is defined by the number of phagocytes in the fly
that provide a niche for L.monocytogenes growth [13]. The ΔactAmutant bacteria approached
this limit before they induced maximal pathology and, thus, we did not observe a low asymp-
totic tail. Δhlymutants produced a similar result to ΔactAmutants, only more extreme (S4
Fig).

Discussion
As a field, we can generate complex network diagrams showing how the parts of the immune
system communicate with each other and identify key signaling pathways and nodes [36,37].
Though this lets us predict that the system will fail when we remove a necessary component of
the network, evolution and medicine work by subtler means, for example, by changing rate
constants in addition to deleting entire pathways. To predict how evolution or medicine will
change an immune response, we need to identify mathematical functions that accurately
describe the behavior of that process so that we can understand all of the parameters that con-
trol the behavior.

L.monocytogenes growth in the fly follows logistic kinetics; the variation of these curves
observed in natural fly variants suggests that microbes are controlled by separable parameters
defining the growth rate and carrying capacity of the host [34]. It seems reasonable that this is
not a property limited to L.monocytogenes growing in the fly and that it will be true for many
pathogens, especially considering that this is a near textbook description of microbial growth
[20,38,39]. Both of these properties should be under natural selection, but studies of infections
in D.melanogaster typically do not measure microbe growth at all and, when they do, they
measure only one time point, conflating growth rates with carrying capacities. The fly is studied
because it is easily manipulated and has a relatively simple immune response, but despite
decades of work, the field has been underestimating the number of dimensions in which natu-
ral variation can change the immune response. Thinking about this generally, it raises the ques-
tion of whether there might be separate host mechanisms that control microbe growth rates
versus ceilings and, thus, diseases might result from a defect in either of these mechanisms. To
study these different disease mechanisms, we must ensure that our experiments let us observe
the phenomenon.

The AMP response in the fly is under the control of two signaling pathways, Toll and imd
[36,40]. The classical descriptions of these pathways argue that the pathways show specificity
for different elicitors; a problem with the experiments supporting this model is that the experi-
ments did not correlate response to elicitor levels, and most experiments tested just one arbi-
trarily determined time point [41,42]. We find that AMP induction is described well by a four-
parameter sigmoid function. This means that there are parameters describing the basal level,
EC50, maximum expression level, and slope, which may all vary independently of each other;
that we don’t see a correlation between maximal gene induction and EC50 supports this
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hypothesis. If the field’s experiments measure gene expression at just one time point post infec-
tion and do not correlate this to microbe loads, we cannot learn which of the three induction
parameters are changing. Thus, though it is clear that the Toll and imd signaling pathways, as
well as sex, age, the environment, and evolution, can change the immune response, we don’t
have a good definition of specificity in this system. Now that we understand that there are new
variables to explain, we need to explain this from an evolutionary perspective; for example,
what selective pressures cause changes in the EC50 of gene expression of an AMP rather than
the maximal gene expression or slope? Will a host benefit from a quick induction of antimicro-
bials at low microbe loads, or should it invest in an enormous response as microbe loads climb
higher?

We found that health was correlated with microbe load according to a four-parameter sig-
moid function. As described above for microbe growth and immune induction, past experi-
ments looking at health outputs in model infections are problematic because they don’t
measure the full shape of the response curve and don’t report where an experiment is per-
formed on the curve. Perhaps it should have been obvious that microbes would have a growth
ceiling and AMPs would have a maximum expression level; classic infectious disease modeling
texts start with chapters describing these functions [20,43]. However, one thing these books
don’t do is link pathogen growth and the immune response to health. When we examine this
relationship, we find that we can make simple models that predict the presence of more param-
eters than we’ve been studying. For example, the implication of a sigmoid response for health
suggests that there is a rate-limiting step for death and that death has a maximum rate. This
means that it should be possible not only to change the EC50 of the system to reduce the rate at
which damage occurs, but we should also be able to increase the health reservoir of a host so
that it has high stamina and will be able to suffer damage for longer periods of time.

The underlying problem with the field’s experimental characterization of immune responses
is that we focus on when responses are induced in terms of time and not why they are induced
in terms of the quantity of inducer. The result is that we systematically overlook and conflate
control mechanisms. By correlating effects to effectors, we can better understand microbial
pathogenesis.

Disease Spaces
The disease space analysis of recovering and dying flies reveals that far more is going on in
these sick animals than AMP gene expression, and it lets us organize these events with a simple
map. A commonly used time point for gene expression studies in Drosophila is 6 h post infec-
tion [44,45]; this is a particularly problematic time point because it combines transient expres-
sion of heat shock genes with expression of antimicrobials. Flies fated to die have a progressing
gene signature in which a set of transcripts is increased without a corresponding increase in
microbe load. We anticipate that one will need to measure the course of pathogenic infections
to identify these genes, rather than follow microbes that simply elicit an immune response but
do not kill wild-type flies (for example Escherichia coli orMicrococcus luteus [40,46]. Just as
each pathogen causes a different disease in humans, we expect that there will be a range of
pathologies caused by insect pathogens and do not assume that these L.monocytogenes-
induced genes are the only morbidity genes in the fly. The nature of this particular death
response is unclear, as the identity of the genes does not provide obvious clues. In contrast,
recovering flies have a unique gene expression signature that suggests function; for example,
enzymes in biosynthesis and energy metabolism are repressed during infection but pop up hys-
teretically as microbes are removed, suggesting the induction of a recovery response that
rebuilds damaged tissues.
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Why Does Shape Matter?
The shapes of tolerance curves are important because they will define which medications can
be used to improve the health of an infected patient depending upon their position on the sig-
moid curve. Here is a concrete example: If we think about the dose response curve to sepsis in
humans as a linear response, then any drug that limits damage will help every patient. We come
to a different conclusion if we consider a sigmoid relationship. Humans suffer from sepsis when
relatively small numbers of microbes enter the blood, and very sick patients can have much
higher levels of microbes. This suggests the sickest patients will be found on the asymptote of a
sigmoid curve, where they will be suffering maximum pathological effects. Drugs that change the
basal level of a response, EC50, or slope will not help these patients; they will only respond to
drugs that manipulate maximal response levels. Thus, we need to understand the shape of these
tolerance curves and where the patients lie on the curves to select appropriate treatments.

The discussion of tolerance in patients raises a tricky point. We’ve shown it is possible to
measure a disease tolerance curve in a model system; this demonstrated the nonlinear nature
of tolerance and suggested the existence of new dimensions we should follow when measuring
disease outcomes. The problem is that this approach requires us to perform many more experi-
ments than we do currently when analyzing phenotypes, and this approach is likely impossible
to apply to most human infections for the following two reasons: First, disease tolerance is plot-
ted using summary characteristics of an infection. For example, one might measure the maxi-
mum parasite load and minimum health for an infection [5]. This is accessible experimentally,
but it is unethical to gather these data from a patient, as you need to treat the patient when they
enter the clinic. In one rare case of HIV, infected patients’ tolerance curves have been recorded
because these chronically infected patients are followed for years, but that approach isn’t going
to be useful for acute infections [47]. Second, disease tolerance is a measurement of the behav-
ior of a population and not an individual. The information we gather about an individual
allows us to place a datum on a health by microbe graph, but we don’t know the shape of the
curve that should be fit through that individual [9]; thus, we can’t easily determine which
parameters need fixing in the sick patient. What we learn from model systems is that there are
underlying rules that can be used to explain disease outcomes, and that these rules are nonlin-
ear. By studying these rules in models, we can identify the molecular mechanisms correspond-
ing to the mathematical parameters and then apply this knowledge to human biology by
analogy. If we want to measure changes directly in human immune infections, we need to rely
on descriptions of disease space, which are described in the accompanying paper [48].

Experimental Procedures

Fly Stocks and Husbandry
Flies were maintained on standard dextrose fly media (129.4 g dextrose, 7.4 g agar, 61.2 g corn
meal, 32.4 g yeast, and 2.7 g tegosept per liter) at 25°C with 65% humidity and 12 h light/dark
cycles. Shortly after eclosion, adult flies were collected into bottles containing dextrose fly
media. At least 24 h post eclosion, adult flies were anesthetized with carbon dioxide, and males
were sorted into groups of 20 and placed into vials containing standard dextrose fly media.
Experiments were performed on flies 5–7 d post eclosion unless otherwise indicated. CG2247
piggybac allele (BL18050), Pcmt piggybac allele (BL18398), kenny piggyback allele (BL11044),
CG7408 piggyback allele (BL19305), piggybac allele parental strain w1118 (BL6326), RAL 359
(BL28179), RAL 787 (BL28231), RAL 375 (BL25188), RAL 309 (BL28166), RAL 73 (BL28131),
RAL 380 (BL25190), and RAL 821 (BL28243) strains were obtained from the Bloomington
stock center.
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Injection
Bacteria were injected into flies essentially as described previously [10,12,14,49]. Flies were
anaesthetized with carbon dioxide. A drawn glass needle carrying L.monocytogenes was used
to pierce the cuticle on the ventrolateral side of the abdomen. A picospritzer III was used to
inject 50 nl of liquid into the fly. Bacteria were delivered at different concentrations to produce
injections of approximately 10, 100, 1,000, 10,000 or 100,000 CFU. Infectious doses were deter-
mined for each experiment by plating a subset of flies at time zero. Approximately 200–400
flies were used for each dose in the experiment to measure survival and to count colonies.

Bacterial Strains and Culturing Conditions
All L.monocytogenes stocks: Wild type/mutant parental strain (10403S), Δhly (DP-L2161)
[50], and ΔactA (DP-L3078) [51] were stored at -80°C in brain and heart infusion (BHI) broth
containing 25% glycerol. To prepare L.monocytogenes for injection, bacteria were streaked
onto Luria Bertani (LB) agar plates containing 100 ug/mL streptomycin and incubated at 37°C
overnight. Single colonies of L.monocytogenes from the LB agar plate were used to inoculate 4
mL of brain and heart infusion (BHI) broth and incubated overnight at 37°C without shaking.
Bacteria were removed from the incubator at log growth phase. Prior to injection, L.monocyto-
genes cultures were diluted to the desired optical density (OD) 600 in phosphate buffered saline
(PBS) and stored on ice.

Bacterial Plating
Single flies were homogenized in PBS using a motorized plastic pestle in 1.5 ml tubes. The
supernatants were plated using an Autoplate spiral plater and counted using a Qcount auto-
mated counter. At least six samples were counted to determine the median number of bacteria
for each inoculum. Bacteria were plated onto LB medium and incubated overnight at 37°C
before counting.

Survival Curve Analysis
200–400 flies were injected and checked daily to measure mortality for each inoculum. Flies
were housed in vials containing 20–25 flies each.

Repetitions
Each set of conditions was repeated at least three times; for example, an experiment for a
mutant fly line would be set up independently on three different days to gather microbe load
and survival data. Pairs of plating and survival data from these multiple experiments were all
plotted on the same tolerance curve.

RNA Isolation for Microarray
Flies were injected with 50 nl of Listeria (OD600 = 0.001, or approximately 100 CFUs) or left
manipulated. Following injection, flies were placed in vials containing dextrose fly media and
incubated at 29°C. Samples were separated into three groups: Moribund, recovering, and unin-
fected control. Moribund flies were infected, and samples were collected on the following DPI:
0.25, 1, 2, 2.25, 3, 4, 5, and 6. Recovering flies were infected and flipped onto dextrose fly media
containing 1 mg/ml ampicillin 2 DPI. Recovering samples were collected on the following DPI:
2.25, 3, 4, 5, 6, 7, 9, and 16. Uninfected control flies were not infected but were flipped onto
dextrose fly media containing 1 mg/ml ampicillin 2 dpi. Uninfected control samples were col-
lected on the following dpi: 2.25, 3, and 9. At each of the indicated time points, groups of 20
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flies were homogenized in TRIzol, and RNA was isolated using a standard TRIzol preparation.
Additional flies were used to determine CFUs and monitor survival. Biological triplicates were
obtained from three independent experiments. Quality of RNA was determined using a BioA-
nalyzer 2100. Samples were labeled using the Quick Amp Labeling Kit, One-Color (Agilent),
and hybridized to 4x44K (V2) Drosophila Gene Expression Microarray (Agilent) using the
Agilent Gene Expression Hybridization kit following the manufacturer’s protocol. Microarrays
were scanned using an Agilent Technologies Scanner, and processed signal intensities were
determined using Agilent’s Feature Extraction software. RNA quality assessment, labeling,
hybridization, and microarray feature extraction were performed at the Stanford Functional
Genomics Facility.

Microarray Analysis
The microarray data were analyzed using Genespring v12.1 (Agilent). Microarrays were nor-
malized to the 75th percentile. The median expression level on 0 dpi was set as the baseline.
Prior to statistical analysis, low-quality spots were removed based on flag calls. To determine
differential gene expression, one-way ANOVA was performed comparing all samples to 0 dpi.
P-values were corrected by the Benjamini-Hochberg method. Genes with p-values<0.05 at
any time point with a fold-change greater than 2 were categorized as differentially expressed.
Differentially expressed genes were then clustered using Mfuzz [52].

Topological Data Analysis
Only genes that were differentially expressed in moribund and recovering but not in uninfected
control were used in the topological data analysis using the Ayasdi 3.0 software platform
(ayasdi.com, Ayasdi Inc., Menlo Park, California). Nodes in the network represent clusters of
samples of infected flies, and edges connect nodes that contain samples in common. Nodes are
colored by the average value of their samples for the variables listed in the figure legends. TDA
was used to map the way hosts loop through the disease space in an unsupervised fashion. Two
types of parameters are needed to generate a topological analysis. First is a measurement/
notion of similarity, called a metric, which measures the distance between two points in some
space (usually between rows in the data). Second are lenses, which are real valued functions on
the data points. Lenses are used to create overlapping bins in the dataset. Overlapping families
of intervals are used to create overlapping bins in the data. Metrics are used with lenses to con-
struct the Ayasdi 3.0 output. Multiple lenses can be used in each analysis. There are two param-
eters used in defining the bins. One is resolution, which determines the number of bins; higher
resolution means more bins. The second is gain, which determines the degree of overlap of the
intervals. Once the bins are constructed, we perform a clustering step on each bin, using single
linkage clustering with a fixed heuristic for the choice of the scale parameter. This heuristic is
described in [26]. This gives a family of clusters within the data, which may overlap. We built a
network with one node for each such cluster and where we connect two nodes, if the corre-
sponding clusters contain a data point in common. We used two types of lenses. The first type
was lenses based on dimension reduction algorithms such as multidimensional scaling and
nearest neighbor analyses; these helped analyze the data in an unsupervised manner. The sec-
ond type was lenses based on the data alone, for example, the levels of antimicrobial gene
expression or recovery gene expression. The gene expression markers helped us dissect the
graphs using knowledge about the biology of the system. To build our map, we analyzed our
dataset with samples as rows and genes as columns. We used the Variance Normalized Euclid-
ean metric. We used the PCA coord1 and PCA coord2 lens as well as two data lenses: CG32373
and Fuca (Resolution = 19, Gain = 6, and equalized was used for all lenses).
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Model Rationale and Methods
To evaluate the impact of within-host infection dynamics on host health curves, we created a
compartmental model consisting of four ordinary differential equations for microbes (M),
immune effectors (I), microbial damage effectors (D), and health (H).

dM
dt

¼ r� ZIð ÞM kM �Mð Þ � εMI

dI
dt

¼ tI kI � Ið Þ kM

1þ e�0:01�ðM�sI Þ

� �
� mI

dD
dt

¼ φ 1� D
kD

� �
kD

1þ e�0:01�ðM�sDÞ

� �
� rD

dH
dt

¼ zH KH �Hð Þ � aIþ gDð Þ

Microbes grow in a sigmoid fashion at rate r as they deplete the host substrate, and immune
effectors can either kill microbes outright at rate ε per effector or inhibit microbial growth at rate
η. In these simulations, growth rate limitation was used as the main immune response. Two
mechanisms contribute to immune effector production. Reflecting the sigmoid relationship
between microbe density and AMP levels, immune effectors can increase in proportion to
microbe density up to a maximal rate of τ�kM until effector levels saturate immune pathway
machinery (kI). The parameter σI reflects the microbe concentration at the inflection point for
immune induction. Immune effectors decay at rate μ. Microbes secrete virulence factors and tox-
ins at a maximal rate φ�kD, modulated by a sigmoidal relationship between damage factor pro-
duction and microbe density to reflect a process like quorum sensing controls on virulence factor
production. As with immunity, there is a carrying capacity imposed on damage effectors. This
could reflect either negative feedbacks on further effector production at high effector densities or
a bottleneck limiting flux through the system. The parameter σD reflects the microbe density that
produces a half-maximal induction rate. Damage effectors degrade at rate ρ. Immunopathology
and damage effectors deplete health (H) at rates γ and α, respectively, while hosts can recover
health according to a sigmoidal relationship with current health (reflecting the difficulty of
achieving recovery at low health due to organ failure and other catastrophe) at rate z. “Death” is
called when health dips below 10% of maximum (kH). All simulations were conducted within a
parameter space outlined in S4 Table and run in Matlab (v. 7.11.0) using the ode45 solver.

Curve Fitting
The sigmoidal curves were fit using the four-parameter method in Prism.We tested several mod-
els (linear, exponential, logistic, and sigmoid) and picked the model that gave the best adjusted
r2. We used the adjusted r2 to account for overfitting. When the curve-fitting program suggested
a clearly erroneous result, such as an extremely high top or low bottom, we fixed the top or bot-
tom at the average level for the vigor or for the average of the last three points for the bottom.

RNAseq
Flies were injected with 50 nL of 0.01 OD600 (1000 CFUs) of L.monocytogenes resuspended in
PBS. Flies were placed in vials containing dextrose fly media and incubated at 29°C. 3 DPI flies
were flipped onto dextrose fly media containing 1 mg/mL ampicillin. Groups of 20 flies were
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homogenized in TRIzol for RNA extraction on the following DPI: 0, 1, 2, 3, 4, 6, 8, 10, 12, 14,
16, and 18. Additional flies were used to determine CFU and monitor survival. We tested
w1118, CG2247, Pcmt, and RAL359 strains. As a control, additional sets of w1118 were left unin-
fected and flipped onto dextrose fly media containing 1 mg/mL ampicillin 3 dpi, and samples
for RNAseq were collected at the indicated time points. RNA was isolated using standard TRI-
zol preparation. Library preparation and sequencing was performed by the Duke Center for
Genomic and Computational Biology. Briefly, quality of RNA was assessed by Bioanalyzer
2100. Polyadenylated RNA was enriched from total RNA. Barcoded TruSeq cDNA Libraries
were constructed and quality was assessed by Qubit and Agilent Tapestation. 50 bp single end
reads were obtained by sequencing the libraries on an Illumina HiSeq 2000 using a full flow
cell. Reads were mapped using STAR, and RPKM for each gene was determined by Cufflinks.

Melanization Assay
Groups of 20 female flies were anesthetized with carbon dioxide and injected with 50 nl of 0.01
OD600 (~1,000 CFUs) of L.monocytogenes resuspended in PBS. After injection, flies were
flipped onto dextrose fly media and incubated at 29°C. At 2 dpi, the percent melanized for each
group was determined by anesthetizing the flies with carbon dioxide and scoring each abdo-
men for presence of melanization spots. For each genotype, eight groups of flies were scored.

Supporting Information
S1 Data. Data used to plot the following figures: Figs 2A–2C, 3A–3D and S6A–S6C.
(XLSX)

S2 Data. Data used to plot the following figures: Figs 4–6 and S1–S5.
(XLSX)

S1 Fig. Heat map depiction of recovery microarray experiment. All differentially expressed
genes were hierarchically clustered. Values are plotted as log2 fold changes relative to the
median level of samples collected at 0 DPI. Blues are genes that have lower relative expression,
and reds are genes that have higher relative expression.
(PNG)

S2 Fig. 50 fuzzy c-means clusters. All differentially expressed genes were clustered into 50
fuzzy c-means clusters. Prior to clustering, data were standardized to have a mean value of zero
and a standard deviation of one. The 50 fuzzy c-means groups were then manually curated into
groups of similar expression patterns. Each line represents mean gene expression. Blue repre-
sents uninfected control. Red represents infected and no treatment. Green represents infected
and ampicillin-treated. Cluster numbers highlighted in red contain mortality genes, and cluster
numbers highlighted in green contain recovery genes.
(TIF)

S3 Fig. Variation of tolerance curves. Tolerance curves showing variation in EC50 are shown
in (A). (B) shows tolerance curves for flies with reduced resistance. (C) shows tolerance curves
for flies in which vigor has changed from the wild-type flies. Data are reported in S2 Data.
(EPS)

S4 Fig. Full data for individual tolerance curves of mutant and aged flies. Data are reported
in S2 Data.
(EPS)
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S5 Fig. Full data for individual tolerance curves of D.melanogaster Genetic Resource Col-
lection flies. Data are reported in S2 Data.
(EPS)

S6 Fig. CG2247mutants have impaired melanization response during Listeria infection. (A
and B) RNAseq data for the phenol oxidases proPOA1 and proPO 45 showing that transcript
levels drop in wild-type flies and recover upon antibiotic treatment at 2 DPI, while the CG2247
mutant does not. (C) reports the amount of melanization seen in infected flies 2 DPI (unpaired
t test, p< 0.0001).
(EPS)

S1 Table. Ayasdi dataset.
(XLSX)

S2 Table. 50 fuzzy c-means clusters. Differentially expressed genes were separated into 50
fuzzy c-means groups. Each fuzzy c-means group is labeled 1–50.
(XLSX)

S3 Table. Significantly enriched gene ontology groups.
(XLSX)

S4 Table. Parameter description for mathematical model.
(XLSX)

S5 Table. Statistical parameters from the analysis of sigmoid curves in Figs 5 and 6.
(XLSX)
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