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Inference of Splicing Regulatory Activities
by Sequence Neighborhood Analysis
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Sequence-specific recognition of nucleic-acid motifs is critical to many cellular processes. We have developed a new
and general method called Neighborhood Inference (NI) that predicts sequences with activity in regulating a
biochemical process based on the local density of known sites in sequence space. Applied to the problem of RNA
splicing regulation, NI was used to predict hundreds of new exonic splicing enhancer (ESE) and silencer (ESS)
hexanucleotides from known human ESEs and ESSs. These predictions were supported by cross-validation analysis, by
analysis of published splicing regulatory activity data, by sequence-conservation analysis, and by measurement of the
splicing regulatory activity of 24 novel predicted ESEs, ESSs, and neutral sequences using an in vivo splicing reporter
assay. These results demonstrate the ability of NI to accurately predict splicing regulatory activity and show that the
scope of exonic splicing regulatory elements is substantially larger than previously anticipated. Analysis of
orthologous exons in four mammals showed that the NI score of ESEs, a measure of function, is much more highly
conserved above background than ESE primary sequence. This observation indicates a high degree of selection for ESE
activity in mammalian exons, with surprisingly frequent interchangeability between ESE sequences.
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Introduction

The basic cellular processes of transcription, translation,
and pre-mRNA splicing all rely extensively on sequence-
specific recognition of short nucleic-acid segments to achieve
specificity and regulation. Studies of the specificity of these
processes typically yield sets of sequence elements that are
bound by a given protein or complex, or that share a
common activity. Protein-binding sites on DNA or RNA are
typically modeled by some form of position-specific scoring
matrix (PSSM) model [1], constructed from aligned sets of
experimentally determined binding sequences. Hundreds of
such models are collected in databases such as TRANSFAC
and JASPAR [2,3]. However, PSSMs cannot be directly derived
from heterogeneous sets of binding sites, such as those
identified in screens based on activity [4-8]. Derivation of
PSSMs from such data typically requires clustering and
alignment steps, as performed by algorithms implemented
in MEME [9], the Gibbs Motif Sampler [10], and PROCSE [11].
Even binding sites obtained for a single protein factor may be
heterogeneous and only suboptimally modeled by a single
PSSM, e.g., for a transcription factor whose binding is
influenced by participation in different complexes [12].
Although PSSMs have proven useful in numerous applica-
tions, they are often used in cases where the underlying
assumption of independence between positions remains
untested, and this assumption has proven incorrect in some
well-characterized protein-DNA interactions [13,14]. Using
simulations it has been shown that hundreds or even a few
thousand binding sites are necessary to accurately model a
given binding site that violates independence between
positions, while experimental approaches typically used in
the past yield only ~20-70 sites [14]. While PSSMs and the
method presented here focus on accurate modeling of
binding sites on nucleic acids, whether or not any given site
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is functional may also frequently depend on sequence
context.

We have designed an algorithm called Neighborhood
Inference (NI) that exploits the observation that the sites
bound by DNA- and RNA-binding proteins tend to cluster
tightly in sequence space (Figure 1). NI predicts the activity of
sequences using the local density of known sites in sequence
space, effectively extrapolating from a set of known elements
that may not be comprehensive. In contrast to standard
approaches, NI does not require that the set of known sites be
aligned or even homogeneous (i.e., contain binding sites for
only a single protein), as multiple potentially overlapping
motifs can be modeled simultaneously, including both
positively and negatively acting elements.

As an application, NI was used to model two classes of RNA
elements involved in the regulation of pre-mRNA splicing:
exonic splicing enhancers (ESEs) and exonic splicing silencers
(ESSs). These elements act in concert with the classical 5" and
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Synopsis

Gene expression involves a series of steps in which specific short
DNA or RNA segments are recognized by nucleic acid-binding
proteins. One step that is particularly prominent and complex in
humans and other vertebrates is the removal of introns and the
ligation of exons in the process of pre-mRNA splicing. To better
understand the sequences in exons that regulate this process, the
authors have developed a method termed Neighborhood Inference
that predicts the splicing regulatory activity of RNA segments based
on the known splicing enhancer or silencer activity of other
segments that have closely neighboring sequences. This method
is applied to predict hundreds of new exonic splicing regulatory
elements, as well as splicing-neutral sequences. A number of these
predictions were validated experimentally, indicating that the
number of exonic splicing regulatory sequences is larger than
previously suspected. Neighborhood Inference scoring is also used
to show that selection on exonic splicing enhancers (ESEs)
frequently allows conversion of one ESE sequence to another over
evolutionary time periods, suggesting that ESEs are, to at least some
degree, interchangeable in constitutively spliced exons. The
methods described may also find application in the study of other
biomolecular processes that involve sequence-specific nucleic acid-
binding proteins.

3’ splice site motifs and the branch signal in the recognition
of exons in metazoans, and play important roles in regulation
of alternative splicing [15,16]. Most ESEs are recognized by
members of the serinelarginine-rich (SR) protein family [17],
which recruit the spliceosomal machinery to define exon
locations and promote usage of nearby splice sites. In
contrast, most known ESSs are thought to interact with
members of the heterogeneous nuclear ribonucleoprotein
protein family, which can act to repress recognition of
adjacent splice sites [7,18-20]. ESEs are thought to be present
in a great majority of all human exons [21,22], and ESSs also
appear to be very widespread, especially in alternatively
spliced exons [7,8,20]. Splicing regulatory sequences some-
times exert variable regulatory effects on splicing, depending
on their relative locations in the exon [23].

Here we show that NI can predict the splicing activity of
arbitrary RNA oligomers from heterogeneous sets of known
regulatory sites, and that combined usage of functionally
antagonistic ESE and ESS sets mutually improves their
prediction. The validity of the predictions made by the NI
approach is supported by multiple computational and
experimental lines of evidence, leading to the conclusion
that the number of exonic splicing regulators is substantially
larger than previously anticipated. Because the assumption
that similarly acting regulatory sites tend to cluster in
sequence space is likely to hold very generally beyond
splicing regulation, it will be interesting to see how well the
NI approach performs when applied to cis-regulators of
transcription, polyadenylation, and other processes.

Results/Discussion

Representation and Clustering of Binding Sites in
Sequence Space

The motivation for our approach comes from considering
the known binding sites for a sequence-specific DNA- or
RNA-binding factor in the context of the set of all similar
sequences of the same length, which we refer to as the
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Figure 1. Visualization of Sequence Neighborhoods with Experimental
Binding Site Sequences

Circles represent known binding site sequences (green) or related
sequences (gray) in the sequence neighborhood of the consensus
binding site sequence (blue). Large, medium, and small circles
correspond to sequences with one, two, and three mismatches,
respectively, compared to the consensus sequence.

(A) SRp40 binding pentamers [24] around the consensus ACAGG (total of
376 pentamers shown).

(B) SF2/ASF binding hexamers [27] around GAAGAA (total of 694
hexamers shown).

(C) GATA-2 binding pentamers [25] around GGATA (total of 376
pentamers shown).

(D) c-ETS binding hexamers [26] around TTTCCT (total of 694 hexamers
shown).

doi:10.1371/journal.pgen.0020191.g001

sequence neighborhood. The pattern of relatedness among
the binding sites for a factor can be visualized using a “local
sequence neighborhood diagram” (Figure 1), in which
distinct nucleic-acid sequences of a given length are
represented as circles whose sizes and relative positions
reflect the degree of similarity between the corresponding
sequences. Known binding sites for representative nucleic
acid-binding proteins that have well-characterized in vitro
binding specificities—the splicing factors SRp40 and SF2/ASF
and the transcription factors GATA-2 and c-ETS [24-27]—
are shown in Figure 1. The degree of clustering observed for
the known binding sites of each factor, in a region of
sequence space containing only a small fraction of the total
set of pentamers or hexamers, suggests the use of proximity
in sequence space to known sites as a predictor of binding
activity. Some aspects of this proximity effect could be
captured by modeling the binding specificity of each of these
factors by a PSSM. However, PSSM models are directly
applicable only to sequence sets that are sufficiently
homogeneous and can be reliably aligned.
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Inference of Activity from Sequence Neighborhood

In recent years, large-scale screens for ESE and ESS
elements have been conducted, resulting in the identification
of substantial sets of oligonucleotides that are predicted with
fairly high confidence to have ESE or ESS activity. These
sequence sets are heterogeneous, each likely containing
binding sites for at least a dozen distinct splicing factors,
and are not readily modeled by standard motif-modeling
methods. To more accurately model the set of human exonic
regulatory elements, and to identify additional elements
missed by these screens, we used the NI approach, which
estimates the potential activity of sequences based on the
density of known sites contained in a local sequence
neighborhood. In this approach, the set of sequences at
different “distances” (measured in terms of substitutions and/
or shifts) from a given query sequence is evaluated, and a
score is assigned that reflects the nature of the known
sequences in the neighborhood (positive if mostly ESEs,
negative if mostly ESSs, and near zero otherwise). The density
of known elements in the neighborhood is also considered,
with higher densities giving rise to scores of higher
magnitude, and the raw score is normalized to the range —1
to +1. For example, using the ESE and ESS datasets described
below, the sequence GTTCTT was assigned the highly
negative NI score of —0.999 because its local sequence
neighborhood contains a very high density of known ESS
sequences and few ESEs (Figure 2A). Conversely, the sequence
AGCTGC was assigned the highly positive NI score of 0.997
because of its proximity to a high density of known ESEs and
relatively few ESSs (Figure 2B). Importantly, this method does
not require the sets of positive and negative sequences to be
homogeneous, e.g., binding sites for a single factor, and does
not make explicit assumptions about statistical independence
between positions in sites.

In concept, NI is related to the smoothing technique used
in the primary sequence ranking method described by
Aalberts and coworkers for 5’ splice site prediction [28]. NI
applies to a situation in which input sequences are known to
have or not have a particular biological activity. The primary
sequence ranking method applies to a different situation in
which the same sequence is known to have activity in one
context but not another. In the primary sequence ranking
method, sequences are ranked based on the ratio of the
number of times they appear in training sets of real and
decoy sites, and these ratios are smoothed by adding
pseudocounts based on the corresponding ratios for sequen-
ces that are one or two mutations away.

Application of the NI approach requires designation of a
set of trusted “positive” (e.g., ESE) oligonucleotides, and can
optionally make use of a second set of trusted “negative” (e.g.,
ESS) sequences. For this purpose, we combined the results of
three recent large-scale screens for exonic splicing regulatory
elements [7,8,22]. In the first study, the RESCUE-ESE method
identified candidate ESEs as hexanucleotides that are
significantly overrepresented in exons versus introns and in
exons with weak splice sites relative to exons with strong
splice sites, and ESE activity was confirmed for a representa-
tive set of predicted ESEs using a splicing reporter assay [22].
In the second study, candidate ESE and ESS octamers called
PESEs and PESSs were identified based on the relative
frequency of octanucleotides in internal noncoding exons
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versus unspliced pseudo exons and 5’ untranslated regions;
again, a subset were confirmed to have the predicted activity
using splicing reporters [8]. In the third study, a cell
fluorescence-based screen called FAS-ESS was used to
recover decanucleotides with ESS activity from a library of
random decamers introduced stably into a splicing reporter
gene in cultured cells [7]. These studies all appeared to have
relatively low rates of false positives based on splicing
reporter assays, but had unknown rates of false negatives.
From each of these sets of oligonucleotides, overrepresented
hexamers were derived. The sets of RESCUE-ESE and PESE
hexamers were combined to produce a set of 666 trusted
ESEs, and the FAS-ESS and PESS hexamers were combined to
produce a set of 386 trusted ESSs. These datasets are
summarized in Table 1.

NI was applied systematically to predict exonic splicing
regulatory elements using different trusted sets as input.
Initially, the predictive power of NI scoring based on single
sets of trusted sequences (either ESSs or ESEs) was compared
to that achieved with both sets together, using cross-
validation analysis. Because no datasets or systematic screens
for sequences that are inactive in splicing have been reported
to date, accuracy was assessed exclusively on the sets of known
ESS and ESE hexamers, with the ESEs effectively functioning
as negatives for assessment of ESS prediction, and vice versa.
With the trusted ESS hexamers alone as input (resulting in a
score range of —1 to zero), the NI score distributions for the
known ESSs and ESEs were plotted (Figure 2C), using 10-fold
cross-validation scoring, in which the known ESSs were
broken into ten equal groups and each group was scored by
NI using the remaining nine groups as trusted ESSs. These
ESS-based scores gave very good separation between the
known ESSs and ESEs, with a substantial majority of known
ESSs being assigned scores below the lowest-scoring ESE
hexamer (Figure 2C), suggesting that the NI approach is quite
accurate in this “single-set” mode. Using the trusted ESEs as
input (resulting in an NI score range of zero to one), 10-fold
cross-validation scoring also resulted in fairly good discrim-
ination of these two sequence sets (Figure 2D), although the
separation was not as crisp as for the ESS-based scoring. The
reasons for the improved NI classification using ESSs rather
than ESEs as input are not entirely clear; perhaps the ESS set
exhibits better clustering properties or is of higher quality
than the ESE set.

Excellent separation of ESEs from ESSs was achieved when
both ESSs and ESEs were used as input in 10-fold cross-
validated NI scoring (Figure 2E), with almost all ESEs scoring
above zero and almost all ESSs scoring below zero. These
results suggest that the NI method has excellent potential for
predicting splicing regulatory activity. Comparison of the
classification performance of these three approaches using
receiver-operator curve analysis (Figure 2F) confirmed that
using both sets gave better discrimination than using the ESS
set alone (area under curve [AUC]=0.994 versus 0.985), which
in turn was better than using the ESE set alone (AUC =0.972),
over essentially the entire range of false-positive levels.
Similar results were obtained using 2-fold cross-validation
(Figure S1). It is important to keep in mind that all of the
accuracy measurements shown in Figure 2 assess the ability of
the methods to discriminate ESSs from ESEs (and ESEs from
ESSs), not their ability to discriminate “splicing-active” from
“splicing-neutral” sequences. The latter classification prob-
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Figure 2. Cross-Validation Analysis of NI Scoring
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(A) Local sequence neighborhood diagram for sample predicted ESS sequence (GTTCTT, blue dot), showing trusted ESSs (orange) and ESEs (green) in

neighborhood.
(B) Similar diagram for predicted ESE sequence AGCTGC.

(C-E) Histograms of 10-fold cross-validated NI scores, using only trusted ESS (C), only trusted ESE (D), or both ESS and ESE hexamers (E) as training data.
(F) Comparison of NI performance in different cross-validation experiments. False-positive and true-positive rates defined in Materials and Methods.

doi:10.1371/journal.pgen.0020191.g002

lem is not readily assessed through cross-validation analysis
because it would require a large dataset of high-confidence
splicing-neutral sequences and such a dataset has not yet
been determined. Instead, experimental tests were used to
assess this level of classification, as described below.
Application of NI scoring to the entire set of 4,096
hexamers using the trusted ESS and ESE hexamers as input
led to identification of hundreds of candidate novel ESS and
ESE hexamers at score cutoffs for which the numbers of
misclassifications of ESEs/ESSs in the cross-validation analyses
were negligible (Table 2). For example, using NI score cutoffs
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of >0.80 for prediction of ESEs and <—0.80 for prediction of
ESSs gave over 300 new candidate ESE hexamers and over 100
new candidate ESSs. The complete set of NI scores for all
hexanucleotides is given in Table S1.

Experimental Validation of NI Predictions

To further assess the accuracy of NI predictions, we asked
whether NI scoring could predict the magnitudes of the
effects on splicing of point mutations introduced into exons.
For this analysis, pairs of tested wild-type and mutant exon
sequences with corresponding exon-inclusion levels meas-
ured following transient transfection into cultured cells were
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Table 1. Trusted ESE/ESS Hexanucleotides

Table 2. NI Prediction of ESE/ESS Hexamers

Dataset Length® Number Extracted Combined

Name Hexamers Number

(Reference) (Minimum Number (Common)©
of Occurrences)®

RESCUE-ESE [22] 6 238 238 (1) 666 (104)

PESE [8] 8 2,069 537 (4)

FAS-ESS [7] 10 133 176 (2) 386 (25)

PESS [8] 8 974 240 (4)

2ESE/ESS length in original publication.

PNumber of hexamers extracted from original ESEs/ESSs with minimum number of
occurrences given in parentheses.

“Total number of pooled ESE and ESS hexamers, with the number of hexamers common
to the two sources given in parentheses.

doi:10.1371/journal.pgen.0020191.t001

extracted from three published studies of splicing regulatory
sequences [7,8,22]. For each wild-type/mutant pair, the
maximum change in NI score (over all corresponding pairs
of altered hexamers) was compared to the experimentally
determined change in exon-inclusion level, measured directly
by quantitative RT-PCR in two of the studies or indirectly by
the percentage of green fluorescent protein-expressing cells
in a third (Figure S3). A highly significant correlation was
observed between the change in NI score and the measured
change in exon-inclusion level (r = 0.661, p = 1.9 X 107%),
providing support for the ability of NI scoring to predict
changes in splicing regulatory activity resulting from point
mutations.

Previously, statistical enrichment of hexanucleotides in
exons versus introns and in exons with weak splice sites
relative to exons with strong splice sites has been used to
predict ESEs with the RESCUE-ESE method [22]. For
comparison, similar enrichment scores were determined for
all hexamers including the new NI-predicted ESEs using
updated sequence sets and splice site scoring methods (Figure
3).

Old and new RESCUE-ESE hexamers overlapped substan-
tially, with ~85% of original RESCUE-ESEs also predicted in
the new analysis (Figure 3A and 3B). The updated RESCUE-
ESE hexamers are more numerous than the set identified in
2002, presumably because of the increased statistical power
resulting from improvements in the quality and quantity of
exon and intron data available, and improved splice site
models.

The new NI-predicted ESEs show a clear tendency to be
enriched in exons versus introns, and to a lesser degree also
in exons with weak splice sites versus exons with strong splice
sites. However, a subset of NI-predicted ESEs are enriched in
introns, in exons with strong splice sites, or both, as are some
of the training hexamers (“trusted ESEs”) derived from the
PESE method. About half of the NI-predicted ESEs were also
contained in the updated RESCUE-ESE set. However, a
substantial number of hexamers were predicted by only one
of the two methods, raising the possibility of using both
methods in conjunction to increase sensitivity and/or
specificity. A total of 27 NI-predicted ESEs and five NI-
predicted ESSs were also found in the set of exonic regulatory
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Score New ESE/ESS ESE/ESS

Cutoff® ESE/ESS®  (Blind Scoring®) (10-Fold Cross-Validation®)
0.5/-0.5 649/262 1,233/579 1,201/564

0.6/—0.6 588/221 1,150/514 1,120/500

0.7/-0.7 432/153 940/419 901/394

0.8/-0.8 313/110 762/342 724/328

0.85/—0.85 297/91 724/304 691/289

0.9/-0.9 210/60 606/258 570/236

0.95/—0.95 129/38 462/198 429/179

0.99/-0.99  83/21 362/153 315/134

NI score cutoffs: minimum score for predicted ESE/maximum score for predicted ESS.
PNumber of predicted ESE/ESS hexamers not contained in the published ESE/ESS sets.
“Number of predicted ESEs/ESSs if scoring all hexamers by leave-one-out cross-validation.
9Number of predicted ESES/ESSs if scoring all hexamers by 10-fold cross-validation.
doi:10.1371/journal.pgen.0020191.t002

sequences identified by Goren and colleagues based on
overrepresented and conserved dicodons in orthologous
human and mouse exons [23].

To test the ability of NI scoring to identify novel ESEs and
ESSs and to discriminate them from exonic splicing-neutral
sequences, 24 previously uncharacterized hexanucleotides,
chosen to cover the entire spectrum of NI scores from —1 to
+1, were inserted into a splicing reporter construct (Figure
4A). The selected hexamers span a range of RESCUE-ESE
enrichment values (black circles, Figure 3A and 3B). The
splicing reporter construct was engineered to give close to
50% inclusion when inserted with random sequences, a level
from which either enhancement or repression could be
detected. The effects on splicing of the test exon were assayed
by measuring the inclusion level of the test exon by
radiolabeled RT-PCR following transfection of the reporter
into cultured cells (Figure 4B). The level of exon inclusion
varied dramatically as a function of the NI score of the
inserted hexamer, giving very high positive correlation (r =
0.825, p =6.9 X 10_7) between the NI scores of hexamers and
the resulting level of inclusion of the test exon. The effects on
splicing appeared to divide roughly into three score regions:
below —0.8, between —0.8 and 0.8, and above 0.8. All tested
sequences with NI scores in the middle region, between —0.8
and 0.8, had modest effects or no effects on splicing, resulting
in roughly background levels of exon inclusion in the range
of ~30%-60%, suggesting that sequences in this score
interval are mostly splicing-neutral, at least in this exonic
context, in the sense that they lack significant ESE or ESS
activity. At the extremes, all five tested sequences with NI
scores below —0.8 had significant ESS activity, reducing the
average inclusion level to ~25% or below, and four of the
seven tested sequences with NI scores above 0.8 had
significant ESE activity, producing average inclusion levels
above 60%. These predicted ESEs include two that were also
predicted by the updated RESCUE-ESE analysis and two that
were predicted uniquely by the NI method (AAACTG and
AACTTA). These results confirm the ability of NI scoring to
predict new ESS and ESE hexamers at the given cutoffs, and
suggest that most or all hexanucleotides with NI scores below
—0.8 are ESSs and that many or most of those with NI scores
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(A and B) For each hexamer, the scatter plots show the enrichment in exons versus introns (AEl, x-axis), and the enrichment in exons with weak versus
exons with strong splice sites (AWS, y-axis), as described by the original RESCUE-ESE method [22]. AWS values for 3’ splice sites are shown in (A), and for
5" splice sites in (B). “RESCUE-ESE” were predicted to have ESE activity for at least one splice site [22], “trusted ESE” were used as NI training data, “new
3'/5" RESCUE-ESE” fulfill the conditions AEI > 2.5 and AWS > 2.5, but were not in the original RESCUE-ESE, “new NI predicted ESE” have NI scores > 0.8,
and “experimentally tested” were selected for testing in a splicing reporter construct (Figure 4). Because over 4,000 points are plotted, in dense regions
of the plot many symbols may not be clearly visible because of other overlapping symbols. Note also that the use of small gray dots for non-ESE
hexamers in the figure may cause this group to appear less numerous than it actually is. Alternative versions of (A) and (B) with altered plotting order

are provided in Figure S4.

(C) Area-proportional Venn diagram with overlaps between sets with newly predicted ESEs from (A) and (B).

doi:10.1371/journal.pgen.0020191.g003

above 0.8 are ESEs. We note that here we have tested only one
construct and one cell line. The activity of some of these
elements may be context-dependent, a feature that is not
modeled by NI. Some elements may only be active in certain
tissues when bound by tissue-specifically expressed splicing
factors, or at certain locations when bound by factors that
need to be properly positioned relative to other components
of the splicing machinery. Altogether, NI scoring appears able
to partition hexamers into three subsets, containing pre-
dominantly ESSs, predominantly splicing-neutral sequences,
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and predominantly ESEs, as suggested by the trimodal
distribution of NI scores for all hexamers (Figure 4C).

As expected, the densities of new NI-predicted ESEs and
ESSs in exons and introns near splice sites followed the same
pattern as for the trusted ESE and ESS sets, respectively, with
ESEs occurring more frequently in exons than introns, and
ESSs being more abundant in introns than exons. The shape
of the density distribution was also somewhat similar between
predicted and trusted ESEs and between predicted and
trusted ESSs (Figure S2).
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Figure 4. Prospective Tests of NI Predictions

(A) Schematic representation of the splicing reporter construct and
primers (horizontal arrows) used to quantify exon inclusion. Exons are
represented as boxes. The vertical line in exon two indicates the cloning
site for test sequences.

(B) For each tested hexamer sequence, the NI score (x-axis) is plotted
against the corresponding exon inclusion percentage (y-axis) determined
by radioactive RT-PCR. All sequences were tested at least twice, and
circles represent average values, with minimum and maximum values
indicated by vertical lines. The curved line represents a local polynomial
fit to the data. The insert shows a representative gel image for two
arbitrarily chosen test sequences (AATCGC, 29% inclusion, and GACGAG,
80% inclusion).

(C) Distribution of NI scores for all 4,096 DNA hexanucleotides using
“blind” (leave-one-out) cross-validated scoring.
doi:10.1371/journal.pgen.0020191.9004
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Predicted ESE Hexamers Exhibit Sequence and Functional
Conservation

When the RESCUE-ESE method was applied to exon/intron
datasets from mouse and other vertebrates, the resulting sets
of candidate ESE sequences were quite similar to the set
originally identified in human [29]. This observation, together
with the high degree of conservation of domain organization
among SR proteins across vertebrates [29], suggests that most
or all hexamers with ESE activity in human are likely to have
this activity in mouse as well. In general, most exons are
expected to experience strong selection to preserve the core
splice site and ESE sequences required for efficient and
accurate splicing [30], and there is evidence from population
genetic data of fairly strong selection to conserve RESCUE-
ESE hexamers in constitutive human exons [31,32]. Thus,
functional ESEs that occur in human exons are likely to be
preferentially conserved in orthologous mammalian exons.
The degree of conservation of candidate ESEs and other
hexamers in orthologous exons of human, mouse, rat, and
dog was assessed using a “sequence conservation rate” metric
(Figure 5). As expected, the sequence conservation rates for
the set of RESCUE-ESE hexamers were on average substan-
tially higher than for hexamers overall. For the set of NI-
predicted ESE hexamers, using a score cutoff of 0.8 and leave-
one-out (blind) scoring, a shift toward higher conservation
rates, almost as great as those seen for the RESCUE-ESE
hexamers, was observed. Higher conservation of NI-predicted
ESEs was observed whether comparing to all hexamers or to a
control set of hexamers constructed by changing each
adenine, cytosine, guanine, and thymine in the NI-predicted
ESEs to thymine, guanine, cytosine, and adenine, respectively,
yielding a set of identical size, sequence complexity, and
cytosine/guanine content. The increased conservation sup-
ports the common in vivo activity of many NI-predicted ESEs
in endogenous human exons.

The degree to which different ESE sequences can substitute
for one another in evolution is not generally known.
Previously, analysis of single nucleotide polymorphism data
obtained evidence of fairly strong selection against “ESE-
disrupting” changes, i.e., mutations that change RESCUE-ESE
hexamers to non-RESCUE-ESE hexamers. Slightly weaker
selection was observed against “ESE-altering” changes, i.e.,
mutations that change one (or more) RESCUE-ESE hexamer
into another. To ask whether ESEs are functionally inter-
changeable over longer periods of evolutionary time, we
studied ESE evolution in mammalian exons using a measure
that we call functional conservation rate. Instead of requiring
perfect conservation at the sequence level, this measure
tallies the fraction of aligned hexamers in orthologous
human/mouse/rat/dog exons at which the NI scores of the
hexamers present in the other mammals differ by no more
than a small amount from the NI score of the human hexamer
(Figure 5B). The functional conservation rates for the
RESCUE-ESE and NI-predicted ESE sets were found to be
much higher than the rates of sequence conservation
measured above (Figure 5A), and deviated to a much greater
degree from the level of functional conservation measured
for the control sets: for sequence conservation, the difference
in means between predicted ESEs and control hexamers is
less than 0.4 standard deviations, while for functional
conservation, it is about 1.3 standard deviations. This result
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Figure 5. Conservation of Predicted ESE and ESS Hexamers

conserved occurrence rate

(A and B) Phylogenetic conservation of Nl-predicted ESEs was measured across human, mouse, rat, and dog genomes. Conservation of predicted ESE
hexamers (orange curve, NI score > 0.8) was compared to the conservation of all other hexamers (blue curve, NI score < 0.8), RESCUE-ESE hexamers
(green line), or a control set of equal size (purple curve, randomized by nucleotide substitution as described in text) in a histogram of conservation
scores, either measuring conservation of sequence (A) or conservation of function (B) as predicted by NI.

(C and D) Conservation of Nl-predicted ESSs was estimated using the COR measure as described in the Materials and Methods. The histograms
represent COR values obtained for control sets of hexamers, and the red circle indicates the value for predicted ESS hexamers located between
alternative 5’ splice sites (C) or between alternative 3’ splice sites (D). The analyzed exonic region between alternative splice sites is illustrated by a
yellow box, with splice sites represented by brackets pointing to the left and right for 5" and 3’ splice sites, respectively.

doi:10.1371/journal.pgen.0020191.g005

indicates that, over the longer periods of evolutionary time
separating the divergence of rodents, canids, and primates,
one ESE hexamer has frequently been substituted for
another, suggesting a much greater degree of functional
interchangeability between ESE hexamers than was previ-
ously appreciated. The high level of functional conservation
suggests that ESEs tend to remain at particular positions in
mammalian exons over long periods of evolutionary time,
even as the precise ESE sequences present change.

Predicted ESSs Are Conserved in Alternative Splice Site
Exons

Unlike ESEs, which are highly conserved in constitutive
exons (and exons overall), ESSs are not expected to be
conserved in constitutive exons, which are presumably under
selection primarily for efficient and accurate inclusion in the
processed mRNA. Consistent with this expectation, hexamers
of the FAS-ESS set have lower than average conservation
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rates in bulk exons (data not shown). Recently, Wang and
coworkers showed that ESS oligonucleotides commonly
influence splice site choice when placed between competing
5" splice sites or between competing 3" splice sites [20], and
also regulate splice site usage in natural alternative 5’ splice
site exons (ABEs) and alternative 3’ splice site exons (A3Es).
They also observed that hexanucleotides of the FAS-hex3 set
are preferentially conserved when located between alterna-
tive splice sites of orthologous human/mouse A5Es and A3Es,
using a non-alignment-based conservation measure called
conserved occurrence rate (COR). Applying this metric to the
same sets of orthologous ASE and A3E pairs, we found that
NI-predicted ESSs exhibit elevated rates of conservation
relative to control sets of hexamers when located between
alternative 5' splice sites (Figure 5C; p = 1.4 X 107%) or
between alternative 3’ splice sites (Figure 5D; p = 2.7 X 10~%).
This observation provides additional support for the com-
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mon in vivo activity of NI-predicted ESS hexamers and
suggests that, like other ESSs, they may commonly play a role
in regulation of splice site choice.

Perspectives

The large numbers of new ESEs and ESSs predicted at NI
score cutoffs of 0.8 and —0.8, respectively, indicate that the
number of exonic splicing regulatory elements is substantially
larger than previously anticipated. The activity of many of
these elements may be context-dependent. Some elements
may only be active in certain tissues when bound by tissue-
specific splicing factors, or at certain locations within a gene
when bound by factors that need to be properly positioned
relative to other components of the splicing machinery. Yet,
the existence of such a large number of hexanucleotides with
splicing regulatory activities has consequences for studies of
related phenomena such as nonsense-mediated mRNA decay,
implying that it may be challenging to design mutations in
such a way that they influence only the process under study
without having potentially confounding effects on pre-mRNA
splicing. Already, this has proven to be an important issue,
with a number of mutations that introduce premature
termination codons in transcripts found to also have effects
on splicing, often contributing to exon skipping by disrupting
ESEs and/or creating ESSs [33,34]. NI scoring may prove useful
in the design and interpretation of such experiments: not only
can it be used to identify comprehensive sets of candidate ESE
and ESS sequences, but it can also reliably predict splicing-
neutral sequences (Figure 4). The identification of splicing-
neutral sequences in human exons might also have utility in
genetic engineering and/or synthetic biology applications
when it is desired to introduce sequence changes to an exon
without altering existing splicing regulation. NI scoring might
also contribute to integrated models of pre-mRNA splicing,
such as the ExonScan splicing simulation algorithm [7].

The NI approach itself may also have other applications.
For modeling of regulatory sequence elements, NI may have
advantages over traditional methods such as PSSMs, which
have been used to predict ESEs [35], including its applicability
to heterogeneous training data, thus eliminating the need for
clustering or even alignment of input sequences. The NI
approach does not make prior assumptions about the nature
of the set of functionally active sequences except that local
sequence neighborhoods are dense in functionally similar
sites. Of course, the NI approach requires a relatively large set
of training data to make accurate predictions. When only a
small sample of binding sites are known (or in the rarer case
where a larger sample of sites is known and the independence
assumptions are shown to hold), PSSMs are probably a better
choice.

PSSMs are based on simple physical principles that lead to
a model of additive position- and residue-specific energies.
The NI approach is based on two principles that have both
evolutionary and physical aspects. The first is that nucleic
acid-binding proteins are evolutionarily designed to bind to
a set of oligonucleotides that are close to each other in
sequence space. This idea is related to but distinct from the
principles that underlie PSSMs, and is also supported by
published data. The second principle is that the binding
specificities of antagonistic classes of nucleic acid-binding
proteins (e.g., splicing activators and splicing repressors) will
tend to avoid binding closely related sequences. This
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principle is not directly related to principles underlying
PSSMs. Whether the differing principles behind PSSMs and
NI favor one over the other may depend on the application.
In the current study, we describe the NI approach in its
simplest form, based simply on counts of sequence neighbors,
which allows the accurate prediction of novel ESE and ESS
motifs. The method could easily be extended to use more
quantitative information in the modeling of regulatory
sequences. For instance, individual sequences of known
activity could be weighted according to their abundance in
experimentally determined sequence sets, according to their
binding affinity, or according to phylogenetic conservation,
which is likely to improve prediction accuracy [36]. Alter-
natively, a more complicated distance measure could be used,
e.g., assigning different weights to mismatches at different
positions. With new high-throughput technologies such as
genome tiling arrays and their application in chromatin
immunoprecipitation experiments [37], increasing amounts
of experimental data on regulatory sites will become
available, and may provide opportunities for application of
NI or related methods to the identification of enhancers and
silencers of transcription, translation, or other processes.

Materials and Methods

Trusted regulatory element data. Sets of trusted ESEs and ESSs
were obtained from published sources. The trusted ESE set was based
on the complete set of 238 RESCUE-ESE hexamers [22] and hexamers
that occurred at least four times in the set of PESE octamers [8]. The
trusted ESS set was based on the FAS-hex2 set of 176 ESS hexamers
[7] and hexamers that occurred at least four times in the set of PESS
octamers [8]. The cutoff of four occurrences for the PESE/PESS sets
was chosen as the lowest cutoff that produced no overlap between
ESE and ESS hexamers derived from PESE and PESS octamers,
respectively. The five hexamers that were in common between these
initial ESS and ESE sets were omitted from the final sets. A total of 12
RESCUE-ESE, 12 PESS, and eight PESE sequences were tested
experimentally in the original studies using splicing reporter
constructs. All FAS-ESS decamers were identified experimentally;
14 FAS-ESS decamers were further tested in a heterologous exon
construct, and six FAS-ESS hexamers were also tested singly and in
overlapping pairs. Sequence neighborhoods were visualized using
GraphViz (http:/lwww.research.att.com/sw/tools/graphviz) and its Perl
bindings (http://search.cpan.org/~lbrocard/GraphViz-2.02).

NI scoring function and cross-validation. The training data for NI
consist of two lists, A and B, containing nucleotide sequences of
length k (k-mers) that are known members of two antagonistic classes
of regulatory elements (e.g., ESE and ESS hexamers). For some
applications, a single list (A) can be used, i.e., the list B can be empty.
The distance d;; between a pair of k-mers k; and k; was measured as the
minimum of the Hamming distance over all possible shifts relative to
each other plus the size of the shift, defined as

dj = min H(ki, o' (k)) +|s| (1)

where o’(k)) represents the k-mer ; shifted to the left by s bases (where
negative values of s correspond to shifts to the right by |s| bases), and
H is the ordinary Hamming distance (number of mismatches)
between the two (possibly shifted) k-mers. No gaps are allowed. For
example, the distance between the hexamers GAAGGC and AGAATG
would be two, representing the number of mismatches (one, under-
lined) plus the size of the shift (one base) in the optimal alignment of
these two hexamers.

This distance measure is related to H-measure [38] and has been
used previously [7,22]. This distance measure was found to be similar
in specificity, but more sensitive in cross-validation experiments than
ordinary Hamming distance. The sequence neighborhood N; of a k-
mer k; was defined as the set of all k-mers ki with 0< dij < dpax- The
raw score s; of N; was defined as

Amax
1 naq+mnpa naq + 1\
—. 2L 2% .son, -

$; =
npaq + 1

(2)

—l d Mot d
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where 1,4 is the total number of k-mers n; in N; with d;; =d, and ny 4

and npg are the numbers of k-mers n; in N; with d; = d that are
contained in the lists A and B, respectively. Using (n4 4+ npg 4)1p4 as a
multiplier rewards neighborhoods that contain many k-mers of
known class and normalizes unequal neighborhood sizes, while the
factor 1/d reduces contributions from more distant k-mers in a
neighborhood. If ny, > ng, sgn, is one; if ny, < npy sgng is —1;
otherwise sgn, is zero. For convenience, a normalized score §; in the
interval [-1, +1] was obtained by sigmoid transformation of s,

Si=2/(1+¢) - 1. (3)

By definition, k-mers from lists A and B used in a particular analysis
have normalized scores S; of +1 and —1, respectively. For prediction of
ESE/ESS hexamers, we chose d.« = 1 and y = 1.3 based on their
empirical performance in cross-validation experiments. N-fold cross-
validation was performed by randomly splitting the sets of trusted
elements into N parts, and scoring each of these parts by using the
remaining N — 1 parts as training data, i.e., using the remaining N — 1
parts to define the A and B sets for this analysis.

As no trusted set of splicing-neutral sequences was available,
trusted ESEs were defined as positives and trusted ESSs as negatives
for assessment of cross-validation accuracy. (Accuracy could also be
measured by defining ESSs as positives and ESEs as negatives, with the
result that the sensitivity and specificity values below would be
reversed.) By focusing only on the “trusted” sequences, this approach
avoids having to make assumptions about the splicing regulatory
activity of the remaining sequences that are neither trusted ESEs nor
trusted ESSs. Accuracy of cross-validated NI predictions was then
calculated for various score cutoffs ¢, leading to the following
definitions: true positive rate (sensitivity) = TP/(TP 4+ FN), where TP is
the number of trusted ESEs with S; > ¢, and FN is the number of
trusted ESEs with S; < ¢; and false positive rate (1 — specificity) =1 —
TN/(TN + FP), where TN is the number of trusted ESSs with S; < ¢,
and FP is defined as the number of trusted ESSs with S; > ¢.

Retrospective analysis of NI predictions. Pairs of mutant and wild-
type sequences were extracted from the literature together with
experimental measures of their splicing regulatory activity. The effect
of mutations on splicing regulators was predicted by assigning a score
Apax to each pair of sequences, calculated as the NI score difference
of largest magnitude between corresponding hexamers in the wild-
type and the mutant sequences. For example, if the wild-type
sequence was AACCGGGTTAA, and the mutant was AACCGAGT-
TAA (the mutant base is underlined), then the magnitude of A,
would be defined as the maximum of the absolute differences:
INI(AACCGG) — NI(AACCGA)|, INJ(ACCGGG) — NI(ACCGAG)|,.. .,
INI(GGTTAA) — NI(AGTTAA)|, where NI(X) represents the NI score
of the hexamer X, and the sign of A,,,, would be the sign of the
difference with largest absolute value. Using mean or median score
differences instead of A, had only minor effects on the results. A,
was chosen because it seems more likely to capture the change in
activity resulting from mutating the core of a motif, whose location is
not known in most cases.

Hexamer enrichment scores. Enrichment scores of hexamers in
exons versus introns (AEI) and close to weak versus strong splice sites
(AWS) were calculated as described [22], using an updated set of
sequences, and a maximum entropy model to score splice sites
instead of the original weight matrix model [39]. In brief, sequences
of constitutive internal exons and major spliceosome (U2-type)
introns longer than 60 nucleotides were collected. Four additional
sets of sequences were generated from exons, containing the
sequences with the weakest (lowest 25%) or strongest (highest 25%)
of 3" and 5" splice site scores. At most 200 nucleotides beyond the
splice site were analyzed in each sequence, and splice site regions (=5
to +5 for the 5’ splice site and —20 to +5 for the 3’ splice site) were
excluded from analysis. Enrichment scores were then calculated for
each hexamer according to the following formula:

Sx —Jy
AXY = 4
VI/Nx+1/Ny)g(l - g) ®
with
:Nxx;xixY Sy ()
X Y

where X and Y are the two sets to be compared (exons/introns, weak/
strong 3’ splice site exons, or weak/strong 5’ splice site exons), fx is
the frequency of a hexamer in set X, defined as number of
occurrences per nucleotide, and Nx is the number of nucleotide
positions that were analyzed in set X. For classification of putative
ESEs, a minimum cutoff value of 2.5 was used for both AEI and AWS.
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Splicing reporter assay. The splicing reporter construct, termed
NhexT (for NI hexamer test), was derived from plasmid 4.11.12muC
[4], kindly provided by T. Cooper. This construct is a B-globin-
derived minigene from which the translation start codon has been
deleted to avoid reading frame-related effects on mRNA stability.
The second exon in this construct is a test exon whose inclusion rate
depends on its length and ESE/ESS content. This exon was shortened
from 34 to 30 nucleotides in order to obtain an exon inclusion rate of
close to 50% in our HeLa cell line. Cloning of test hexamers into the
reporter construct was carried out as follows. Oligonucleotide
primers containing the desired mutations were used to amplify the
mutation-containing replica of a methylated wild-type plasmid. After
digestion with the methylation-sensitive restriction enzyme Dpnl, the
PCR products were transformed into Escherichia coli DHb5o strain.
Colonies were picked and cultured, plasmids were purified, and
inserts were confirmed by sequencing. Thus, the test hexamer
replaced a six-base segment in the test exon at positions 7-12,
resulting in no change in exon length. As expected, no correlation
was observed between presence of potential termination codons in
the test sequence and the corresponding exon two inclusion level.

Primers used for this analysis were as follows. For mutagenesis of
the NhexT minigene, forward primer: 5'-ATTTTCCCACCCT-
TAGGTCGACNNNNNNTACCGCGAATGG-3" (N denotes inserted
nucleotides—unique for each inserted hexamer), reverse primer: 5'-
GTCGACCTAAGGGTGGGAAAATAGACCAATAGGC-3'. For PCR
and sequencing, forward primer: 5'-AGAACCTCTGGGTCCAAGGG-
TAG-3', reverse primer: 5'-CATTCACCACATTGGTGTGC-3'.

Transfection, RNA isolation, and RT-PCR amplification. HeLa
cells were cultured in Dulbecco’s modified Eagle’s medium, supple-
mented with 4.5 g/ml glucose and 10% fetal bovine serum (HyClone,
South Logan, Utah, United States). Cells were cultured in six-well
plates at 37 °C in a humidified atmosphere with 5% COs. Cells were
grown to 80% confluence and transfection was performed using
Lipofectamine 2000 (Invitrogen. Carlsbad, California, United States)
and 0.5 pg of plasmid DNA according to manufacturer’s protocol.
Cells were harvested after 48 h and total RNA was extracted using
Trizol (Invitrogen), followed by a 1-h treatment with RNase-free
DNase. Reverse transcription was performed with SuperScriptIll
(Invitrogen) on 2 pg of total RNA for 1 h at 50 °C. The spliced mRNA
products derived from the expressed minigene were detected by RT-
PCR, using primers described by Coulter and coworkers [4] and a mix
of cold ANTPs and **P-dCTP. Amplification was performed with Taq
DNA polymerase and supplied buffer (Invitrogen) for 20 cycles, with
temperatures of 94 °C, 55 °C, and 72 °C for 30 s each. The products
were resolved by 10% polyacrylamide gel electrophoresis in TBE
buffer. Agarose gel electrophoresis was used for the purpose of
extracting PCR products for confirmation by DNA sequencing.
Quantitation of the level of inclusion of exon two was carried out
using a 445 SI Phosphorimager (Molecular Dynamics, Sunnyvale,
California, United States). Exon inclusion level was calculated as the
background-corrected integrated intensity of the exon two-including
band divided by the sum of the intensities of the exon two-including
and exon two-skipping bands.

Conservation of ESEs. Conservation was measured by comparing
all occurrences of a k-mer sequence in Ensembl (release 27)-
annotated coding sequences [40] of the human genome to homolo-
gous sequences in the mouse, rat, and dog genomes as defined by
available multi-genome alignments (eight-way multiple alignment on
hgl7, July 2004, downloaded from http://hgdownload.cse.ucsc.edu/
goldenPath/hg17/multiz8way) [41,42]. Conservation of ESEs was
measured across mammalian genomes using two measures: sequence
conservation score (normalized fraction of aligned sequences
perfectly conserved) and functional conservation score (normalized
fraction of aligned sequences with conserved NI score), described
below.

The conservation rate for a k-mer was defined as ¢;ac = Neons/Miotals
where 7.,,s was the number of occurrences of the k-mer in aligned
positions perfectly conserved across human/mouse/rat/dog exons, and
Niotal Was the total number of human exonic occurrences in the
whole-genome alignment. ¢, was normalized to obtain the
conservation score Cyore as described by Xie and coworkers [43], so
that ¢,.ore Tepresents the number of standard deviations by which the
observed conservation rate of a k-mer exceeds the expected
conservation rate obtained by random sampling of 1,000 genomic
locations of the given k-mer. By including occurrences of the k-mer in
all three phases in these calculations (i.e., 123/123, 23/123/1, and 3/123/
12, where numbers represent positions within codons, and slashes
represent boundaries between codons), biases related to protein
coding function were diluted. Using this simple measure, the
RESCUE-ESE hexamers were among the most conserved and the
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FAS-hex2 hexamers were among the least conserved hexamers in
constitutive exons, suggesting that for this application protein coding
effects are sufficiently diluted to reveal effects related to splicing with
this measure.

To calculate the functional conservation rate, we considered a
human k-mer with NI score S, to be functionally conserved if the NI
scores §; of aligned k-mers from the other mammals (mouse, rat, and
dog) all fulfilled the condition: |S, — S| < 0.1. The functional
conservation score was derived from the functional conservation rate
by the same procedure as for the sequence conservation score, i.e.,
sampling 1,000 random genomic locations of the given k-mer and
asking what fraction of them were functionally conserved, i.e., had NI
scores within 0.1 of the given k-mer.

Conservation of ESS hexamers in alternative splice site exons. Sets
of putative orthologous A5Es and A3Es in the human, dog, mouse,
and rat genomes were obtained from a recently published study [20].
A total of 1,074 ABEs and 1,318 A3Es passed the filtering procedures
used in that study. To analyze the conservation of ESS hexamers in
ABE and A3E extension regions, we used the COR measure,
introduced by [20] and described below for completeness. The COR
measure is defined as

where CORy; and CORy; are measures of conservation of human and
mouse oligonucleotide sequence sets, respectively. CORy and CORy
are defined as follows:

Z(ESS}{exun, _ ESS]Mexon, )

ij
§ ESS]I_—chon, ’
i

where the upper sum is taken over all 4, j pairs such that

CORy =1-— (7)
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where the upper sum is taken over all 4, j pairs such that

CORy =1—

Mexon; Hexon;
(ESSJ — ESS; )>0. (10)
Here, ESSJHeX"n’ represents the number of occurrences of the jth ESS
hexamer in the ith human exon region, and ESS;WC’“"” represents the
number of occurrences of this hexamer in the corresponding region
of the mouse ortholog of the ith human exon. In Figure 5C the
regions under consideration were the regions between alternative 5’
splice site pairs in sets of orthologous ASE human/mouse exon pairs.
Figure 5D shows the analysis of the regions between alternative 3’
splice site pairs. The difference-in-occurrence counts are summed as
indicated over all ESS hexamers and all pairs of orthologous exons.
Note that this definition is “alignment-independent” in that, in order
to achieve the maximum COR value of 1.0, it is sufficient that the
counts of the set of hexamers be the same in the corresponding
human/mouse exon regions, but it is not required that these
hexamers be aligned. This definition is related to alignment-based
metrics such as the “conservation rate” [43], but may be more
appropriate for splicing regulatory elements that are relatively short
and can function at various positions within an exon. For the
background distribution, COR values were calculated for random
control sets of hexamers that had exactly the same total number of
occurrences as the ESSs in the ASE and A3E extension region.
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Supporting Information

Figure S1. Two-Fold Cross-Validation of NI-Predicted Exonic
Splicing Regulators

(A-C) Cross-validation was performed, using only ESS (A), only ESE
(B), or both ESS and ESE trusted hexamers (C) as training data.

(D) Comparison of NI performance in different cross-validation
experiments.

Found at doi:10.1371/journal.pgen.0020191.sg001 (67 KB PDF).

Figure S2. Distribution of Predicted ESE and ESS Hexamers Relative
to Splice Sites

The mean relative frequency is plotted for different sets of predicted
ESE or ESS sequences as a function of distance from the 5" and 3’
splice sites of human exons. For each hexamer, the frequency was
calculated at each position, and the mean frequency was calculated
for each hexamer set, then divided by 4 ® to obtain mean relative
frequency. The “New ESE” and “New ESS” sets are NI-predicted ESEs
and ESSs at score cutoffs of 0.8 and —0.8, respectively.

Found at doi:10.1371/journal.pgen.0020191.sg002 (544 KB PDF).

Figure S3. Retrospective Tests of NI Predictions

Pairs of functional and mutated exonic splicing regulators—
RESCUE-ESE (squares) [22], PESE/PESS (circles) [8], and FAS-ESS
(triangles) [7]—were scored by NI and NI scores were compared to
their experimentally determined activity. The maximum change in NI
score (x-axis) caused by a mutant was plotted against the change in
exon inclusion rate (y-axis). For FAS-ESS sequences, the percentage of
green fluorescent protein-expressing cells was interpreted as exon
inclusion rate. The solid line represents a linear fit to the data.

Found at doi:10.1371/journal.pgen.0020191.sg003 (5 KB EPS).
Figure S4. Comparison of NI- and RESCUE-ESE-Predicted ESEs

For each hexamer, the scatter plots show the enrichment in exons
versus introns (AEL x-axis) and the enrichment in exons with weak
splice sites versus exons with strong splice sites (AWS, y-axis), as
described by the original RESCUE-ESE method [22]. AWS values for
3" splice sites are shown in (A), and for 5’ splice sites in (B). “RESCUE-
ESE” were predicted to have ESE activity for at least one splice site
[22], “trusted ESE” were used as NI training data, “new 3'/5" RESCUE-
ESE” fulfill the conditions AEI > 2.5 and AWS > 2.5, but were not in
the original RESCUE-ESE set, “new NI predicted ESE” have NI scores
> 0.8, and “experimentally tested” were selected for testing in a
splicing reporter assay (Figure 4). For better visibility, the symbols for
“trusted ESE” have been plotted last (i.e., on top of earlier printed
symbols), while in Figures 3A and 3B, symbols for NI-predicted
hexamers were plotted last.

Found at doi:10.1371/journal.pgen.0020191.sg004 (838 KB PDF).

Table S1. NI Scores for All Hexanucleotides
Found at doi:10.1371/journal.pgen.0020191.5t001 (3.3 MB DOC).
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