
sensors

Article

Bismuth Film-Coated Gold Ultramicroelectrode Array for
Simultaneous Quantification of Pb(II) and Cd(II) by Square
Wave Anodic Stripping Voltammetry

Sandra Enn D. Bahinting 1, Analiza P. Rollon 1,2 , Sergi Garcia-Segura 3 , Vince Carlo C. Garcia 1 ,
Benny Marie B. Ensano 4 , Ralf Ruffel M. Abarca 2, Jurng-Jae Yee 5,* and Mark Daniel G. de Luna 1,2,*

����������
�������

Citation: Bahinting, S.E.D.; Rollon,

A.P.; Garcia-Segura, S.; Garcia, V.C.C.;

Ensano, B.M.B.; Abarca, R.R.M.; Yee,

J.-J.; de Luna, M.D.G. Bismuth

Film-Coated Gold

Ultramicroelectrode Array for

Simultaneous Quantification of Pb(II)

and Cd(II) by Square Wave Anodic

Stripping Voltammetry. Sensors 2021,

21, 1811. https://doi.org/

10.3390/s21051811

Academic Editor: Paolo Facci

Received: 5 February 2021

Accepted: 1 March 2021

Published: 5 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines;
sandraenn@gmail.com (S.E.D.B.); aprollon@up.edu.ph (A.P.R.); vincegarcia28@gmail.com (V.C.C.G.)

2 Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines
Diliman, Quezon City 1101, Philippines; ralfabarca@gmail.com

3 Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment,
School of Sustainable Engineering and the Built Environment, Arizona State University,
Tempe, AZ 85287-3005, USA; sergio.garcia.segura@asu.edu

4 University Core Research Center for Disaster-free and Safe Ocean City Construction, Dong-A University,
Busan 49315, Korea; bmensano@dau.ac.kr

5 Department of Architectural Engineering, Dong-A University, Busan 49315, Korea
* Correspondence: jjyee@dau.ac.kr (J.-J.Y.); mgdeluna@up.edu.ph (M.D.G.d.L.)

Abstract: The widespread presence of heavy metals in drinking water sources arises as a major health
concern, particularly in developing countries. The development of low-cost and reliable detection
techniques is identified as a societal need to provide affordable water quality control. Herein, a
bismuth film-coated gold ultramicroelectrode array (BF-UMEA) was used for the detection of Pb(II)
and Cd(II) in water samples via square wave anodic stripping voltammetry (SWASV). Experimental
parameters such as deposition time, Bi(III) concentration, acetate buffer concentration, pH, square
wave frequency, amplitude, and step potential were all varied to determine their effects on the
current peak intensities of the target metal ions. Ten-fold excess in the concentration of interferences
was found to cause a decrease in the stripping peak areas of Cd(II) and Pb(II) in the following
order of magnitude: benzene < NaCl < Ni(II) < Cu(II). Using Box–Behnken design, the optimum
SWASV parameters that provided maximum current peak areas were 14.76 Hz (frequency), 50.10 mV
(amplitude), and 8.76 mV (step potential). The limits of detection of the as-prepared BF-UMEA were
5 and 7 µg L−1 for Pb(II) and Cd(II), respectively. These results demonstrate the potential use of a
BF-UMEA in SWASV for the trace quantification of Pb(II) and Cd(II) in water samples.

Keywords: anodic stripping voltammetry; bismuth film electrode; electroanalysis; environmental
water analyses; heavy metal detection; ultramicroelectrode array; water quality

1. Introduction

Heavy metal pollution in water bodies remains a major environmental concern. Al-
though heavy metals are naturally occurring elements, their increased concentrations in
aquatic environments are heavily linked to anthropogenic sources such as mining, metal
plating, battery production, or their use as inorganic pigments [1]. Unfortunately, heavy
metals do not degrade and tend to bioaccumulate throughout the food chain, thereby
increasing the risks for hazardous health effects associated with metal toxicity and carcino-
genicity [2]. Cadmium (Cd) and lead (Pb) are among the heavy metals included in the top
10 of the 2019 Substance Priority List by the United States Agency for Toxic Substances and
Disease Registry. Numerous pieces of medical evidence proved that cadmium and lead
exposure directly impairs the brain, lungs, bones, liver, and kidneys of a person [3,4]. These
metals can even transfer to an embryo through the placenta, affecting fetal growth and
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development [5]. The World Health Organization (WHO) had set a maximum allowable
concentration of 3 µg L−1 for Cd and 10 µg L−1 for Pb in drinking water [6,7].

Adequate water quality control is required to ensure the health and well-being of the
human population. Developing countries rely mostly on private wells and groundwater
as drinking water sources, which pose the highest risk for heavy metal contamination.
Progress in water remediation technologies such as the use of adsorbents, ion exchange,
and more recently, capacitive deionization has been realized [8,9]. However, the monitoring
and measurement of heavy metals in actual environmental samples still rely on expensive
spectroscopic analytical techniques such as electrothermal atomic absorption spectrometry
(ET-AAS), flame atomic absorption spectrometry (FAAS), inductively coupled plasma mass
spectrometry (ICP-MS), and inductively coupled plasma optical emission spectrometry
(ICP-OES) [10]. Aside from bulky and high-maintenance instrumentation, spectroscopic
measurements are time-consuming and require highly specialized personnel and tedious
procedures for sample storage, handling, and preparation [11]. Thus, affordable and
user-friendly analytical methods are continuously being developed to ensure good water
quality in developing communities [12]. In this frame, electroanalytical sensing emerges as
a competitive technology for water quality control with a broad niche market opportunity.

Anodic stripping voltammetry (ASV) is an electroanalytical technique that can pro-
vide high sensitivity for trace metal analyses in a variety of environmental matrices [13].
Its exceptional sensitivity is attributed to the preconcentration step, wherein the metal
accumulates onto the surface of the electrode by applying a sufficient negative potential
through which the target analyte is reduced to form an amalgam with the electrode [14].
Following the preconcentration step, the analyte is oxidized back into the solution during
an appropriate anodic scan, stripping and yielding a current response linear to the metal
concentration [15]. This procedure enhances both the sensitivity and the selectivity towards
the target analyte.

Mercury-based electrodes have been traditionally used in ASV electroanalysis due to
their wide negative potential range, high signal-to-noise ratio, low background current,
and strong affinity to metals [16]. However, these types of electrodes are being replaced
due to the highly toxic nature of mercury and more stringent regulations on its export
and storage [17]. Alternative electrode materials for environmental applications and water
quality sensing are thus being sought. In line with this, bismuth is drawing substantial
attention as an attractive alternative to mercury in the field of electrochemical stripping
analysis [18].

Bismuth film electrodes have lower toxicity while maintaining desirable electrochemical
properties comparable to mercury electrodes, which include: (1) a wide negative potential
window and (2) the ability to form fused alloys with other metal ions [15]. Bi-film electrodes
are widely used in the determination of metals that have reduction potential more positive
than Bi(III), such as thallium, antimony, zinc, copper, lead, and cadmium [19–21]. To prepare
Bi-film electrodes, Bi(III) ions are usually electrodeposited on an electrode substrate via ex
situ or in situ preparation. Although widely employed, ex situ plating is limited by the
insufficient attachment of the bismuth film on the electrode surface, which greatly affects
the sensor performance and lifespan. In an attempt to overcome this limitation, Hwang
et al. [22] fabricated a Bi-film electrode by screen-printing the bismuth oxide on a glassy
carbon electrode, then electrochemically reducing it to bismuth in an alkali solution. The as-
prepared electrode featured a strong adherence between the bismuth film and the electrode
surface, providing good stability and reproducibility up to ten repetitive measurements.
In another study, NaBr salt was added into an acetate solution, yielding a denser and
homogeneous growth of smaller Bi crystals on the electrode surface [23]. Meanwhile, in
situ plating is still the more preferred method in the fabrication of Bi-film electrodes owing
to its simplicity and shorter analysis time. In a comparative study of bismuth-modified
screen-printed electrodes for lead detection, the in situ prepared electrode showed better
analytical characteristics compared to ex situ and bulk plating method [24].
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Different substrate materials have been explored as electrode support for Bi stripping
voltammetry applications. Hwang et al. [25] used a carbon nanotube, glassy carbon,
activated carbon and a graphite electrode coated with bismuth film for the simultaneous
detection of lead, cadmium and zinc, and found out that the bismuth modified carbon
nanotube electrode achieved the highest sensitivity to the trace metals. An inexpensive and
disposable bismuth-coated copper mini-sensor was also investigated for the detection of
trace lead and cadmium in river samples [26]. However, the large area of macroelectrodes
typically used in Bi-film electrode fabrication presents an economic drawback since it
requires a relatively higher amount of bismuth for coating. In addition, the mass transfer
of the analyte from the bulk solution to the electrode surface is affected negatively due to
the higher concentration of electron-changing species at the surface [27]. As such, the use
of microelectrodes or ultramicroelectrodes (UME) for stripping analysis has been explored.
The small dimensions of UME (i.e., typically less than or equal to the diffusion layer
thickness) contribute to the enhancement of signal-to-noise ratios, a decrease in ohmic
drop and the improvement of the mass transfer coefficient [28]. This allows UME to be
used in highly resistive media and in very fast scan-rate voltammetric experiments [27].
Nonetheless, the weak current produced by an individual ultramicroelectrode remains
a bottleneck for its analytical application [28]. Recently, the utilization of an ensemble
of ultramicroelectrodes operating in parallel, also known as ultramicroelectrode array
(UMEA), was proven to amplify the current and improve the sensitivity and the detection
limit of the device.

While several studies have focused on the analysis of heavy metals using mercury-
coated UMEA [29], only a few explored the use of a bismuth film-coated ultramicroelectrode
array. Additionally, based on an extensive literature review, no optimization studies have
been performed yet via a statistical method on the square wave (SW) parameters for
the quantification of heavy metal ions in water samples. Hence, in this study, an in situ
prepared bismuth film-coated gold ultramicroelectrode array (BF-UMEA) was proposed as
a sensing device for Cd(II) and Pb(II) detection in water samples by Square Wave Anodic
Stripping Voltammetry (SWASV). The effects of varying parameters (i.e., deposition time,
Bi(III) concentration, acetate buffer concentration, pH, square wave frequency, amplitude,
and step potential) and interferences (i.e., Cu(II), Ni(II), NaCl and benzene) on current peak
intensities of the target metal ions were evaluated. Finally, SWASV parameters including
frequency, amplitude, and step potential were optimized using Box–Behnken design, and
their interaction effects were studied.

2. Materials and Methods
2.1. Materials and Chemicals

All reagents were analytical grade and used as received. Pb(NO3)2, Cd(NO3)2, and
Bi(NO3)3·5H2O were purchased from Merck. Glacial acetic acid (CH3COOH) and anhy-
drous sodium acetate (C2H3NaO2), supplied by Theo-Pham Trading Corp. (Metro Manila,
Philippines) and Instruchem, Inc. (Mandaluyong City, Philippines), respectively, were
used to prepare the acetate buffer solution. Cu(NO3)2, Ni(NO3)2, NaCl, and benzene were
obtained from Merck. All solutions were prepared using Millipore Milli-Q ultra-pure water
with resistivity > 18.2 MΩ cm at 25 ◦C.

2.2. Electrochemical Device

Electroanalysis was conducted in a three-electrode cell system. A gold ultramicro-
electrode array (Au-UMEA) was used as the working electrode for in situ bismuth film
deposition, while a leakless miniature Ag/AgCl electrode and platinum were employed
as reference and external counter electrodes, respectively. The geometry and dimensions
of the Au-UMEA are depicted in Figure 1 as adapted from a previous study [27]. The
Au-UMEA (2 mm × 2 mm) contained an array of 400 gold microdiscs (5 µm diameter,
7.85 × 10−5 cm2 total area) at 100 µm apart. It is built with an on-chip counter electrode
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(Pt) which has a dimension of 0.2 mm × 2 mm, and it was placed 0.5 µm away from the
working electrode.
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2.3. In Situ Electrodeposition of Bismuth

Electrochemical activation of the gold ultramicroelectrode array was conducted by ap-
plying 15 scan cycles within the potential range of +0.2 V to −2.2 V (vs. Ag/AgCl reference
electrodes) in a 0.1 M KNO3 solution, at a scan rate of 100 mV s−1. Activation of the UMEA
was performed after every set of experiments to prevent any possible contamination effect
from remaining residuals from the previous analysis. This step ensures that the electrode is
in perfect condition even if stored for a short period.

Bismuth coating was then prepared via in situ potentiostatic electrodeposition in a
solution containing 10 mg L−1 of Bi(III) at a potential of −1.4 V. The SWASV conditions
were as follows: 600 s deposition time (tdep), 15 Hz frequency (f ), 50 mV pulse amplitude
(Esw), 10 mV step potential (∆Es), 10 s rest time, and 0.8 V cleaning potential at 30 s cleaning
time. Voltammetric measurements were performed using an EA160 EDAQ potentiostat
connected to a computer system with Echem v1.6 EDAQ software.

2.4. Electroanalytical Methods

Electrochemical preconcentration time (180–900 s), Bi(III) concentration (300–1700 µg L−1),
acetate buffer concentration (0–0.1 M), pH (3.2–4.0), square wave frequency (10–20 Hz),
amplitude (20–80 mV), and step potential (5–15 mV) were all varied to examine their
effects on the current peak intensity and square wave anodic stripping voltammograms
of Cd(II) and Pb(II). With the exclusion of the parameter being studied, the solution
contained 30 µg L−1 Pb(II), 50 µg L−1 Cd(II), 1 mg L−1 Bi(III) and 0.05 M acetate buffer
at pH = 4.2 ± 0.1, and the SWASV conditions were: –1.20 V Edep, 600s tdep, 15 Hz f, 50 mV
Esw, 10 mV ∆Es. Afterwards, the analytical performance of the BF-UMEA in terms of
repeatability, stability and sensitivity was determined. The repeatability test of the BF-
UMEA was carried out by consecutive measurements using a solution containing 20 µg
L−1 Pb(II) and 40 µg L−1 Cd(II) concentrations without any activation of the BF-UMEA in
between analyses. Meanwhile, the sensitivity and the limits of detection were determined
using standard solutions of Pb and Cd ions at a calibration range of 1 to 10 µg L−1. The
selectivity of the analytical method was further evaluated in the presence of interfering
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species (i.e., Cu(II), Ni(II), sodium chloride, and benzene) at concentrations of 100 and
500 µg L−1. Finally, Box–Behnken experimental design was utilized to further optimize
the SWASV parameters (i.e., square wave frequency, step potential, and amplitude). The
two-parameter interaction effects were also investigated, and the validity of the design was
carried out by comparing the result of the actual and predicted values.

3. Results and Discussion
3.1. Effect of Experimental Variables
3.1.1. Preconcentration Time

The BF-UMEA detection of Pb(II) and Cd(II) via SWASV starts with the preconcen-
tration step (Figure 2). By applying an appropriate deposition potential (−1.2 V) [22],
bismuth film, which is electrodeposited on the surface of the Au-UMEA (Equation (1)),
forms a fused alloy with the reduced lead and cadmium ions (Equation (2); M(II) = Pb(II),
Cd(II)) [30]. Thereafter, the stripping step oxidizes back the metals to Pb(II) and Cd(II) upon
anodic scan and diffuses out of the bismuth film into the solution, generating a current
response linear to the metal concentration (Equation (3)).

Bi(III) + Au-UMEA + 3e→ BF-UMEA (1)

M(II) + BF-UMEA + 2e→ M/Bi-UMEA (2)

M/Bi-UMEA→ M(II) + BF-UMEA + 2e (3)
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Figure 2. Mechanism of simultaneous quantification of Pb(II) and Cd(II) by square wave anodic stripping
voltammetry (SWASV) using a bismuth film-coated gold ultramicroelectrode array (BF-UMEA).

In this regard, preconcentration or deposition time plays a vital role in achieving
higher sensitivity to trace concentrations of Pb(II) and Cd(II) [31]. Low detection limits by
ASV, up to parts per billion, are reached mainly due to longer deposition times. Herein, the
effect of the preconcentration time on the stripping peaks of Pb and Cd was determined
in the range of 180 to 900 s using a Au ultramicroelectrode array as the substrate for Bi
film electrodes. The solution contained 30 µg L−1 Pb(II) and 50 µg L−1 Cd(II) along with 1
mg L−1 Bi(III) in 0.05 M acetate buffer (pH = 4.2 ± 0.1). A higher concentration of Cd(II)
with respect to Pb(II) was applied because Cd(II) has lower diffusivity or lower affinity for
Bi than Pb(II) as a result of the parasitic hydrogen evolution reaction [32–34]. The peak
current of the metals increases almost linearly up to a deposition time of 900 s, as shown
in Figure 3a. In previous studies, longer deposition times caused electrode saturation by
metal ions, especially in a solution containing higher metal concentrations [35]. However,
such saturation, which causes a deviation from the linearity of the peak current with longer
deposition time, was not observed in the present study. Therefore, 600 s was ultimately
selected for the succeeding experiments as a compromise between relatively short analysis
time and high sensitivity. This approach was beneficial for both Cd(II) and Pb(II) signals,
as shown in the SWASV curves (Figure 3b).
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Figure 3. Effect of preconcentration time on (a) current peak intensity, and (b) square wave anodic
stripping voltammograms of Pb and Cd (Conditions: [Pb(II)] = 30 µg L−1; [Cd(II)] = 50 µg L−1;
[Bi(III)] = 1 mg L−1; [acetate buffer] = 0.05 M at pH = 4.2 ± 0.1; deposition potential = −1.20 V; SW
frequency = 15 Hz; SW amplitude = 50 mV; SW step potential = 10 mV).

3.1.2. Bi(III) Concentration

The concentration of Bi(III) ions used in the in situ preparation of the BF-UMEA
controls the thickness of the Bi film, which has been known to influence the height of
the current peak of the target metals present in the solution [36,37]. Similar to the effect
of Hg film thickness, thicker films present limitations on the mass transfer of metal ions
diffusing out during the stripping step, while a saturation effect takes place in thin films
due to the diffusion and excessive deposition of metal ions into the film. Therefore, an
ideal film thickness for target analyte concentration should be determined by optimizing
Bi(III) ion concentration.

The effect of Bi(III) ions on the magnitude and shape of the stripping peaks for
30 µg L−1 Pb(II) and 50 µg L−1 Cd(II) in 0.05 M acetate buffer solution at pH 4.2 ± 0.1
was investigated. The peak current intensity of both metals, as shown in Figure 4a, was
recorded at different Bi(III) concentrations (300 to 1700 µg L−1). An increasing trend, for
both Cd(II) and Pb(II) stripping peak heights, was observed when Bi(III) concentration
was raised from 300 to 900 µg L−1, which was likely due to an increase in the nucleation
site and alloy formation of metal and Bi(III) ions in the solution. Beyond 900 µg L−1 Bi(III)
concentration, a reduction in both Cd(II) and Pb(II) peak currents was observed. This may
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be attributed to a possible saturation of Bi(III) ions on the BF- UMEA surface, resulting in a
thick Bi layer that partially blocked the conductive surface of the electrode [35].
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Figure 4. Effect of Bi(III) concentrations on (a) current peak intensity, and (b) square wave anodic
stripping voltammograms of Cd and Pb. (Conditions: [Pb(II)] = 30 µg L−1; [Cd(II)] = 50 µg L−1;
[acetate buffer] = 0.05 M at pH = 4.2 ± 0.1; deposition potential = −1.20 V; deposition time = 600 s;
SW frequency = 15 Hz; SW amplitude = 50 mV; SW step potential = 10 mV).

The SWASV curves at varying Bi(III) concentrations are illustrated in Figure 4b. As
shown, the thickness of the film did not drastically affect the potential of the characteristic
stripping peak position of the two metals [30]. Additionally, the peaks of Cd(II) and
especially Pb(II) were asymmetrical and deformed. This has been similarly reported in
other Bi-coated Au electrode studies which were ascribed to the formation of different
types of either Cd or Pb surface alloys with the different kinds of Bi deposits [32,33]. A
hump formed in the Pb stripping peak indicates the presence of two types of deposited Pb,
one that formed an alloy with Bi and another that weakly interacted with it.

3.1.3. Bi(III)-to-Metal Ion Ratio

The effect of the Bi(III)-to-metal ion ratio on the ASV response of Cd and Pb ions was
investigated in previous studies. It was reported that a Bi(III)-to-metal ion ratio of equal to
or less than 10 is either optimal or adequate to attain metal stripping response [32,33]. The
change in the stripping peak area for Pb(II) and Cd(II) at 10 to 130 µg L−1 concentrations in
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500 µg L−1 Bi(III) ions is shown in Figure 5. Depending on the metal ion concentration, the
level of Bi(III) excess for Pb(II) and Cd(II) was 5 to 50 fold and 4 to 17 fold, respectively. As
shown, a lower than ten-fold excess of Bi(III) concentration is already sufficient to obtain
higher stripping responses. Furthermore, the response of Pb(II) was stronger than Cd(II)
even at low Bi(III) excess levels, signifying higher sensitivity and better Bi utilization for
Pb(II) sensing.
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3.1.4. Acetate Buffer Concentration

A quantitative depiction of the difference in the stripping peaks of Cd(II) and Pb(II) at
varying acetate buffer concentrations (0–0.1 M), each containing 30 µg L−1 Pb, 50 µg L−1

Cd(II), and 1 mg L−1 Bi(III), is illustrated in Figure 6a. As shown, a stripping response for
both metals was obtained even in an unbuffered solution (0 M acetate; pH 3.2). Similar
studies reported that it is possible to use unbuffered media using microelectrodes; however,
the background current at more negative potentials is much higher in this case due to the
high hydrogen evolution rates in more acidic solutions [32]. When the acetate buffer con-
centration increased from 0 to 0.001 M (pH 4.0), the stripping charge increased drastically
from 26.03 and 24.65 nC to 48.87 and 35.86 nC for Cd(II) and Pb(II), respectively. After-
wards, it began to decline as the concentration of acetate buffer continued to rise from 0.001
M to 0.1 M (pH 4.4). This suggests that the formation of Pb-Bi and Cd-Bi alloys is strongly
affected by the electrolyte concentration, which also dictates the ionic strength of the so-
lution [38]. A similar trend was reported in previous studies [17,38–40]. Herein, the most
sensitive responses to Cd and Pb were obtained in 0.001 M acetate buffer concentration.

3.1.5. pH

Figure 6b presents the variation in pH at optimum acetate buffer concentration
(0.001 M) and its effect on the stripping charge of the metals. As shown, the stripping
peaks of both Cd(II) and Pb(II) increased with an increment of pH from 3.2 to 4.0. The
smaller response of the BF-UMEA at lower pH can be attributed to the higher proton (H+)
concentration in the solution which competes against the target metals for the ion-exchange
sites on the surface of the BF-UMEA, affecting the electrodeposition of the metal ions [41].
As the pH increases, deprotonation occurs, allowing surface complexation and electrostatic
attraction between the metal ions and the electrode surface [42]. Hence, from the studied
pH range, pH 4.0 provided the maximum stripping response for both Cd(II) and Pb(II)
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using the BF-UMEA. On the other hand, a further increase in the electrolyte pH may
promote metal hydrolysis, which inhibits metal accumulation on the electrode surface [42].
For instance, Bi(III) ions easily hydrolyze in neutral and weakly basic electrolyte solutions
and form white precipitates according to Equations (4) and (5) [43].

Bi3+ + H2O→ BiO+ + 2H+ (4)

Bi3+ + 3H2O→ Bi(OH)3 + 3H+ (5)
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Figure 6. Comparison of Cd and Pb stripping peaks at different (a) acetate buffer concentrations
and (b) pH (Conditions: [Pb(II)] = 30 µg L−1; [Cd(II)] = 50 µg L−1; [Bi(III)] = 1 mg L−1; deposition
potential = −1.20 V; deposition time = 600 s; SW frequency = 15 Hz; SW amplitude = 50 mV; SW step
potential = 10 mV).

These hydroxy-complexes have less positive standard potential and are more difficult
to electrochemically deposit on the Au-UMEA surface [32]. Such information can be useful
in the simultaneous determination of Cd and Pb not just in wastewater, but also in other
contaminated samples such as soil, blood and dairy products, where acid pre-treatment is
required for analysis [40,44,45].
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3.2. Effect of SWASV Parameters
3.2.1. Square Wave Frequency

The effect of square wave frequency on the current signal of the Cd(II) and Pb(II) is
presented in Figure 7a. At first, the peak signal increased dramatically when the frequency
was raised from 10 to 15 Hz, then it decreased relatively fast as the frequency went up to
20 Hz. According to Li et al. [41], both the square wave frequency and the step potential
define an effective scan rate. At SW frequency greater than 15 Hz, a faster scan rate was
observed, which is not ideal since it can result in the broadening of the stripping peaks and
weak discrimination against the steep sloping baseline as a result of the higher background
current [46]. These explain why the voltammograms of Pb(II) and Cd(II) in Figure 7b show a
lower peak resolution, worse peak baseline, and peak distortion at a square wave frequency
of 20 Hz. The optimum frequency ranged from 13 to 17 Hz, in which an improvement in
both peak resolution and the peak current was therefore obtained.
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Figure 7. Effect of square wave frequency on the (a) current peak intensity and (b) square wave anodic
stripping voltammograms of Pb and Cd. (Conditions: [Pb(II)] = 30 µg L−1; [Cd(II)] = 50 µg L−1;
[Bi(III)] = 1 mg L−1; [acetate buffer] = 0.05 M at pH = 4.2 ± 0.1; deposition potential = −1.20 V;
deposition time = 600 s; SW amplitude = 50 mV; SW step potential = 10 mV).

3.2.2. Square Wave Amplitude

The effect of varying amplitude from 20 to 80 mV on the SWASV current signal of
the metal was also examined. As shown in Figure 8a, an increase in the amplitude from
20 to 65 mV led to a rise in the stripping net peak of Cd(II) and Pb(II). Beyond 65 mV,
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the current peak of both metal ions started to decrease. Meanwhile, Figure 8b shows that
upon increasing the amplitude, the baseline of the voltammograms shifted towards higher
currents, producing larger and broader peaks. The optimum amplitude ranged from 35 to
65 mV.
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Figure 8. Effect of square wave amplitude on the (a) current peak intensity and (b) square wave
anodic stripping voltammograms of Pb and Cd. (Conditions: [Pb(II)] = 30 µg L−1; [Cd(II)] = 50 µg
L−1; [Bi(III)] = 1 mg L−1; [acetate buffer] = 0.05 M at pH = 4.2 ± 0.1; deposition potential = −1.20 V;
deposition time = 600 s; SW frequency = 15 Hz; SW step potential = 10 mV).

3.2.3. Square Wave Step Potential

The effect of step potential on the SWASV current signal of the metal was examined
by varying the SW step potential from 5 to 15 mV. As depicted in Figure 9a, an increasing
current peak response was found in the step potential range of 5 to 13 mV. The square wave
anodic voltammogram in Figure 9b shows a slight shift in the peak potentials towards
positive values upon an increase in step potential. The optimum step potential is within
the range of 7 to 13 mV.
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Figure 9. Effect of square wave step potentials on the (a) current peak intensity and (b) square
wave anodic stripping voltammograms of Pb and Cd. (Conditions: [Pb(II)] = 30 µg L−1;
[Cd(II)] = 50 µg L−1; [Bi(III)] = 1 mg L−1; [acetate buffer] = 0.05 M at pH = 4.2 ± 0.1; deposition
potential = −1.20 V; deposition time = 600 s; SW frequency = 15 Hz; SW amplitude = 50 mV).

3.3. Interference Study

Since water samples typically contain impurities other than the target metal ions, the
effect of the different types of interferences such as metal cations (Cu(II) and Ni(II)), salt
(NaCl), and an organic compound (benzene) on the stripping measurements of Pb and
Cd was investigated in 0.05 M acetate buffer containing 30 µg L−1 Pb(II) and 50 µg L−1

Cd(II) along with 1 mg L−1 of Bi(III) ions (Table 1). A total disappearance of Cd and Pb
electrochemical responses was observed in the presence of 100 and 500 µg L−1 copper ions
(Table 1). According to previous studies, Cu(II) greatly influences the peak area response
for both Cd and Pb ions at bismuth electrodes because Cu(II), having a reduction poten-
tial almost similar to that of bismuth, tends to compete with bismuth ions for the active
sites on the electrode surface [17]. In addition, Cu(II) forms a metallic alloy with Pb and
Cd ions [47] as well as Bi ions [48] during the deposition step. Similar results were also
reported in a previous ASV study employing an oxygen plasma/bismuth modified inkjet
printed graphene electrode [11]. Meanwhile, Ni(II), at 100 and 500 µg L−1 concentrations,
remarkably suppressed the stripping response by 53.38% and 80.05% for Cd(II) and 9.99%
and 49.72% for Pb(II), respectively. It is evident that Cd(II) is more susceptible to interfer-
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ences from Ni(II) than Pb(II). However, both target analytes were already quantifiable in
the presence of this interference. The addition of NaCl also greatly influenced the strip-
ping response of both metals, causing a decline in peak current intensities by 34.27% and
43.59% for Cd(II) and Pb(II), respectively, when NaCl concentration was ~10-fold excess.
The decrease in stripping response is ascribed to the inactivation of the bismuth surface
by Cl- ions due to the formation of BiCl3, or to the chloride complexation of Pb. Lastly,
the presence of benzene only slightly suppressed the stripping response of the studied
trace metals. However, at increasing benzene concentration, the interference on analytical
responses of both metals likewise increased. The peak area reduction for Cd(II) improved
from 26.58% to 29.83%, while for Pb(II) it improved from 10.87% to 14.29% when benzene
concentration was raised from 100 to 500 µg L−1. The same phenomenon was observed at
increasing amounts of Ni(II) and NaCl. In general, the effect of the interfering ions on the
stripping signals of Cd(II) and Pb(II) increased in the following order: benzene < NaCl <
Ni(II) < Cu(II).

Table 1. Effects of addition of potential interferences on the peak area of Pb(II) and Cd(II).

Concentration Peak Area Reduction (%)

Interference (µg L−1) Cd(II) Pb(II)

Cu(II) 100 No peak No peak
500 No peak No peak

Ni(II) 100 53.38 9.99
500 80.05 49.72

NaCl 100 7.94 21.11
500 34.27 43.59

Benzene 100 26.58 10.87
500 29.83 14.29

The interference of cations on Pb and Cd stripping peaks could be effectively reduced
without affecting the target metal ions by adding a masking agent in the sample solution
prior to the heavy metal measurement. One example is the utilization of ferricyanide or
ferrocyanide, which forms insoluble and stable complexes with copper, hence preventing
the copper from competing with bismuth on the electrode active sites [49,50]. Moreover,
to improve the selectivity of the sensor against anion interferences, a permselective film,
such as Nafion, can be coated on the surface of the bismuth electrode. Wang et al. [51]
reported that the cation-exchange ability of Nafion prevents both anions and surfactants
from moving towards the working electrode, therefore decreasing their interferences to
the sensor.

3.4. Optimization of the SWASV Parameters

Response surface methodology (RSM) is a powerful statistical tool used for designing
experimental conditions and the optimization of process variables [52]. In this study,
RSM based on Box–Behnken design (BBD) was used to optimize the SWASV parameters
and to evaluate the interaction of these parameters and their effects on the current peak
area/charge of Cd(II) and Pb(II) ions. The optimum range chosen for each parameter was
based on the current peak area (high sensitivity) and peak resolution of the metal ions,
as obtained from the results of the parametric studies. The three-factor, three-level BBD
used for optimization comprised the following parameters: amplitude (35, 50, and 65 mV),
frequency (13, 15, and 17 Hz), and step potential (7, 10, and 13 mV). The data obtained
from performing the sets of runs generated by the optimum range for each parameter were
fitted to an empirical model. After this, the correlation of the current peak area for Cd(II)
and Pb(II) ions with the three parameters was created. In terms of dimensionless coded
values, the quadratic equation for the peak current area is given by Equations (6) and (7),
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while the model in terms of actual factors is shown in Equations (8) and (9) for Cd(II) and
Pb(II), respectively.

Peak Current Area, Cd (nC) = +26.92 − 11.64 A + 2.29 B − 2.75 C + 1.48 AB −
1.50 AC − 0.66 BC − 2.750 × 10−3 A2 + 6.37 B2 + 5.42 C2 (6)

Peak Current Area, Pb (nC) = +22.38 − 3.35 A + 0.94 B − 0.54 C + 1.99 AB − 1.97 AC +
2.37 BC − 4.54 A2 − 0.90 B2 − 1.50 C2

(7)
where A, B and C refer to SW frequency, SW amplitude, and SW step potential, respectively.

Peak Current Area, Cd (nC) = +238.74 − 5.76 F − 3.27 A − 8.47 SI + 0.049 FA −
0.25 FSI − 0.014 ASI − 6.88 × 10−4 F2 + 0.028 A2 + 0.60 SI2 (8)

Peak Current Area, Pb (nC) = −208.99 + 32.33 F − 1.06 A + 5.44 SI + 0.066 FA −
0.33 FSI + 0.053 ASI − 1.13 F2 − 4.01 × 10−3 A2 − 0.17 SI2 (9)

where A is the amplitude (mV), F is the frequency (Hz), and SI is the step potential (mV).
In the dimensionless model for Cd(II), factor A, which corresponds to the frequency,

has the largest negative coefficient, indicating that it has the most significant negative
impact on the current peak area. The step potential also negatively affects the peak current
area, albeit to a lesser degree compared to frequency. Meanwhile, the amplitude has a
positive effect on the current peak area. Lastly, the interaction effect AB has positive effects
on the current peak area opposite to BC and AC. The model for Pb(II) shows the same
effect from the factors.

The contour plots of the two-parameter interaction effects for the current peak area of
Cd(II) and Pb(II) are shown in Figures 10 and 11, respectively. The highest current peak
area of Cd(II) and Pb(II) was achieved for an increasing amplitude at a lower frequency.
Moreover, for parameter AC, low values of both frequency and step potential yield a high
current peak area for both Cd(II) and Pb(II). Meanwhile, for parameter BC, a high current
peak area for Cd(II) was achieved by increasing the amplitude and decreasing the step
potential. In contrast, a high current peak was obtained for Pb(II) when both amplitude
and step potential were increased. In general, high sensitivity can be achieved at high
amplitude and low frequency and step potential.

The optimal conditions that provided the maximum current peak areas are as follows:
14.76 Hz (SW frequency), 50.10 mV (SW amplitude), and 8.76 mV (SW step potential). These
optimized values were fitted to the empirical model, which gave the predicted current peak
areas of 30.35 nC and 22.59 nC for Cd(II) and Pb(II), respectively. Verification experiments
were then conducted, and the actual current peak areas obtained were 31.39 nC for Cd(II)
and 23.28 nC for Pb(II). The proximity between predicted and experimental values for both
metal ions verifies the suitability of the model for the investigated parameters.

3.5. Analytical Performance of BF-UMEA

After all the parameters have been investigated, the following optimum values (i.e., de-
position potential of−1.2 V; deposition time of 600 s; Bi(III) ion concentration of 900 µg L−1;
0.001 M acetate buffer (pH = 4± 0.1); SW frequency of 14.76 Hz; SW amplitude of 50.10 mV;
and SW step potential of 8.76 mV) were used in the SWASV experiments to determine the
analytical performance of the BF-UMEA in terms of repeatability, stability and sensitivity.
The repeatability of the BF-UMEA was evaluated by taking five repetitive SWASV mea-
surements of combined 20 µg L−1 Pb(II) and 40 µg L−1 of Cd(II) in 0.001 M acetate buffer
solution (pH = 4 ± 0.1). The relative standard deviations (RSDs) obtained were 5.88% for
Pb(II) and 8.75% for Cd(II). These results are comparable with other studies employing
bismuth-based sensors for the detection of Cd(II) and Pb(II) in water matrices [53,54]. The
stability of the BF-UMEA was assessed after 11 days of storage at 25 ◦C and the RSDs were
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4.53% and 5.17% for Pb(II) and Cd(II), respectively, signifying the long-term stability of the
sensor [55].
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Meanwhile, calibration was performed on the BF-UMEA for the simultaneous deter-
mination of target metal ions in a concentration range of 10 to 80 µg L−1 for Pb(II) and
20 to 100 µg L−1 for Cd(II) (Figure 12). A linear relationship was obtained between the
magnitude of the stripping charge and the concentration of each metal ion, with correlation
coefficient (R2) values equal to 0.9897 for Cd(II) and 0.9971 for Pb(II). Data fitted equations
are given in Equation (10) and Equation (11) for Cd(II) and Pb(II), respectively:

Q
nC

= 11.0 + 0.579[
Cd(II)/
µg L−1 ] (10)

Q
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= 1.91 + 0.667 [
Pb(II)/
µg L−1 ] (11)
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The slope of the linear fit (sensitivity) was 0.58 nC L µg−1 for Cd(II) and 0.67 nC L µg−1

for Pb. The limits of detection (LOD) were determined to be 5 and 7 µg L−1 for Pb(II)
and Cd(II), respectively. This suggests that the BF-UMEA outperformed other bismuth-
based electrodes in the simultaneous quantification of trace Pb(II) and Cd(II) from water
matrices [26,47,56].

4. Conclusions

This present work demonstrates the performance of a BF-UMEA for the simultaneous
determination of Cd(II) and Pb(II) in water by SWASV. Optimal experimental conditions
of 600 s and 900 µg L−1 were determined for deposition time and Bi(III) concentration,
respectively. Moreover, low acetate buffer concentrations at pH less than the pKa of acetic
acid resulted in a high response in the current peak area for both Cd(II) and Pb(II). The
results also show that Ni(II), Cu(II), NaCl, and benzene interferences caused significant
reductions in the peak area responses for both analytes. Instrument conditions were
optimized, and the values were validated by Box–Behnken design. The set up obtained
low detection limits of 7 and 5 µg L−1 for Cd(II) and Pb(II), respectively, with a relative
standard deviation of 10.14% for Cd(II) and 11.18% for Pb(II). The results indicate that the
use of a BF-UMEA in SWASV for the detection of Cd(II) and Pb(II) in water is a promising
alternative to existing analytical methods with its low detection limits and simple setup.
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19. Domańska, K.; Tyszczuk-Rotko, K. Integrated three-electrode screen-printed sensor modified with bismuth film for voltammetric
determination of thallium(I) at the ultratrace level. Anal. Chim. Acta 2018, 1036, 16–25. [CrossRef]

20. Lu, Z.; Zhang, J.; Dai, W.; Lin, X.; Ye, J.; Ye, J. A screen-printed carbon electrode modified with a bismuth film and gold
nanoparticles for simultaneous stripping voltammetric determination of Zn(II), Pb(II) and Cu(II). Microchim. Acta 2017, 184, 4731–
4740. [CrossRef]

21. Rojas-Romo, C.; Serrano, N.; Ariño, C.; Arancibia, V.; Díaz-Cruz, J.M.; Esteban, M. Determination of Sb(III) using an ex-situ
bismuth screen-printed carbon electrode by adsorptive stripping voltammetry. Talanta 2016, 155, 21–27. [CrossRef] [PubMed]

22. Hwang, G.-H.; Han, W.-K.; Park, J.-S.; Kang, S.-G. An electrochemical sensor based on the reduction of screen-printed bismuth
oxide for the determination of trace lead and cadmium. Sens. Actuators B Chem. 2008, 135, 309–316. [CrossRef]
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