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Abstract

Objective

A growing body of preclinical and clinical literature suggests that brain-gut-microbiota inter-

actions play an important role in human health and disease, including hedonic food intake

and obesity. We performed a tripartite network analysis based on graph theory to test the

hypothesis that microbiota-derived fecal metabolites are associated with connectivity of key

regions of the brain’s extended reward network and clinical measures related to obesity.

Methods

DTI and resting state fMRI imaging was obtained from 63 healthy subjects with and without

elevated body mass index (BMI) (29 males and 34 females). Subjects submitted fecal sam-

ples, completed questionnaires to assess anxiety and food addiction, and BMI was

recorded.

Results

The study results demonstrate associations between fecal microbiota-derived indole metab-

olites (indole, indoleacetic acid, and skatole) with measures of functional and anatomical

connectivity of the amygdala, nucleus accumbens, and anterior insula, in addition to BMI,

food addiction scores (YFAS) and anxiety symptom scores (HAD Anxiety).

Conclusions

The findings support the hypothesis that gut microbiota-derived indole metabolites may

influence hedonic food intake and obesity by acting on the extended reward network, specif-

ically the amygdala-nucleus accumbens circuit and the amygdala-anterior insula circuit.

These cross sectional, data-driven results provide valuable information for future mechanis-

tic studies.
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Introduction

A growing body of preclinical literature has demonstrated bidirectional signaling between the

gut microbiome and the brain, mediated via neural, metabolic, endocrine, and immune-

related signaling mechanisms [1, 2]. As the composition of the human gut microbiome is

dependent on host diet, there is likely strong selective pressure on the microbiota to modulate

food intake and eating habits [3]. In support of this concept are studies on animal models of

obesity that demonstrate the gut microbiota’s influence on ingestive behavior [3, 4].

Past studies have shown associations between increased weight and alterations in brain

activity and connectivity, underscoring the possible role of the brain in the pathophysiology of

obesity [5–9]. Brain networks involving the nucleus accumbens (NAcc), amygdala and the

anterior insula (aINS) are among the most extensively studied brain regions with respect to

gut-brain signaling involved in the regulation of non-homeostatic food intake [10]. These

regions have been shown to play a role in assessing the hedonic value of food [11]. The amyg-

dala integrates affective information with cortical sensory inputs and contains glutamatergic

projections to the NAcc [12, 13]. This amygdala-NAcc circuit is important in the promotion of

motivational behavioral responses and has been implicated in addiction disorders, and in the

regulation of hedonic eating habits (“food addiction”) [12–14]. The aINS plays a role in the

experience of emotional feelings and conscious urgings and cravings, in addition to its role as

an association cortex, integrating input from subcortical, limbic and executive control brain

networks [15, 16].

In addition to identifying anatomical and functional alterations in specific brain regions,

more recent efforts have focused on identifying alterations in brain network properties [17].

Brain connectivity can be assessed using complex network analysis via graph theory. Within

this framework, brain regions are characterized by measures that quantify their contribution

to the functional and anatomical integrity and information flow in the whole brain network

[18–21].

Although the exact signaling mechanisms underlying the communication within the brain-

gut-microbiome (BGM) axis remain incompletely understood, tryptophan (TRP) metabolites

have been implicated as important signaling molecules in this system [22]. Perhaps the most

extensively studied TRP metabolite is serotonin (5-HT), with diverse roles in both the gastro-

intestinal (GI) tract (i.e. secretion and absorption, intestinal transit) and the central nervous

system (CNS) (i.e. mood, pain modulation, behavior, cognitive function) [23]. The close prox-

imity of the gut microbiota to 5-HT-producing enterochromaffin cells (ECCs) strongly sug-

gests that the gut microbiota may modulate the serotonergic system. In turn, the intimate,

synapse-like contact of vagal afferent nerve terminals to the basolateral side of ECCs estab-

lishes a pathway by which microbial signals can activate vagal afferents via 5-HT release. In a

mouse model, metabolites derived from spore-forming bacteria of the human gut microbiota

have been shown to play a prominent role in the regulation of ECC 5-HT synthesis and release

[24]. TRP also acts as a precursor to the kynurenine (KYN) family of molecules. Quantitatively,

the KYN pathway is the most important pathway for TRP metabolism, outside of protein syn-

thesis, as under normal conditions it is responsible for more than 90% of TRP catabolism [25].

Though the KYN pathway represents the major TRP degradation pathway by host cells,

most undigested dietary TRP in the gut lumen is converted by gut microbes to indole. This is

mediated by the exclusively microbial tryptophanase enzyme, which catalyzes the conversion

of TRP to indole, pyruvate, and ammonia [25, 26]. Indole is a common component of human

feces, often detectable at concentrations up to 1,100 μM [27]. Indole and indole-derived

metabolites have many functions within the BGM axis, including the modulation of KYN
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synthesis and incretin secretion, strengthening of the mucosal intestinal barrier, and attenua-

tion of CNS inflammation–all of which have been shown to be disrupted in obesity [25, 27–

32].

By studying anatomical and functional connectivity measures and fecal gut microbial

metabolites in healthy subjects with and without elevated body mass index (BMI), we aimed to

test the hypothesis that indole metabolites are associated with connectivity of key regions of

the brain’s reward network. We determined the relationship between gut-derived indole

metabolites with local connectivity of regions of the extended reward network (amygdala,

aINS and NAcc) and clinical measures related to hedonic food intake and body weight. Even

though these results do not prove causation, and need to be validated in a larger sample, they

provide support for an association between gut-derived microbial metabolites and aspects of

brain structure and function, which may play a role in hedonic food intake and obesity. These

cross sectional data-driven results provide valuable information for future mechanistic studies.

Materials and methods

Subjects

Stool samples were collected at the G. Oppenheimer Center for Neurobiology of Stress and

Resilience at the University of California, Los Angeles (UCLA) from 63 right-handed healthy

subjects (29 males, 34 females), who also underwent multimodal brain imaging studies. Exclu-

sionary criteria included (1) serious medical conditions or taking medications which could

compromise interpretation of the brain imaging; (2) current major psychiatric diagnoses or

use of psychotropic medications in the past 6 months; (3) use of antibiotics in the past 3

months and (4) excessive physical exercise (e.g., marathon runners).

Written informed consent was obtained from all subjects, and all subjects were compen-

sated for participating in the study. The study was approved by the UCLA Institutional Review

Board and was conducted in full accordance with the institutional guidelines regulating

human subjects research.

Questionnaires

The Hospital Anxiety and Depression (HAD) Scale [33] was obtained to assess anxiety and

depression symptoms. Scores 0–7 define the normal range, 8–10 define the borderline range,

and 11–21 define the abnormal range [33]. As only two subjects received scores outside of the

normal range for the depression subscale, only the anxiety subscale was included in our analy-

sis (see results). All subjects completed the HAD scale. Subjects filled out the Yale Food Addic-

tion Scale (YFAS) questionnaire, a 25-item scale developed to measure food addiction. This

scale is based upon the substance dependence criteria found in the DSM-5 (e.g., tolerance

[marked increase in amount; marked decrease in effect], withdrawal [agitation, anxiety, physi-

cal symptoms], loss of control [eating to the point of feeling physical ill]) [34]. The YFAS has

displayed a good internal reliability (Kuder–Richardson α = .86) [34]. Only 42 subjects com-

pleted the YFAS, as it was not available at the time of recruitment of all subjects. BMI was

recorded for all subjects.

Fecal metabolomics

Fecal samples were stored at -80˚C and shipped to Metabolon for processing and analysis as a

single batch on their global metabolomics and bioinformatics platform [35]. Data was curated

by mass spectrometry using specialized software as previously described [35]. Metabolites of

interest were restricted to indole, 3-methylindole (skatole), and indoleacetic acid (IAA).
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Magnetic resonance imaging

Structural MRI. High resolution T1-weighted images were acquired on a Siemens Allegra

3 Tesla scanner, repetition time = 2200 ms, echo time = 2.85s, inversion time = 750 ms, flip

angle = 20 degrees, Field of view = 220 × 220 mm, resolution = 256 × 256, slices per vol-

ume = 176, slice thickness = 1 mm, voxel size = 0.86 × 0.86 × 1 mm.

Functional MRI. Resting-state scans between 8m6s and 10m6s in length were acquired

with an echo planar sequence with the following parameters: echo time = 28 ms, repetition

time = 2000 ms, scan duration = 8m6s–10 m6s, flip angle = 77˚, field of view = 220 mm,

slices = 40 and slice thickness = 4.0 mm, and slices were obtained with whole-brain coverage.

Diffusion-weighted MRI. Diffusion-weighted magnetic resonance imaging was acquired

according to two comparable acquisition protocols, in either 61 or 64 noncolinear directions

with b = 1000 s mm−2, with 8 or 1 b = 0 s mm−2 images respectively, TR = 9500 ms, TE = 88ms

and field of view = 256 mm with an acquisition matrix of 128x128, and a slice thickness of 2

mm to produce 2 × 2 × 2 mm3 isotropic voxels.

Quality control of MRI data

Preprocessing for quality control involved bias field correction, coregistration, motion correc-

tion, spatial normalization, tissue segmentation, Fourier transformation for frequency distri-

bution, and specific quantitative checks for DTI images (apparent diffusion coefficient and

fractional anisotropy [FA]). Structural images were included based on compliance with acqui-

sition protocol, full brain coverage, minimal motion (Gibbs ringing), absence of flow/zipper,

and minor atrophy/vascular degeneration. Functional images were included based on compli-

ance with acquisition protocol, full brain coverage, motion estimate of<½ voxel size between

adjacent time points, low standard deviation across time series for all voxels, ghosting in cere-

brum, minimal physiological noise (>0.2Hz in frequency spectrum), and few to no outlier

voxels, mean intensity shifts, or K-space “spikes.” Preprocessing for diffusion-weighted imag-

ing included visually checking for artifacts and motion on the raw diffusion weighted and b0

images, visual assessment of FA and mean diffusitivity (MD) map quality, as well checking for

physiologically feasible FA and MD values (FA of 0–0.1 and MD of 3–4 μm2/ms in ventricles,

and FA of 0.6–0.9 and MD of 0.6–0.9 μm2/ms in splenium of corpus callosum). Maximum rel-

ative motion thresholds for translation and rotation for each direction (x, y, and z) were set at

2mm and 2˚, respectively. No subjects presented with serious adverse imaging artifacts and no

subjects exceeded motion thresholds: the highest maximum relative translation for any subject

was 1.37mm, and the highest maximum relative rotation was 1.59˚. Only one DTI scan did not

meet quality control criteria and was excluded from analysis. All other DTI and resting state

scans met quality control criteria and were included in the analysis.

Structural image parcellation

T1-image segmentation and regional parcellation were conducted using FreeSurfer v.5.3.0[36–

38] following the nomenclature described in the Destrieux and Harvard-Oxford subcortical

atlas [39, 40]. For each cerebral hemisphere, a set of 74 cortical structures were labeled in addi-

tion to 7 subcortical structures and to the cerebellum. One additional midline structure (the

brain stem) was also included, for a complete set of 165 parcellations for the entire brain.

Functional brain network construction

The parcellation and the functional connectivity results were combined to produce a 165x165

weighted, unidirected connectivity matrix. Resting-state image preprocessing was performed

Tryptophan metabolites and central reward system
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using the SPM8 software (Wellcome Department of Cognitive Neurology, London, UK).

Images were transformed from DICOM into NIfTI, slice-time corrected, co-registered with

the high-resolution structural images, spatially normalized to the MNI space, and resampled

to a voxel size of 2 X 2 X 2 mm. Normalized functional images were further preprocessed and

analyzed using the SPM-based CONN toolbox version 13 (www.nitrc.org/projects/conn). The

resting-state images were filtered using a band-pass filter (0.008/s<f<0.08/s) to reduce the

low- and high-frequency noises. A component based noise-correction method, CompCor,[41]

was applied to remove nuisances for better sensitivity and specificity of the analysis. Six motion

realignment parameters and confounds for white matter and CSF were removed using regres-

sion. The connectivity between the 165 brain regions was indexed by a matrix of Fisher z trans-

form correlation coefficients reflecting the association between average temporal BOLD time

series signals across all voxels in each brain region. Functional connections were retained at

z>.3 and all other values were set to 0. The magnitude of the z-score represents the weights in

the functional network.

Anatomical network construction

Regional parcellation and tractography results were combined to produce a weighted, unidir-

ected connectivity matrix. White matter connectivity for each subject was estimated between

the 165 brain regions using DTI fiber tractography,[42] performed via the Fiber Assignment

by Continuous Tracking (FACT) algorithm[43] using TrackVis (http://trackvis.org). The final

estimate of white matter connectivity between each of the brain regions was determined based

on the number of fiber tracts intersecting each region. Weights of the connections were then

expressed as the absolute fiber count divided by the individual volumes of the two intercon-

nected regions [20].

Regions of interest

Key regions of the extended reward that have been extensively studied with respect to gut-

brain signaling involved in the regulation of non-homeostatic food intake were included [10].

Regions of interest were restricted to the NAcc, amygdala, and aINS (including short insular

gyrus, anterior segment of the circular sulcus of the insula, horizontal ramus of the anterior

segment of the lateral sulcus, and vertical ramus of the anterior segment of the lateral sulcus)

(Fig 1).

Computing network metrics

The Graph Theoretic GLM tool (www.nitrc.org/projects/metalab_gtg)[44] and in-house

matlab scripts were used to calculate and analyze the brain network properties and organiza-

tion from the subject-specific functional brain networks for the brain regions of interest.

Regions with high centrality are highly influential, communicate with many other regions,

facilitate functional integration, and play a key role in network resilience to insult [21]. Two

indices of centrality were computed: 1) Degree Strength reflects the number of other regions a

brain region interacts with functionally (local prominence) and 2) Betweenness centrality,

reflecting the ability of a region to influence information flow (signaling) between two other

regions.

Statistical analysis

Tripartite network analysis was performed to integrate information from three data sets: 1)

Stool derived indole metabolites (indole, skatole, and IAA), 2) clinical data (BMI, YFAS, HAD

Tryptophan metabolites and central reward system
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Anxiety) and 3) the functional and anatomical network metrics characterizing regions of inter-

est (amygdala, NAcc, and aINS [short insular gyrus, anterior segment of the circular sulcus of

the insula, horizontal ramus of the anterior segment of the lateral sulcus, and vertical ramus of

the anterior segment of the lateral sulcus]). The interaction between the phenome (clinical

measures), microbiome (stool-derived indole metabolites) and connectome (brain connectiv-

ity) was determined by computing Spearman correlations between different data types con-

trolling for age and sex in Matlab version R2015b. The unweighted force-directed layout in

Fig 1. Regions of interest and associated regions. Fig 1 displays regions of interest (nucleus accumbens [orange],

amygdala [green], and anterior insula [blue; includes short insular gyrus, anterior segment of the circular sulcus of the

insula, horizontal ramus of the anterior segment of the lateral sulcus, and vertical ramus of the anterior segment of the

lateral sulcus]) and the brain stem (pink).

https://doi.org/10.1371/journal.pone.0201772.g001
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Cytoscape v. 3.5.1 was used to visualize and construct brain, symptom, and gut-derived metab-

olite interaction networks thresholded at q< .05 corrected p value using a false discovery rate

of 5%. We present the networks based on selecting the metabolites and their first neighbors as

nodes and all adjacent edges. The results are described in terms of direct (correlations with

metabolites) and indirect effects (clinical symptoms and functional and anatomical network

metrics that are a part of the interaction network but not directly correlated with the

metabolite).

Results

Clinical and behavioral characteristics

Patient ages ranged from 18 to 60 (mean: 29.42, SD: 10.76). BMI ranged from 17.90 to 37.34

(mean: 25.82, SD: 4.93). Subjects with high BMI (BMI� 25: mean = 30.00, SD = 3.31,

range = 25.11–37.34) consisted of 17 males (mean = 29.26, SD = 3.33, range = 25.11–37.34)

and 14 females (mean = 30.90, SD = 3.18, range = 25.52–37.09). Subjects with normal BMI

(BMI< 25: mean BMI = 21.77, SD = 1.90, range = 17.90–24.53) consisted of 12 males

(mean = 22.21, SD = 1.88, range = 17.90–24.10) and 20 females (mean = 21.50, SD = 1.91,

range = 18.80–24.53). Scores on the YFAS ranged from 0 to 7 (mean: 1.24, SD: 1.25). HAD

Anxiety scores ranged from 0 to 13 (mean: 4.25, SD: 3.41; normal: 50 subjects, borderline: 10

subjects, abnormal: 3 subjects). HAD Depression scores ranged from 0 to 11 (mean: 1.87, SD:

2.23; normal: 61 subjects, borderline: 1 subject, abnormal: 1 subject).

Association of clinical parameters with indole metabolites

The indole metabolite skatole positively correlated with YFAS scores. Although not surviving

FDR correction, indole positively correlated with BMI and negatively with anxiety scores. (For

details, see Tables 1 and 2)

Amygdala-NAcc circuit

Indole, skatole and IAA showed large positive correlations with functional connectivity of the

NAcc. Skatole showed a positive association with measures of anatomical connectivity of the

amygdala, whereas IAA associated positively with functional connectivity of the amygdala.

YFAS scores and HAD Anxiety scores showed positive associations with functional connectiv-

ity of the NAcc. (see Table 1)

Amygdala-aINS circuit

Anatomical connectivity of the amygdala showed a positive correlation with skatole, while

functional connectivity of this brain regions showed a positive association with IAA. Anatomi-

cal connectivity of a region within the aINS, showed a positive association with indole, while

functional connectivity of the same brain region showed a positive association with YFAS

scores. (see Table 2)

Fig 2 displays the tripartite association network between indole metabolites, clinical and

behavioral measures, and connectivity of the amygdala-aINS circuit and the amygdala-NAcc

circuit. All three metabolites showed indirect association with YFAS through functional con-

nectivity of the right NAcc. Skatole also showed an indirect association with anxiety through

functional connectivity of the left NAcc, in addition to indirect associations to YFAS through

functional connectivity of the left NAcc and a region within the aINS.

Tryptophan metabolites and central reward system
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Discussion

This study demonstrates associations between fecal indole metabolites, measures of functional

and anatomical connectivity of key regions of the extended reward network, in addition to

BMI, food addiction scores (YFAS) and anxiety symptom scores (HAD Anxiety) in healthy

individuals with varying BMIs. These results are consistent with the literature on the role of

indole metabolites in mammalian physiology and support the hypothesis that gut microbiota-

derived indole metabolites may influence food intake by acting on the extended reward net-

work, specifically the amygdala-NAcc circuit and the amygdala-aINS circuit. Even though

these cross sectional findings were obtained in a relatively small sample cohort, to our knowl-

edge, this is the first report demonstrating an association between microbial-derived stool

metabolites of the indole family with connectivity of brain regions of the extended reward net-

work in healthy humans.

Association of indole metabolites with connectivity of amygdala and

nucleus accumbens

Our results show direct associations between the functional connectivity of the amygdala with

IAA, and between anatomical connectivity of this region with skatole, with all metabolites

showing a strong association with functional connectivity of the NAcc. Skatole showed a direct

positive association with YFAS scores, while IAA showed an indirect positive association with

skatole through functional connectivity of the NAcc. Although not statistically significant fol-

lowing FDR correction, indole showed a direct positive association with BMI and an indirect

positive association with YFAS through functional connectivity of the NAcc. One likely mech-

anism by which indoles could influence this part of the reward circuit may be through

Table 1. Amygdala-nucleus accumbens associations.

Metabolite Functional Connectivity r p q df
Indole B_R_NAcc 0.59608 < 0.001 < 0.001 62

IAA S_R_Amg 0.37640 0.003 0.011 62

Indole S_R_NAcc 0.36637 0.004 0.011 62

IAA S_R_NAcc 0.33201 0.009 0.018 62

Skatole S_R_NAcc 0.31022 0.015 0.022 62

Skatole S_L_NAcc 0.33839 0.008 0.046 62

Clinical/Behavioral Measure Functional Connectivity r p q df
YFAS S_L_NAcc 0.59632 < 0.001 < 0.001 41

ANX S_L_NAcc 0.29999 0.019 0.056 62

YFAS S_R_NAcc 0.36944 0.019 0.114 62

Metabolite Anatomical Connectivity r p q df
Skatole S_L_Amg 0.55362 < 0.001 < 0.001 61

Metabolite Clinical/Behavioral Measure r p q df
Skatole YFAS 0.48043 0.002 0.017 41

Indole ANX -0.28741 0.025 0.086 62

Indole BMI 0.28036 0.029 0.090 62

This table shows all significant associations prior to FDR correction with r, p, FDR-corrected q values, and df (degrees of freedom) for the amygdala-nucleus accumbens

circuit.

Abbreviations: ANX, Hospital anxiety and depression (HAD) scale anxiety score; B_R_NAcc, Betweenness centrality of the right nucleus accumbens; BMI, Body mass

index; IAA, Indoleacetic acid; S_L_Amg, Degree strength of the left amygdala; S_L_NAcc, Degree strength of the left nucleus accumbens; S_R_Amg, Degree strength of

the right amygdala; S_R_NAcc, Degree strength of the right nucleus accumbens; YFAS, Yale food addiction scale score.

https://doi.org/10.1371/journal.pone.0201772.t001
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interactions with the enteroendocrine L-cells of the gut and GLP-1. The peptide hormone

GLP-1 and GLP-1 receptor agonists have been studied within the context of obesity, as they

are associated with better glycemic control, reduction of body weight and increased satiety

[45]. Indole can modulate GLP-1 secretion in mouse colonic L-cells by influencing voltage-

gated potassium channels and mitochondrial NADH dehydrogenase [29]. Exposure to indole

over short periods of time resulted in increased secretion of GLP-1, whereas longer exposure

led to decreased secretion [29]. As most GLP-1 is rapidly inactivated by dipeptidyl peptidase 4

prior to leaving the gut, it is likely that GLP-1 acts locally on vagal afferent nerve terminals,

and signals via vagal afferents to the nucleus tractus solitarius (NTS) and to brain circuits

involved in the regulation of ingestive behavior [45]. This is consistent with a recent human

study, which showed that the GLP-1 agonist Exenatide can impact appetite control by modu-

lating the functional connectivity of reward regions associated with the NTS [46]. An alterna-

tive hypothesis posits that vagal afferent modulation of the amygdala-NAcc circuit may occur

through modulation of the gut serotonergic system. Since it has been shown that metabolites

from spore-forming bacteria of the gut microbiota regulate ECC 5-HT synthesis and release,

an indole derivative that affects this microbial community may influence the gut serotonergic

system [24]. The established role of indoles as valuable intercellular signaling molecules in

Table 2. Amygdala-anterior insula associations.

Metabolite Functional Connectivity r p q df
IAA S_R_Amg 0.37639 0.003 0.042 62

Skatole B_L_ALSVerp (aINS) 0.33542 0.008 0.123 62

IAA S_R_ALSVerp (aINS) 0.27091 0.035 0.206 62

IAA S_L_ALSHorp (aINS) 0.26168 0.042 0.625 62

Clinical/Behavioral Measure Functional Connectivity r p q df
YFAS B_L_ALSVerp (aINS) 0.53843 < 0.001 0.005 41

BMI B_R_ShoInG (aINS) 0.29197 0.022 0.336 62

Metabolite Anatomical Connectivity r p q df
Skatole S_L_Amg 0.55362 < 0.001 < 0.001 61

Indole B_L_ALSHorp (aINS) 0.49712 < 0.001 < 0.001 61

Skatole S_R_ALSHorp (aINS) 0.31036 0.016 0.237 61

Skatole S_R_ALSVerp (aINS) 0.26351 0.042 0.314 61

Skatole B_R_ALSHorp (aINS) 0.25465 < 0.050 0.503 61

Clinical/Behavioral Measure Anatomical Connectivity r p q df
BMI B_L_ShoInG (aINS) 0.30157 0.019 0.288 61

Metabolite Clinical/Behavioral Measure r p q df
Skatole YFAS 0.48043 0.002 0.017 41

Indole ANX -0.28741 0.025 0.086 62

Indole BMI 0.28036 0.029 0.090 62

This table shows all significant associations prior to FDR correction with r, p, FDR-corrected q values, and df (degrees of freedom) for the amygdala-anterior insula

circuit.

Abbreviations: ANX, Hospital anxiety and depression (HAD) scale anxiety score; B_L_ALSHorp, Betweenness centrality of the left horizontal ramus of the anterior

segment of the lateral sulcus (aINS); B_L_ALSVerp, Betweenness centrality of the left vertical ramus of the anterior segment of the lateral sulcus (aINS); B_L_ShoInG,

Betweenness centrality of the left short insular gyrus (aINS); B_R_ALSHorp, Betweenness centrality of the right horizontal ramus of the anterior segment of the lateral

sulcus (aINS); B_R_ShoInG, Betweenness centrality of the right short insular gyrus (aINS); BMI, Body mass index; IAA, Indoleacetic acid; S_L_ALSHorp, Degree

strength of the left horizontal ramus of the anterior segment of the lateral sulcus (aINS); S_L_Amg, Degree strength of the left amygdala; S_R_ALSHorp, Degree

strength of the right horizontal ramus of the anterior segment of the lateral sulcus (aINS); S_R_ALSVerp, Degree strength of the right vertical ramus of the anterior

segment of the lateral sulcus (aINS); S_R_Amg, Degree strength of the right amygdala; YFAS, Yale food addiction scale score.

https://doi.org/10.1371/journal.pone.0201772.t002
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microbial communities, with examples of indole signaling among spore-forming bacteria, fur-

ther supports this mechanism [47]. As 5-HT is intimately involved in vagal signaling along the

gut-brain axis, it is likely that vagal afferents would be responsible for communicating indole-

mediated modulation of the gut serotonergic system to central reward regions [48].

Association of indole metabolites with connectivity of amygdala and aINS

We found an association between the anatomical connectivity of the aINS with indole levels in

the stool, and of the amygdala with fecal skatole levels. In addition, the functional connectivity

of the amygdala was associated with fecal IAA levels. Signaling of gut microbiota to the amyg-

dala-aINS circuit may act directly through the amygdala by modulating CNS 5-HT synthesis;

one mechanism may involve the aryl hydrocarbon receptor (AhR). Many studies on the effects

of indoles on mammalian physiology have focused on their role as AhR ligands. When acti-

vated, AhR can function as a transcription factor that regulates the rate limiting enzymes in

TRP metabolism along the KYN pathway [49]. Increases in systemic KYN levels can limit

peripheral TRP bioavailablity for CNS 5-HT synthesis; KYN competes with TRP to cross the

blood-brain barrier (BBB) through the Large Neutral Amino Acid Transporter LAT1, an

Fig 2. Tripartite association network. Fig 2 displays the tripartite association network between indole metabolites, clinical and behavioral measures, and functional and

anatomical connectivity of the amygdala-NAcc circuit and the amygdala-aINS circuit. All significant (p< .05) associations are included in this visualization. Functional

brain connectivity of regions of interest is presented with the region of interest noted in a larger font, with the connectivity measure and lateralization indicated below in

the form X_Y, where X indicates a connectivity measure (B, Betweenness centrality; S, Degree strength) and Y indicates lateralization (L, Left; R, Right). Abbreviations:

aINS, anterior insula; ALSHorp, horizontal ramus of the anterior segment of the lateral sulcus (aINS); ALSVerp, vertical ramus of the anterior segment of the lateral

sulcus (aINS); Amg, amygdala; ANX, Hospital anxiety and depression (HAD) scale anxiety score; BMI, Body mass index; IAA, Indoleacetic acid; NAcc, nucleus

accumbens; ShoInG, short insular gyrus (aINS); YFAS, Yale food addiction scale score.

https://doi.org/10.1371/journal.pone.0201772.g002
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important point considering TRP uptake is the rate-limiting step in CNS 5-HT synthesis [50].

The consequences of reduced CNS 5-HT have been interrogated through acute TRP depletion

(ATD) studies, which generally show that ATD negatively influences mood and feeding behav-

ior as well as visceral sensitivity and abdominal symptoms [51, 52]. Considering the extensive

serotonergic innervation of the amygdala and its connections to the INS, modulation of CNS

TRP metabolism via indole-activated AhR may explain the association between indoles and

the amygdala-aINS circuit and the positive association between skatole and food addiction

scores [53].

Indoles may also act on the amygdala-aINS circuit by modulating aINS-mediated gustatory

processing. One mechanism that allows the GI tract to constantly sample the gut lumen is

through taste receptors expressed on ECCs and L-cells [54, 55]. Considering the established

relationship between indole and L-cells, and the proposed relationship between indoles and

ECCs, the gut microbiota may represent an extension of this luminal gustatory sensing mecha-

nism. As an example, glucose has been shown to inhibit indole biosynthesis via catabolite

repression of the tryptophanase enzyme, whereas TRP has been shown to induce the trypto-

phanase enzyme [26, 56]. The responsiveness of tryptophanase to the luminal environment

underscores the dynamic nature of this indole-aINS gustatory association suggested by our

data.

Association of indole metabolites with clinical and behavioral measures

Fecal skatole levels showed a positive association with food addiction scores; although not sig-

nificant following FDR correction, fecal indole levels positively associated with BMI and nega-

tively with anxiety scores. In contrast, IAA showed no direct associations with any clinical and

behavioral measures. It is interesting to note that IAA is the only metabolite investigated that

acts as a true AhR agonist, while both indole and skatole act as weak AhR agonists or partial

antagonists [57, 58]. Considering the diversity of AhR ligands that extends even past the indole

family of molecules, elevated concentrations of indole and skatole would interfere with the

binding of potentially higher affinity ligands to AhR [59]. The balance of indole and skatole to

IAA or to other AhR agonists may play an important role in the activity of AhR and subse-

quent downstream consequences [57], [60], [61]. Although future work is necessary to exam-

ine the importance of AhR on the gut-brain axis, our results suggest that indoles with partial-

antagonistic properties may be more clinically relevant than indoles with pure agonist proper-

ties with respect to the AhR.

Limitations

As we were interested in gut-microbiota derived indole metabolites, our study only examined

fecal samples and did not address possible direct actions of indole on the CNS through circum-

ventricular organs or by crossing the blood brain barrier. Because indoles are prone to exten-

sive modification through the CYP450 system, fecal samples are likely a more accurate

representation of the GI metabolomic profile [62]. Although there was a fair distribution and

range of BMIs among study participants, our study consisted primarily of subjects with BMIs

greater than 18.5. Additionally, less than a third of subjects did not complete the YFAS survey,

as it was not available at the time of their recruitment. Due to the limited sample size, we did

not explore sex-differences in this study. Future studies with a larger sample size, and perhaps

a more heterogeneous subject population with respect to BMI and YFAS scores would need to

be conducted to validate our results. Future studies should focus on identifying associations of

metabolites with brainstem regions, in particular the NTS in the analysis, possibly by using tai-

lored 3T brainstem acquisition protocols and ultra high field MRI (T7 or higher) [63–65].
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Although the associations presented in this study are consistent with conclusions from studies

that utilized animal models or in vitro approaches, no causative relationships can be implied

from an association study.

Summary and conclusions

To our knowledge, this is the first study demonstrating an association between microbial-

derived stool metabolites with connectivity of brain regions of the extended reward network in

healthy human subjects with varying BMI and food cravings. It is likely that a combination of

some or all of the proposed mechanisms plays a role in these associations. The inducible and

repressible nature of the tryptophanase enzyme, combined with the varying binding affinities

of different indoles to AhR underscore the importance of metabolic homeostasis of micro-

biota-derived metabolites and provides further evidence for the dynamic nature of the BGM

axis. This exploratory study provides valuable information for future mechanistic studies.
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