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The presence of an RNA virus in a South American subgenus of the Leishmania parasite,
L. (Viannia), was detected several decades ago but its role in leishmanial virulence
and metastasis was only recently described. In Leishmania guyanensis, the nucleic
acid of Leishmania RNA virus (LRV1) acts as a potent innate immunogen, eliciting a
hyper-inflammatory immune response through toll-like receptor 3 (TLR3). The resultant
inflammatory cascade has been shown to increase disease severity, parasite persistence,
and perhaps even resistance to anti-leishmanial drugs. Curiously, LRVs were found
mostly in clinical isolates prone to infectious metastasis in both their human source and
experimental animal model, suggesting an association between the viral hyperpathogen
and metastatic complications such as mucocutaneous leishmaniasis (MCL). MCL presents
as chronic secondary lesions in the mucosa of the mouth and nose, debilitatingly inflamed
and notoriously refractory to treatment. Immunologically, this outcome has many of the
same hallmarks associated with the reaction to LRV: production of type 1 interferons, bias
toward a chronic Th1 inflammatory state and an impaired ability of host cells to eliminate
parasites through oxidative stress. More intriguing, is that the risk of developing MCL
is found almost exclusively in infections of the L. (Viannia) subtype, further indication that
leishmanial metastasis is caused, at least in part, by a parasitic component. LRV present in
this subgenus may contribute to the destructive inflammation of metastatic disease either
by acting in concert with other intrinsic “metastatic factors” or by independently preying
on host TLR3 hypersensitivity. Because LRV amplifies parasite virulence, its presence may
provide a unique target for diagnostic and clinical intervention of metastatic leishmaniasis.
Taking examples from other members of the Totiviridae virus family, this paper reviews
the benefits and costs of endosymbiosis, specifically for the maintenance of LRV infection
in Leishmania parasites, which is often at the expense of its human host.
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INTRODUCTION
Endemic in 98 countries, leishmaniases are caused by vari-
ous species of the Leishmania protozoan parasite and exhibit a
wide spectrum of clinical manifestations, ranging from a cuta-
neous lesion (CL) to a fatal visceralization of disease (VL)
(Kaye and Scott, 2011; Alvar et al., 2012). Parasites are trans-
mitted through the bite of a sand fly vector, establishing infec-
tion in a local CL, although asymptomatic infections are not
uncommon. Some cases develop latently, reactivating later as
a disseminated or metastatic infestation, complicating clinical
outcome, and known to be refractory to standard therapeu-
tic intervention. In South America, up to 10% of CL cases
progress to mucocutaneous disease (MCL) forming destruc-
tive secondary lesions in the mucosa of the mouth and nose
and even occurring in those with asymptomatic primary infec-
tions. The risk of this clinical complication can be considered
as a distinguishing trait of the Leishmania (Viannia) subgenus,
as it is mainly caused by species within the group (predomi-
nantly L. braziliensis but also L. guyanensis and L. panamensis).
Importantly, the clinical presentations of metastatic disease dif-
fer between Leishmania species (Figure 1). For example, while

L. braziliensis and L. panamensis conform to the CL-to-MCL dis-
semination pattern described above, L. guyanensis gives rise less
frequently to mucosal lesions [although reported (Guerra et al.,
2011)] and instead more often result in chronic disseminated
cutaneous leishmaniasis (DCL) with no reported anatomical
specificity. Whatever the individual outcome, the general propen-
sity toward infectious metastasis in South America seems to rely
on an intrinsic parasite factor of the Viannia subgenus, where
species-specific features underlie tissue-specific divergences. A
shared feature among the metastatic Leishmania is their degree
of dormancy and chronicity, as reactivation and dissemination
is often only developed months or even years after the ini-
tial infection (Marsden, 1986; Ronet et al., 2010). This infective
resurgence has been largely attributed to factors extrinsic to the
parasite, such as the host environment and its genetic suscep-
tibility, and it is proposed that virulent parasites are selected,
kept dormant, and then later revived under immunosuppressed
or stressed conditions. For example, antimony treatment dur-
ing primary infection has been implicated in the development
of MCL (Saravia et al., 1990; Arevalo et al., 2007; Souza et al.,
2010). It is important to note, however, that dissemination is not
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FIGURE 1 | Leishmanial phylogeny and LRV presence. Intrinsic parasite
factors underlying clinical disparities in metastatic leishmaniasis. Species
listed are those relevant to this text. The L. mexicana species complex (of the
L. leishmania subgenus) was omitted for simplicity; thus far, no LRV has been
reported in their member species. CL, Cutaneous leishmaniasis; DCL,

Disseminated cutaneous leishmaniasis; VL, Visceral leishmaniasis; PKDL,
Post Kala Azar dermal leishmaniasis; MCL, Mucocutaneous leishmaniasis;
LRV, Leishmania RNA virus; (�), LRV found in numerous isolates within
group; (��), LRV found only in a single, perhaps exceptional, isolate in this
group. Non-starred: groups in which LRV infection has not been reported.

completely unique to the Viannia subgenus. The donovani species
complex (of the Leishmania subgenus) shows a reversed symp-
tomatic kinetic: visceralizing during a primary infection known as
Kala Azar with a risk of later reactivating as a disseminated cuta-
neous infestation (Post Kala Azar Dermal Leishmaniasis, PKDL)
(Figure 1). Still, the metastatic proclivity in these parasites is
probably quite different from that seen in MCL and the factors
underlying visceralizing tropism in L. donovani are purportedly
encoded in species-specific genes (Zhang et al., 2008; Zhang and
Matlashewski, 2010).

A common thread running through most cases of metastatic
infection is the onset of a destructive hyper-inflammatory
immune response that is characterized by a deluge of activated
immune cells, swelling, and destroying local tissue (Marsden,
1986; Ronet et al., 2010). This overreaction is very likely insti-
gated by a parasite factor. Indeed, the intrinsic Leishmania virus
of L. guyanensis was recently shown to exacerbate inflamma-
tion and may prove to be a major driver of metastatic poten-
tial in L. (Viannia) parasites (Ives et al., 2011; Ronet et al.,
2011). Although Leishmania viruses have been identified in major
metastatic strains of L. braziliensis and L. guyanensis, metastasis
can occur in absence of LRV, such as is the case for L. panamensis.
Thus, LRV may have a variable contribution to this phenotype,
acting alone or in concert with other factors, such as the host
genetic background or species-specific parasite virulence factors.
In this report, we review the current knowledge on Leishmania
virus and its interaction with the host immune system in an effort
to gauge its clinical impact and potential use in the diagnosis and
treatment of disseminated leishmaniases.

NEW WORLD LEISHMANIASIS AND Leishmania RNA VIRUS
PARASITE FACTORS UNDERLYING DISEASE PHENOTYPE
While the role of host factors cannot be overlooked, parasite pedi-
gree is still the most reliable predictive tool of disease phenotype,

implying that heritable parasite factors are the major determi-
nants of clinical variation. Yet, despite the considerable clinical
differences in leishmaniases across the Leishmania phylogenic
tree (Figure 1), unique genes between species are relatively scarce
(Ivens et al., 2005; Peacock et al., 2007; Smith et al., 2007).
Analysis of reference genomes for L. major, L. mexicana, L. infan-
tum, and L. braziliensis have further confirmed the low number of
species-specific genes, albeit that variation amongst homologs is
considerable (Rogers et al., 2011). Nevertheless, no obvious pat-
terns emerge from this variation, which sufficiently explain the
symptomatic groupings of certain species. L. braziliensis stands
out for having a high degree of single nucleotide polymorphisms
and “lost” genes, which could, in conjunction with the presence
of its 67 unique genes, be the reason for its metastatic tropism
and increased virulence (Rogers et al., 2011). Of particular inter-
est are genetic differences involved in the control of oxidative
stress. Being an intracellular infection, oxidative destruction in
the phagolysosome is a major mechanism of parasite elimination.
Avoidance of this killing may be a way of developing latency and
later, metastasis. L. braziliensis is known to carry supplementary
copies of NADPH-dependent fumarate reductase and a homolog
of a glutathione peroxidase (as well as having lost a trypanoth-
ione synthase-like protein) although it is not yet known whether
these enzymes influence the sensitivity of L. braziliensis to oxida-
tive stress. The sequencing of L. guyanensis and L. panamensis
genomes will add valuable information to the genetic determi-
nants of oxidative resistance and their contribution to metastatic
virulence. Nevertheless, these genetic differences are still not
sufficiently predictive or explanatory for the diversity of pathol-
ogy. Instead, divergence in clinical outcome could be related
to differential protein expression achieved through changes in
gene regulation, copy number, or the presence of pseudogenes
(Lynn and McMaster, 2008; Depledge et al., 2009; Rogers et al.,
2011).
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In light of LRV infection, parasitic genes controlling RNA-
mediated interference (RNAi) are also of interest. The nucleic acid
of LRV is potentially recognized by this parasite defense mech-
anism targeting foreign RNA. While Leishmania are not known
to express RNA sensors such as those seen in mammals (PKR,
RIG-I, MDA-5), some Leishmania species express a potent RNAi
activity (Lye et al., 2010). Functional RNAi machinery is mostly
absent in the L. Leishmania subgenera (L. major, L. donovani,
L. mexicana) but has been retained in the major metastatic para-
sites of the L. (Viannia) subgroup (L. braziliensis, L. panamensis,
and L. guyanensis) (Lye et al., 2010). Correspondingly, LRV1 has
been found in L. braziliensis and L. guyanensis, although thus
far not in L. panamensis (which has been less thoroughly exam-
ined). The sole exception to this association is the presence of
LRV2 occurring in a single isolate of L. major (Scheffter et al.,
1995), a Leishmania species a functional lacking RNAi (Lye et al.,
2010). Variability in RNAi efficiency between evolutionary lines
is also found in many other organisms (playing a strong role
in Drosophila and C. elegans, but minimally functional in mam-
mals. Further studies are needed to define whether retention or
losses of RNAi are related to the evolution of viral interaction
as is hypothetically exemplified in the co-maintenance of RNAi
and LRVs.

LRV: A MEMBER OF THE Totiviridae FAMILY
Leishmania viruses are classified in the Totiviridae family
(Patterson, 1990; Weeks et al., 1992) encompassing non-
enveloped, icosahedral particles present in protozoa [T. vaginialis
and G. lamblia (Wang and Wang, 1991)], yeast (Wickner, 1996),
fungi, plants, arthropods (Wu et al., 2010; Zhai et al., 2010;
Isawa et al., 2011), penaeid shrimp (Poulos et al., 2006) and even
vertebrates [salmon (Lovoll et al., 2010)]. The 40 nm viral par-
ticle is composed of a non-segmented dsRNA genome between
4 and 8 kb in length encoding a major capsid protein and a
capsid-RNA-dependent RNA polymerase (RDRP) fusion pro-
tein, essential for the replication of the dsRNA virus (Figure 2A).

This RDRP has, however, been observed as independent from
the capsid protein (Figure 2B), for example in the myonecrosis
virus infecting penaeid shrimp (Poulos et al., 2006) and the fun-
gal virus, Helminthosporium victorivirus (Huang and Ghabrial,
1996). Some totiviruses have additional proteins encoded in their
RNA genome, such as the antifungal killer toxin that was used to
protect maize against corn smut (Allen et al., 2011). LRV seems
to follow the generic totiviridae conformation described above,
albeit for gene arrangement and sequence variation between
LRV1 and LRV2, described below.

While virus-like particles were described in Leishmania her-
tigi in 1974 (Molyneux, 1974), the first molecular description of
Leishmania RNA virus came only in the subsequent decade for the
two L. guyanensis strains: MHOM/SR/81/CUMC1A (Tarr et al.,
1988; Stuart et al., 1992) and MHOM/BR/75/M4147 (Widmer
et al., 1989) then later in L. braziliensis (Salinas et al., 1996).
The sole reported LRV found outside Viannia was identified in
the L. major strain (MHOM/SU/73/5-ASKH) (Scheffter et al.,
1995). These have been separately categorized as LRV1 and LRV2
in L. (Viannia) and L. major, respectively, due to their signifi-
cant sequence differences. Phylogenetic studies on LRVs showed
that the genetic distances between LRV1 and LRV2 are similar to
those between each parasite strain and that this similarity was
further clustered according to geographical origin of the para-
site (Scheffter et al., 1995; Widmer and Dooley, 1995). Thus,
the viruses were present in Leishmania parasites prior to the
New/Old World divergence and seem to have co-evolved with
their Leishmania host (Scheffter et al., 1995; Widmer and Dooley,
1995). Unlike LRV1 of L. (Viannia), the relationship of LRV2 in
L. major to disease severity or alteration in clinical phenotype has
not yet been explored.

Thus far, no dsRNA viruses have been identified in
Leishmania’s protozoan contemporaries such as Trypanosoma
brucei, T. cruzi or Plasmodium. The most studied members of
the Totiviridae family are the two dsRNA L-A and L-BC viruses
infecting S. cerevisae (Wickner, 1996), where studies focus on

FIGURE 2 | Organization of the Totiviridae genome. (A) Type I represents
the classic capsid-dependent organization with overlapping ORFs, where
a −1 or +1 frameshift (under the control of a pseudoknot structure) allows for

translation of the RDRP fused to the capsid. (B) Type II hosts a
capsid-independent RDRP ORF. ORF, open reading frame; RDRP,
RNA-dependent-RNA-polymerase; IRE, Internal ribosomal entry site.
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their relation to the host and modulation of gene expression. As
determined in S. cerevisae, the plus-ssRNA is synthesized on a
dsRNA template by RDRP. Interestingly, these viral ssRNAs lack
the 5′ cap structure and are not polyadenylated, features essential
for mRNA stability and efficient translation. It has been sug-
gested that this vital 5′ cap could be pirated from host RNA by
a unique mechanism dubbed “cap-snatching”. Here, the 5′ m7Gp
of host mRNA is transferred onto the diphosphorylated 5′ end
of the viral transcripts (Fujimura and Esteban, 2011). The viral
capsid plays a central role in this theft, where a histidine at posi-
tion 154 in the protein has been deemed essential. Further, the
presence of a trench on the capsid’s outer surface [identified
by crystallography (Naitow et al., 2002)] is reminiscent of those
described for yeast guanyltransferases suggesting convergent evo-
lution (Fujimura and Esteban, 2011). Cap-snatching could also be
carried through to fungal totiviruses, as evidenced by some con-
served amino acids in the proposed catalytic cleft (Fujimura and
Esteban, 2011). It is not known whether this type of capping is
also relevant in other totiviruses or if they rather use the “decap-
ping” mechanism previously proposed for yeast L-A viruses (Tang
et al., 2005) where unprotected viral mRNAs are shielded from
host cell exonucleases by allowing translation of the viral ssRNA
through an internal ribosomal entry site (Masison et al., 1995).
Besides mRNA cap-theft, the translational toll of the virus on the
host cell can be extraordinarily taxing. In yeast, viral capsid has
been shown to comprise several percent of total host protein, pro-
ducing at least 1000 particles per cell, each particle consisting of
about 120 capsid proteins (but only 1 or 2 capsid-RDRP fusion
polypeptides).

Translation of viral ssRNA has been best described in yeast.
Here, Totiviridae translation takes place in the host cytoplasm
producing the capsid and in most instances, a capsid-RDRP
fusion polypeptide. This latter protein is obtained through an
inefficient −1 or +1 frameshift, which is under the control of an
RNA pseudoknot structure placed upstream of the capsid gene
stop codon (Figure 2). N-terminal acetylation of the capsid pro-
tein is essential for viral assembly with the capsid being, in turn,
important for the packaging of the RDRP and viral genome into
the particle, whereas the polymerase domain of RDRP is required
for capturing the ssRNA viral molecule (Ribas and Wickner, 1998;
Fujimura and Esteban, 2011). Motifs important for polymerase
function are conserved among the RDRP sequences of differ-
ent members of the Totiviridae (Maga et al., 1995b; Routhier
and Bruenn, 1998), suggesting similar mechanisms for their
transcription.

Similarly to other totiviruses, LRV exists predominantly as a
5.3 kb double-stranded RNA within its capsid, having a plus-
strand mRNA for viral polypeptide synthesis (Weeks et al., 1992).
The L. guyanensis viral particles were demonstrated to have RNA
polymerase activity, essential for the replication of RNA viruses
(Widmer et al., 1990). Comparison of the two genomes revealed
a consensus nucleotide sequence of 5283 base pairs with an over-
all 76% sequence identity (Scheffter et al., 1994). Each guyanensis
virus was given a different designation, namely LRV1-1 (for the
virus of the L. guyanensis CUMC-1) and LRV1-4 (L. guyanensis
M4147) although a revision of this nomenclature is currently in
preparation. Further analysis of LRV1 sequences identified 3 open

reading frames (ORFs) on the plus-strand of LRV1-1 while 4
ORFs were identified in LRV1-4. In both cases, ORF2 and ORF3
are known to encode the major viral proteins of the capsid and
capsid-RDRP. Similar to other totiviruses, this RDRP is formed
as a fusion protein by a +1 ribosomal frameshift (Maga et al.,
1995a; Lee et al., 1996; Ro et al., 1997b; Kim et al., 2005). The pre-
dicted protein sequences of the other ORFs have, so far, shown
no significant homology with known proteins or any evidence
of encoding polypeptides (Stuart et al., 1992; Scheffter et al.,
1994). In the case of LRV-2 (the exceptional LRV occurrence
in “Old world” leishmanial parasites), the site encoding RDRP
(ORF3) is predicted not to be overlapping that of the capsid
(ORF2) but is rather separated by a single codon and therefore
could be encoded in an independent ORF. Here, translation of
the RDRP gene in LRV-2 could be driven by the presence of an
additional internal ribosomal entry site upstream of ORF3 or via
the action of a pseudoknot structure participating in ribosomal
“hopping,” as proposed by Scheffter (Scheffter et al., 1995). These
latter mechanisms could be relevant even for those LRV genomes,
which do have overlapping ORFs, but the extent to which these
are functioning have not yet been resolved. Alternatively, we
could postulate that RDRP is synthesized from a trans-spliced
mRNA, as done for mRNAs in trypanosomatids. However, such
a trans-splicing mechanism would generate mRNAs of smaller
sizes (not observed thus far) and would hinder the production
of capsid-RDRP fusion proteins.

The fact that, in Leishmania, mRNAs are matured by the
addition of m7GpppX through trans-splicing of a capped
39-nucleotide mini-exon sequence, suggests that translation of
parasitic (non-viral) ssRNA could rely on internal ribosomal
entry (Zamora et al., 2000). Interestingly, an internal ribosomal
entry site has been mapped in the LRV-1 genome and would
potentially allow for the translation of uncapped viral ssRNA
(Maga et al., 1995b). The occurrence of cap-snatching, its con-
tribution to viral plus-strand stability and quantitative effects on
translation remain to be determined.

THE TOLL OF LRV INFECTION: FROM PARASITE FITNESS TO HUMAN
DISEASE
In pathogenic microbes, signs of totivirus infection could be dis-
played as alterations to fitness and virulence. For example, viral
presence in yeast and fungal species (Wickner, 1996; Schmitt and
Breinig, 2006) offers a survival advantage through the expres-
sion of a toxin that kills their uninfected peers. Contrarily, viral
infection of certain fungi (Beauveria bassiana and Bostrytis cinera)
seems to reduce their virulence and thus their efficacy in the bio-
control of agricultural pests (Castro et al., 2003; Dalzoto et al.,
2006). More commonly, however, totiviral infections do not show
significant phenotypic alterations or pathology. This, along with
their widespread distribution in protists, plants, arthropods, and
possibly fish suggests that Totiviruses could be more abundant
than estimated. Given the increasing number of metagenomic
and “pathogen discovery” projects, we may soon be able to bet-
ter estimate the prevalence of Totiviridae and thus determine its
toll on host evolution.

Thus far, only few studies have reported on the impact of
Totiviridae on overall mRNA turnover and protein expression in
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the host cell. In T. vaginalis, the presence of a dsRNA virus causes
significant differences at the protein level between infected and
non-infected varieties, including quantitative and qualitative dif-
ferences in cysteine proteinases known to modulate T. vaginalis
pathogenesis (Provenzano et al., 1997). Most provocative and
still to be confirmed is the up-regulation in synthesis and sur-
face expression of the immunogen P270 (Khoshnan et al., 1994),
which may impact pathogenesis in the human. Other members of
the Totiviridae family have been described as directly pathogenic.
The myonecrosis virus, for example, was shown to cause cell death
in the skeletal muscle of the Pacific white shrimp (Lightner et al.,
2006; Poulos et al., 2006) while a new member of the Totiviridae
family has been implicated in Atlantic salmon cardiomyopathy
syndrome (Lovoll et al., 2010). This latter virus was classified
through amino acid sequence alignment of capsid-RDRP pro-
teins, showing the closest match with the Giardia lamblia virus
and stands as the first example of a totivirus directly infecting a
member of the metazoa (Lovoll et al., 2010).

As already introduced in this review, a particularly interesting
relationship exists between the dsRNA virus of Leishmania par-
asites and the human host, having important consequences on
the clinical outcome of leishmaniasis. LRVs have been detected
in both active and healing lesions or scars, confirming LRV pres-
ence in field isolates (Cadd et al., 1993; Salinas et al., 1996; Saiz
et al., 1998; Ogg et al., 2003) although the their prevalence and
clinical significance is not yet known. In Leishmania, the role of
LRV on parasite metabolism and gene expression has not been
studied in detail and there is no information on why some para-
site strains are able to maintain LRV and others not. While RNAi
may serve to cull the viral herd in Leishmania (thereby allowing
their persistence through Malthusian fitness), a range of enzymes
and proteases potentially able to aid viral replication can also be
found in Leishmania parasites. A specific cysteine protease (possi-
bly a homolog of LmjF08.1040 according to our database search)
has been implicated in the processing of the viral capsid-RDRP
precursor (Carrion et al., 2003). On the other hand, the LRV cap-
sid protein possesses an endoribonuclease that cleaves uncapped,
non-polyadenylated, plus-strand, viral mRNA at a single site in
the 5′-untranslated region, which was proposed to also cleave
decapped, non-polyadenylated mRNAs belonging to the parasite
(MacBeth and Patterson, 1995, 1998; Ro et al., 2004).

While molecular studies on LRV continued more or less con-
stantly since its description, the interest in its functional and
clinical role remained low. Several groups speculated an influ-
ence of LRV presence on parasite virulence, but over 10 years
passed with no major studies on the biological impact of LRV1 on
Leishmania parasites and no efforts to analyze isogenic or clonal
lines at a protein level. An interest in LRV as a determinant of vir-
ulence resurfaced only in 2011 through the use of L. guyanensis
clones isolated from human patients (Ives et al., 2011). The iso-
lates were previously classified by differing metastatic proclivities,
ranging from highly metastatic (M+) to non-metastatic (M−)
as seen in the golden hamster model (Martinez et al., 1991). In
this study, they compared soluble proteomes from promastigotes
and revealed that M+ and M− clones express distinct acidic and
neutral isoforms of cytosolic tryparedoxin peroxidase (cTXNPx).
This differential expression was conserved in L. (Viannia) isolates

from cutaneous (M−) vs. mucosal (V+) lesions and may relate
to the mechanisms by which the activity of cTXNPx is modulated
and/or the gene product(s) are post-translationally modified. The
metabolic role of cTXNPx in oxidative stress reiterates the impor-
tance of antioxidant defense in the development of MCL and
further endorses the cTXNPx gene as a unique factor underly-
ing the development of metastatic infection. Further differences
in cTXNPx activity were viewed under oxidative stress and dur-
ing infection. Upon H2O2 treatment or heat shock, cTXPNx is
mostly detected in a dimerised form in M+ L. guyanensis and
L. panamensis strains, while it is mostly undimerized in M− par-
asites. These data provide evidence that protection to the hostile,
oxidative environment encountered in the host cell by Leishmania
promastigotes could be linked to cTXPNx conformation and
may be relevant to intracellular parasite survival and persistence,
which are prerequisites for the development of metastatic disease
(Acestor et al., 2006; Walker et al., 2006). Whether survival advan-
tages of metastatic Leishmania in stressful situations (Figure 3)
are due to a direct action of LRV on parasite metabolism or indi-
rectly by an action via the host innate immune response merits
further investigation.

MAINTENANCE OF LRV INFECTION
It is unknown how LRV1 is maintained and transmitted in the
L. (Viannia) subgenus. Extracellular transmission of Totiviridae
is rare, albeit documented for the G. lamblia virus, which can
infect virus-free hosts (Ro et al., 1997a). Within the Totiviridae
family, viral spread is either vertical (from mother to daughter)
or horizontal [by cell fusion during mating and hyphal anasto-
mosis (Dalzoto et al., 2006)]. Infection of virus-free Leishmania
parasites has failed or lasted only transiently (Armstrong et al.,
1993), a fate similarly encountered by workers studying other
Totiviruses. Thus, extracellular transfer of the dsRNA virus is
not likely to occur in Leishmania. In fungi, transmission take
places during genetic exchange and may apply to leishmania
(Ravel et al., 1998; Nolder et al., 2007; Odiwuor et al., 2011). It is
only recently that exchange was experimentally demonstrated in
L. major via a sexual cycle in the sand fly stage (Akopyants et al.,
2009). However, unlike yeast and fungi, this form of mating (and
thus viral exchange) is highly infrequent in Leishmania parasites,
perhaps explaining the low prevalence of LRV across the genus.

Besides a single report on the generation of LRV- parasites
from an LRV+ parent (Ro et al., 1997a), a stable LRV infec-
tion into naïve parasites has not yet been demonstrated. This
lone observation has proven difficult to reproduce in our labo-
ratories, and may be the result of a fortuitous event reflecting
natural variation of LRV virus levels as well as its loss (Ives
et al., 2011). Nonetheless, these isogenic LRV+ and LRV− strains
have since been used to study the role of RNAi machinery (Lye
et al., 2010) as well as that of LRV in disease outcome (Ives
et al., 2011; Ronet et al., 2011). Likewise, there has been no
reported success in the development an infectious system with
which to stably reintroduce LRV into LRV-deficient lines. It is
possible that the RNAi machinery itself is the obstacle imped-
ing viral introduction, as subgenus Viannia parasites (but not
“higher” Leishmania) possess a potent RNAi pathway (Lye et al.,
2010). A recent study with the yeast L-A virus suggested that
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FIGURE 3 | Summary of possible survival advantages in Leishmania (Viannia) parasites associated with LRV infection. Despite the metabolic and
translational toll on the host, LRV infection is associated with some benefits in survival advantages for its host parasite.

reintroduction of an active RNAi pathway in this species was
incompatible with maintenance of the dsRNA virus (Drinnenberg
et al., 2011) and correspondingly, the absence of this pathway
in S. cerevisae could explain why they carry such taxing quan-
tities of virus. The interplay between dsRNA viruses and RNAi
has been suggested as a force contributing to the loss of RNAi
in both Leishmania and S. cerevisae (Beverley, 2003; Robinson
and Beverley, 2003; Drinnenberg et al., 2011). More research is
needed to assess the toll of LRV presence on parasite pathogenic-
ity and what benefits may be gained by the maintenance of such
an infection.

IMMUNE RESPONSE IN MCL PATIENTS
THE Th1/Th2 DOGMA
In animal models of cutaneous leishmaniasis caused by L. major,
the immunological dogma correlates resistance to disease with
the development of a CD4+ Th1 response, and susceptibility
with a CD4+ Th2 response (Figure 4A). Th1 cells are character-
ized by the production of IFN-γ and lymphotoxin whereas Th2
cells classically produce IL-4, IL-5, and IL-13. In humans and in
cutaneous leishmaniasis caused by species other than L. major,
although the protective parameters are similar, the response is
not as polarized as reported in mouse models. Here, the response
more graded and heterogeneous, albeit still harboring a pre-
dominant CD4+ Th1 type response upon healing (either after
treatment or spontaneously) and having a Th2 cytokine pro-
file of IL-4 and IL-13 in non-healing phenotypes. Protection
against L. major has been correlated to early IL-12 production
by dendritic cells and macrophages, which in turn induces IFN-γ
production by Natural Killer (NK) cells and at a later point, by

Th1 cells. However, the levels of IFN-γ do not always correlate
with resistance, as similar levels of this cytokine were observed
following leishmanization, independently of lesion development.
Tumor necrosis factor alpha (TNF-α) and IFN-γ act synergis-
tically to induce nitric oxide synthase (iNOS) in macrophages.
This enzyme catalyzes the synthesis of citrulline and nitric oxide
(NO) from arginine leading to the killing of intracellular amastig-
ote parasites. Arginine, however, is also the substrate of arginase,
producing the polyamines necessary for parasite growth and
may even be used by the parasite in immune evasion [for
a review on L-arginine metabolism and Leishmania infection
see Wanasen and Soong (2008)]. For example, it was shown
that Leishmania arginase could subvert iNOS-dependent killing
by reducing macrophage L-arginine (Gaur et al., 2007). The
Th1/Th2 paradigm further disregards the influence and inter-
action of other, more recently described, T-cell subsets, such as
Th17, vilified as the architect of chronic destructive inflammation
such as that seen in metastatic leishmaniasis, but nonetheless, has
stood as the most reliable guide in the prediction of parasitotoxic
immune responses.

Challenging the dogma is the response seen in MCL, where
high levels of Th1 pro-inflammatory cytokines (TNF-α and
IFN-γ) are associated with T cell hyperactivity and a worsen-
ing of the disease (Carvalho et al., 1985; Silveira et al., 2009).
Furthermore, patients who are refractory to treatment and
demonstrate an inability for their cytokine profile to switch from
a mixed Th1/Th2 to a predominantly Th1 type (Pirmez et al.,
1993; Diaz et al., 2002), still have elevated levels of TNF-α in their
lesions. A common immunological trait in MCL is a decreased
response to Th1-suppressing cytokines (IL-10 and TGF-β)
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FIGURE 4 | Immunological Th1/Th2 dogma in leishmaniasis.

(A) Cutaneous leishmaniasis (CL) shows a simple, graded bipolar
phenotypic range while (B) metastatic/mucocutaneous leishmaniasis
(MCL) shows its third phenotype in a Th1 extreme. NO, nitric oxide.

(Bacellar et al., 2002). Thus, while in CL, tipping the Th1/Th2
balance in either direction results in a simple, graded, bipolar
healing vs. non-healing phenotype (Figure 4A), MCL displays its
third phenotype as a deleterious pro-inflammatory Th1 extreme
(Figure 4B). This response is often not only “extreme” in its quan-
tity of inflammatory mediators, but also in its persistence over
time. In this archetypal MCL, increased levels of TNF-α, CXCL10,
and CCL4 within a mixed intra-lesional Th1/Th2 response,
results in an emphasized cytotoxic T cell activity, which may
underlie the localized tissue damage and development secondary
lesions that characterize the pathology of MCL (Pirmez et al.,
1993; Faria et al., 2005; Gaze et al., 2006; Vargas-Inchaustegui
et al., 2010). What pushes the host immune system into this
deleterious Th1 extreme may be related to either a genetic hyper-
activity within the host or, indeed, the presence of a potent innate
immunogen in the parasite, such as LRV1 dsRNA.

The cytokine triggers detonating infectious metastasis might
also be related to a loss of control. Indeed, as mentioned above,
MCL lesions often have diminished expression of IL-10R, ren-
dering them insensitive to its anti-inflammatory role that usually
works to maintain an appropriate response by dampening the
torrent of stimulatory signals in the lesion environment. Type I
IFNs work in a similar manner, down-regulating IFNγ-R on the
surface of macrophages and thus rendering these cells insensi-
tive to intracellular pathogen killing via reactive nitrogen species
(Rayamajhi et al., 2010). Another possible trigger may be an early
peak of IFN- β. Early IFN-β in models of metastatic leishmaniasis
has been reported to chronically modulate the immune response
and parasite killing, favoring parasite survival and infectious

dissemination to different organs [as was shown for the dissemi-
nation of L. braziliensis in TNF-α−/− mice (Rocha et al., 2007)].
Indeed, mice deficient for the IFN-β receptor (IFNAR) were pro-
tected from leishmaniasis, presenting with smaller lesions and
reduced antigen-specific and Th1 immune responses after infec-
tion with L. amazonensis (Xin et al., 2010). In addition, increased
and sustained neutrophil recruitment in IFNAR−/− mice partic-
ipate to boost parasite killing. Consequently, type I interferons
and molecules of its signaling pathway may emerge as therapeutic
targets in infections with species of New World Leishmania.

INNATE IMMUNITY TO Totiviridae: TLRs, RLRs AND NLRs
The innate immune response to Leishmania parasites has been the
topic of recent reviews, which summarize TLRs (Liese et al., 2008;
Faria et al., 2012; Singh et al., 2012). In the case of the L. (Viannia)
subgenus, this has been exemplified for TLR2 in L. panamensis
and L. amazonensis (Gallego et al., 2011; Vivarini Ade et al.,
2011). Outside our recent description in Leishmania guyanensis,
viral endosymbionts as innate immunogens have not yet been
described. The immunogenicity of their molecular components
could reveal many potential pathways to influencing the human
immune response. The nucleic make-up of Totiviridae (dsRNA)
is sensitively recognized by a variety of pattern-recognition recep-
tors in immune cells. In our report, LRV recognition occurred
through the TLR3 pathway. TLR3, is well-known to recognize
dsRNA, producing an IFN-β mediated anti-viral response, which
we proposed as underlying the exacerbated disease phenotype.
Indeed, TLR3−/− mice showed no LRV-mediated increase in
destructive inflammation. Interestingly, its ssRNA-recognizing
sister receptor, TLR7, is also stimulated by LRV components
(as seen by a slight up-regulation of pro-inflammatory cytokines
in in vitro macrophages) but did not extend to a clinical role in the
in vivo mouse model (Ives et al., 2011; Ronet et al., 2011). The role
of the last endosomal TLR recognizing DNA (TLR9) has not yet
been reported on. It should be pointed out that dsRNA can also
be detected by a variety of non-TLR pathways. For example, Rig-
Like-Receptors (RLRs) are stimulated through binding either the
5′ RNA triphosphate (RIG-1) or whole dsRNA such as poly I:C
(MDA-5) and both converge to mediate IFN-β dependent inflam-
mation. Further, this nucleic acid is also known to stimulate
the Nod-Like-Receptors (NLRs) through an unknown mecha-
nism, sparking inflammasome activity and thus may be another
mechanism of immune disruption and perhaps even local tissue
damage. Whether or to what extent these RLR and NLR pathways
are involved in metastatic leishmaniasis is still unknown. These
innate pathways peak our interest in the primary host-parasite
encounters and we predict that pattern recognition in epithelial
and neutrophil cells will attract particular attention in the coming
years. This potential for immunogenicity amongst totiviruses, is
not only important for the disease pathogenesis of their pathogen
hosts, but also serves to single-out these pathogen symbionts as
unique molecular targets for use in diagnostic and therapeutic
strategies.

THE OXIDATIVE RESPONSE IN MCL
Despite the similarity between LRVs in the L. (Viannia) subgenus,
there are still major variations in metastatic phenotype amongst
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infections from different LRV+ parasite isolates. It is possible
that differences in sensitivity to oxidative stress could moti-
vate these deviations, prolonging parasite survival or triggering
the latency, which underlies many recurrent infections. Several
oxidative mediators could participate in Leishmania killing such
as NO (produced by iNOS from L-arginine), H2O2 (detoxified
in mammalian cells by catalase or glutathione peroxidase) and
cytoplasmic superoxide as well as its byproduct, peroxinitrite,
[generated mainly by NADPH oxidase at levels controlled by
cytoplasmic superoxide dismutase (SOD1)]. Even though contra-
dictory results have been reported on the roles of NO, ROI (Rocha
et al., 2007; Khouri et al., 2009), and the regulation of arginase
(Muleme et al., 2009), it is generally accepted that they are key
mechanisms in the elimination of leishmanial infection. The same
view is held for LRV-infected parasite species such as L. guyanen-
sis, albeit that the role of NADPH oxidase is still matter of debate
(Rocha et al., 2007). Oxidative evasion could certainly be achieved
through parasitic manipulation of arginase I, a key enzyme in the
production of urea (instead of parasitotoxic NO) from arginine.
This enzyme is thought to be antagonized by IFN-γ (Menzies
et al., 2010) and under control of Th2 cytokines (IL-4, IL-10,
and IL-13) (Modolell et al., 1995). This latter regulatory mech-
anism has since been challenged (Muleme et al., 2009). Indeed,
metastatic L. braziliensis species were reported to induce higher
levels of insulin-like growth factor (IGF), a substance known to
up-regulate arginase activity (Vendrame et al., 2010). None of
these reports, however, have addressed the possible influence of
LRV infection on oxidative resistance.

As previously mentioned, the recurring concurrence of resis-
tance to oxidative stress in metastatic parasites seems more than
fortuitous. Interestingly, however, these parasites also seem to
induce a higher level of the oxidative stress to which they are
resistant, begging the question of: which causes which? For exam-
ple, the metastatic L.g. M5313 clones persist in activated bone
marrow derived macrophages (BMMφ) despite an elevated NO
level (Acestor et al., 2006), shown to be the result of an up-
regulation in the iNOS gene (Ives et al., 2011; Ronet et al., 2011).
We reported that L. guyanensis cytoplasmic tryparedoxin peroxi-
dase (cTXPNx) could be involved in this protection, as it seems to
increase resistance to H2O2 in metastatic parasites (Acestor et al.,
2006). Conversely, rapidly healing skin lesions are also associated
with increased iNOS expression as well as IFN-γ, IL-12 and their
signal transducer, STAT4 (Rocha et al., 2007). This latter group
of molecules was described as essential in the healing of L. major
infection, whereas only IFN-γ and STAT4 (but not IL-12) were
essential in the healing of L. mexicana infection (Buxbaum et al.,
2002).

Khouri et al. showed that the elimination of L. braziliensis
could depend on superoxide (and not NO) (Khouri et al., 2009)
and further that exogenously added IFN-β impairs superoxide
killing, favoring parasite survival by up-regulating cytoplasmic
SOD1 (Khouri et al., 2009). These data suggest that production
of IFN-β could increase susceptibility of the host to infection [for
a review see (Trinchieri, 2010)]. It is here where the presence
of an intra-parasitic dsRNA virus becomes especially important
in the disease process. Viral dsRNA is innately recognized by
TLR3, and known to induce the secretion of IFN-β and other

pro-inflammatory mediators. Already, several murine models of
infection have shown that early TLR3-induced IFN-β secretion
does not play its expected anti-viral role but is rather involved
in the eruption of a pathological immune response. Indeed,
TLR3−/− mice, in these infections, have an increased survival
rate when compared to their wild type (Lang et al., 2006; Le
Goffic et al., 2006; Cavassani et al., 2008). Further, TLR3 ligation
up-regulated pro-inflammatory mediators (such as IFN-β, TNF-
α, IL-6, and various chemokines) that promoted organ damage
with a high dependency on type I IFNs (specifically IFN-β),
CD8+ cytotoxic T cell and NK cell activity (Lang et al., 2006;
Le Goffic et al., 2006; Cavassani et al., 2008). Further evidence of
the destructive influence of type I IFNs has been observed when
blocking these cytokines in vivo (Sakaguchi et al., 2003; O’Connell
et al., 2004; Lang et al., 2006; Baccala et al., 2007; Rayamajhi et al.,
2010). These studies also demonstrate that type I IFNs modulate
the Th1/Th2 polarization of the immune response via the inhi-
bition IL-12 expression, impairing DC maturation, decreasing T
cell IFN-γ production and down-regulating IFNγ-R on myeloid
cells (O’Connell et al., 2004; Lang et al., 2006; Baccala et al., 2007;
Cavassani et al., 2008). The importance of oxidative stress in con-
trolling L. (Viannia) parasite load and its immune response is
evidently not understood and studies have yet to account for the
impact of Leishmania dsRNA virus on NO and superoxide level.

EXPERIMENTAL ANIMAL MODELS OF MCL
The golden hamster is possibly the best animal model in which
to study metastatic leishmaniasis caused by the L. (Viannia)
guyanensis, panamensis, and braziliensis (Sinagra et al., 1997).
It has been extensively used with parasites isolated from sand
flies or human MCL lesions to reproduce the clinical manifesta-
tions of metastatic leishmaniasis (Travi et al., 1988). Differences
in disseminative propensity were found between various species
and individual strains (Martinez et al., 1991). In particular, an
infective strain of L. (Viannia) guyanensis (WHI/BR/78/M5313)
isolated from a sand fly was shown to be highly metastatic. Cloned
lines of this strain, however, also showed a graded metastatic
ability in the hamster. Thus, allowing for the characterization
of highly (M+), moderately and non-metastatic (M−) para-
sites within the same clone. These graded phenotypes remained
stable over several passages (Martinez et al., 2000) and were
caused by varied intensities in inflammatory response (Travi et al.,
1996). A decade later, we acquired these same strains, finding the
LRVhigh/LRVlow parallel to their M+/M− capability (Ives et al.,
2011): the correlation forming the basis of this review. Since then,
a different L. guyanensis strain (M4147) derived from a human
lesion has also shown metastatic ability in the hamster model (Rey
et al., 1990) and we were able to achieve an identical metastatic
relationship between LRV+/LRV− clones.

Although the development of secondary lesions is rarely seen
in murine models of MCL, the LRV-based virulence of these par-
asites seems to be reflected in an increased disease severity at the
primary site of infection (Ives et al., 2011; Ronet et al., 2011).
Other reports have shown varying results: in BALB/c mice, for
example, M4147 L. guyanensis did not induce progressive lesions
(Sousa-Franco et al., 2006) and only very low number of para-
sites could be recovered at the site of infection. In these footpads,
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there was a well-preserved inflammatory cell population and
intact tissue architecture. In the same model, L. panamensis para-
sites behave like most Leishmania species inducing a non-healing
footpad swelling (Rojas et al., 1993; Goto et al., 1995) having
the expected cytokine profile of a “losing battle” in the draining
lymph nodes. Here, an early induction of IFN-γ and minimally
detectable IL-4 at 24 h post infection was followed by a complete
reversal 7 days post infection (Guevara-Mendoza et al., 1997).
Whether these strains were infected by LRV is unknown but thus
far, LRV has not been identified in L. panamensis (although as
noted earlier, this species has been less thoroughly screened).
Regardless, it is likely that the presence of LRV in L. guyanensis
and L. braziliensis strains is only one of the mechanisms con-
tributing to disseminated and metastatic leishmaniasis.

Our study on the TLR-dependent recognition of LRV in the
L. guyanensis M5313 strain was continued in TLR3−/− and
TLR7−/− murine models. As anticipated, the lack of TLR3 sig-
nificantly decreased footpad swelling and diminished parasite
load whereas no distinguishable difference in disease phenotype
was observed in mice infected with M- (LRV1low) parasites or
between WT and TLR7−/− infected mice with either parasite iso-
late. We could conclude that these TLR3-dependent responses
to M+ (LRV1high) parasites resulted in elevated disease severity
in mice and provide evidence that LRV1 within metastasizing
L. guyanensis parasites promotes inflammation, and is impli-
cated in susceptibility to infection. Our mouse work correlates
LRV1 presence in parasites with the hyper-inflammatory immune
responses characteristic of MCL disease. This is the first descrip-
tion that TLRs can contribute to Leishmania susceptibility (and
not resistance). It remains to be determined how representative
the mouse model is of the involvement of LRV in disease pathol-
ogy in humans. Although the current mouse model does not
display all of the hallmarks of MCL, it provides many advantages
over the hamster, specifically in the broader availability of knock-
out varieties and reagents for an immune response that is much
better described.

L. braziliensis has greatly differing phenotypes in either ani-
mal model. In the hamster, it was shown that secondary visceral
lesions could arise from a primary CL and also that CLs could
appear subsequently to primary visceral ones (Almeida et al.,
1996). While infections in BALB/c mice only gave rise to small,
transient footpad lesions (Dekrey et al., 1998; Lima et al., 1999)
and further, require a high dose inoculum (1 × 107) to gen-
erate this weak response. Similarly in an ear dermis model of
L. braziliensis (De Moura et al., 2005) [based on an existing model
in L. major (Belkaid et al., 1998)], lesions were minor and tem-
porary (De Moura et al., 2005), albeit that parasites persisted in
the draining lymph nodes (De Moura et al., 2005; Rocha et al.,
2007). The differences in disease outcome may be formed at
the level of the immune response. IFN-γ produced by CD4+
and CD8+ T cells was shown to be important (Dekrey et al.,
1998; De Souza-Neto et al., 2004; De Moura et al., 2005; Rocha
et al., 2007) concomitant with the expression of a broad spectrum
of chemokines attracting neutrophils, monocytes/macrophages,
NK, CD4+, and CD8+ T cells (De Moura et al., 2005; Teixeira
et al., 2005). It is also interesting to note the Th2 cytokine IL-4 was
only present at low levels during the first 3 weeks of L. braziliensis

infection, becoming undetectable from day 42 post infection
(Dekrey et al., 1998).

The factors underlying the presence or absence of metastatic
lesions in animal models are, as yet, unknown. For the human,
however, it has been suggested that quiescent or slow-growing
parasites could be reactivated and metastasize to mucocutaneous
sites following immuno-suppressive treatment (Motta et al.,
2003) or during in stress situations (Travi et al., 1988, 1996) which
are perhaps not encountered in the laboratory model.

HOST GENETIC FACTORS IN MCL
At the genetic level in humans, alleles encoding TNF-α, TNF-β,
IL-6, CXCR1, and CCL2/MCP1 were associated with an increased
relative risk of MCL (Cabrera et al., 1995; Nashleanas et al.,
1998; Castellucci et al., 2006, 2010; Ramasawmy et al., 2010).
Some examples of polymorphisms identified in patients with
MCL include (1) a homozygous polymorphism in intron 2 of
TNF-β, (2) a single base pair substitution at position -308 in the
promoter for TNF-α, and (3) a single G-to-C base pair substitu-
tion at position -174 in the promoter for IL-6 (Blackwell, 1999;
Sakthianandeswaren et al., 2009). Additionally, in Venezuelan
MCL patients, there is a preferential expression of HLA class II
DQw3 (Lara et al., 1991).

The presence of LRV and its dsRNA acting on TLR3 could shed
light on other possible genetic polymorphisms in the host. The
roles of TLR3 in the metastasis of carcinomas has already been
described, where it was shown to both prevent as well as underlie
metastatic processes and their tropism to nasopharyngeal tissue.
Here, TLR3 activation inhibited metastasis via down-regulation
of the chemokine receptor CXCR4 (Zhang et al., 2009) but has
since been shown to have an opposing role, promoting metas-
tasis (Matijevic and Pavelic, 2011). Similarly, it is also possible
that the effect of LRV can be differentially modulated further
downstream of its TLR3-dependent recognition, for example in
the induction of IFN-β and production of CCL5, CXCL10, IL-6,
and TNF-α. The balance between pro- and anti-inflammatory
cytokines and chemokines can be shifted by polymorphisms in
TLR genes (Kutikhin, 2011), increasing the risk of chronic inflam-
mation and infection. If a predisposition to the disease can be
funneled down to single immune mediators, it may pave the way
for a new, immunomodulatory approach to the treatment and
prevention of metastatic leishmaniasis.

CURRENT THERAPIES
Current therapeutic strategies in leishmaniasis are far from satis-
factory. The growing demand for new anti-leishmanial drugs is
parallel to a spreading drug resistance across the genus as well
as their variable efficacy and toxicity in different patients (Croft
et al., 2006). A major problem exists in the immunocompro-
mised population, often co-infected with HIV and following an
already toxic regimen of hepatically metabolized treatments. The
most popularly used drugs in the management of leishmaniases
are based on the pentavalent antimonials, sodium stibogluconate
(Pentostam), and meglumine antimoniate (Glucantime) (Harder
et al., 2001). Amphotericin B, a polyene antibiotic, has been used
as a second-line treatment for leishmaniasis since the 1960s. It is
proposed to work by encouraging a Th1 immune response and
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inducing cytokines such as TNF-α and IL-1β as well as generating
a parasite-killing respiratory burst (Wolf and Massof, 1990; Vonk
et al., 1998; Cuna et al., 2007).

MCL development is, so far, impossible to predict and
exceedingly difficult to treat; often displaying drug resistance
and predisposing the host to opportunistic infections. Patients
are frequently refractory to antimony treatment and in extreme
cases, a combination of antimony and amphotericin B is required
but even then, treatment failure is observed. Although antimony
resistance has been proposed to cause these relapses, the factors
underlying MCL development and its subsequent treatment fail-
ure are unknown. Sensitivity to antimony treatment might also
depend on intrinsic factors within the infecting L. (Viannia) par-
asites (Arevalo et al., 2007; Souza et al., 2010). Whatever the case
may be, the limited efficacy and major side effects of antimony
treatment expose a clear need for the development of new drugs
specifically designed to treat MCL. These drugs should take into
account the intrinsic variations of the metastatic parasite as well as
the complex inflammatory processes shown to be the root cause
of this outcome.

Indeed, controlling inflammation could be an alternative to
complement conventional drug therapies. Already, interesting
results have been reported for the use of the anti-inflammatory
drug tamoxifen in MCL patients (Miguel et al., 2009). Further,
treatment with the anti-inflammatory TNF-α inhibitor, pentoxy-
phylline in combination with antimony was shown to be effective
in MCL patients unresponsive to antimonial therapy alone (Lessa
et al., 2001). Other immunomodulatory drugs have been since
proposed such as thalidomide (Blackwell, 1999). However, anti-
inflammatory drugs in leishmaniasis should be used with caution,
especially when there is no evidence of hyper-inflammation. This
is because anti-inflammatory or immunosuppressive agents can
result in the reactivation of leishmaniasis as seen in leishma-
nial patients treated with anti-TNF-α for rheumatoid arthritis
(Franklin et al., 2009).

Miltefosine, an oral drug effective against VL has been tested
in MCL. Surprisingly, L. braziliensis parasites were more resis-
tant to miltefosine than L. donovani (Sanchez-Canete et al., 2009).
This difference could be explained by a reduced transport of the
drug through the miltefosine transport complex (Sanchez-Canete
et al., 2009); a situation illustrating the importance of the intrin-
sic factors of metastatic parasites in determining the efficacy of
drug therapies. Other parasite parameters, which could influence
the efficacy of anti-leishmanial drugs, are the variable levels of
resistance to oxidative stress and strain-specific differences on the
innate immune response. Antimony has been shown to activate
the cell death pathway in several Leishmania species by gener-
ating oxidative stress in the form of H2O2 and NO (Mehta and
Shaha, 2006). It was recently confirmed that cTXPNx (an enzyme
known to detoxify oxidative compounds), plays a crucial role in
protecting L. donovani parasites against H2O2 and also by coun-
teracting antimony drug response (Iyer et al., 2008). Furthermore,
increased resistance to NO in human isolates of L. (Viannia)
can be correlated to larger lesions (Giudice et al., 2007) as well
as underlie the poor responsiveness to antimony therapy (Souza
et al., 2010). Thus, there is a great need to improve upon the
disappointing arsenal of drugs for mucocutaneous leishmaniasis

(MCL), which are currently poorly suited to the widely vari-
able metabolic and immunological abilities of metastatic para-
sites.

CONCLUDING REMARKS
The intracellular parasites of the Leishmania (Viannia) subgenus
harbor a unique risk for infectious metastasis and the develop-
ment of complicated and difficult-to-treat secondary lesions. This
risk was shown to have roots in both intrinsic parasite factors as
well as in the immune response launched by the host, where a
hyper-inflammatory over-reaction destroys local tissue and influ-
ences the efficacy of anti-leishmanial drugs. MCL is a common
outcome of parasite metastasis, forming debilitating secondary
lesions in the mucosa of the mouth and nose where inflam-
mation accounts for much of the morbidity associated with the
disease (Marsden, 1986; Martinez et al., 1991, 1992; Osorio et al.,
1998; Herwaldt, 1999). Although heritable polymorphisms have
been identified in both the MCL host and parasite, the genetic,
and epigenetic factors predisposing an L. (Viannia) infection to
metastatic complications have not yet been investigated in great
detail.

Our recent data has emphasized the role of an intrinsic par-
asite factor in the devolution of disease i.e., Leishmania dsRNA
virus that, when present in L guyanensis, acts as a potent innate
immunogen, redirecting the immune response of the host by
inducing a hyper-inflammatory reaction and possibly triggering
dissemination (Ives et al., 2011; Ronet et al., 2011). Although it is
likely that LRV is not the only factor involved, its presence could
explain differences in the clinical outcomes observed between
Leishmania species and/or strains and holds great potential as a
new target for treatment strategies. Therapeutic possibilities exist
in either pursuing LRV itself (antiviral therapy) or in reversing the
anti-viral immune response it induces. Indeed, drugs countering
the type of hyper-inflammation caused by LRV have been success-
ful in the treatment of MCL. Tamoxifen (Miguel et al., 2009) and
a TNF–α inhibitor, pentoxyphylline (Lessa et al., 2001) for exam-
ple, were used in combination with antimony and were shown to
aid in the resolution of disease. It would be interesting to deter-
mine whether these drugs have an independent or supporting
role to antimony, perhaps only working to create an environment
in which antimony is effective. Refractory and secondary MCL
lesions often display antimony resistance and drugs reverting this
process are obviously much desired.

The possibility that MCL development is caused by a mis-
guided immune response against its viral hyperpathogen provides
a novel means of diagnosing the metastatic risk of leishmaniasis
as well as creating a better understanding of the treatment needed
to cure it. The fact that this risk could be caused by a parasitic
factor (as opposed to a human susceptibility) is not surprising, as
it would follow the many observations that deviations in parasite
phylogeny mirror their clinical ones.

This is the case between evolutionarily distant members (Old
World vs. New World) as well as between different isolates of
the same strain: differences, which are echoed in their immuno-
genicity. Comparing the LRV-mediated process of metastasis
with existing models of parasite dissemination could eluci-
date the mechanisms underlying recurrence and reactivation,
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thus creating a much-needed model system of metastatic
leishmaniasis.

The discovery of LRV as an innate immunogen altering the
course of leishmaniasis should motivate further investigation on
the toll of such viral hyperpathogens on other infections. In the
case of metastatic leishmaniasis, it may provide us with a unique
opportunity to intervene at a clinical level: for the first time,
enabling the diagnosis of metastatic risk and providing a unique
target for future therapeutic approaches.
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