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ABSTRACT: African American (AA) smokers are at a higher risk of developing lung cancer
compared to whites. The variations in the metabolism of nicotine and tobacco-derived
carcinogens in these groups were reported previously with the levels of nicotine metabolites
and carcinogen-derived metabolites measured using targeted approaches. While useful, these
targeted strategies are not able to detect global metabolic changes for use in predicting the
detrimental effects of tobacco use and ultimately lung cancer susceptibility among smokers.
To address this limitation, we have performed global untargeted metabolomics profiling in
urine of AA and white smokers to characterize the pattern of metabolites, identify
differentially regulated pathways, and correlate these profiles with the observed variations in
lung cancer risk between these two populations. Urine samples from AA (n = 30) and white
(n = 30) smokers were used for metabolomics analysis acquired in both positive and negative
electrospray ionization modes. LC-MS data were uploaded onto the cloud-based XCMS
online (http://xcmsonline.scripps.edu) platform for retention time correction, alignment,
feature detection, annotation, statistical analysis, data visualization, and automated systems
biology pathway analysis. The latter identified global differences in the metabolic pathways in the two groups including the
metabolism of carbohydrates, amino acids, nucleotides, fatty acids, and nicotine. Significant differences in the nicotine degradation
pathway (cotinine glucuronidation) in the two groups were observed and confirmed using a targeted LC-MS/MS approach. These
results are consistent with previous studies demonstrating AA smokers with lower glucuronidation capacity compared to whites.
Furthermore, the D-glucuronate degradation pathway was found to be significantly different between the two populations, with lower
amounts of the putative metabolites detected in AA compared to whites. We hypothesize that the differential regulation of the D-
glucuronate degradation pathway is a consequence of the variations in the glucuronidation capacity observed in the two groups.
Other pathways including the metabolism of amino acids, nucleic acids, and fatty acids were also identified, however, the biological
relevance and implications of these differences across ethnic groups need further investigation. Overall, the applied metabolomics
approach revealed global differences in the metabolic networks and endogenous metabolites in AA and whites, which could be used
and validated as a new potential panel of biomarkers that could be used to predict lung cancer susceptibility among smokers in
population-based studies.

■ INTRODUCTION

Tobacco smoking is the main cause of lung cancer-related
mortalities worldwide. Despite the more than 90% lung cancer
incidence associated with this lifestyle habit, only a fraction
(11−24%) of smokers will develop lung cancer in their
lifetime.1−3 This disparity is hypothesized to be due to
interindividual genetics differences, which result in variations
in the uptake and metabolism of nicotine and tobacco-derived
carcinogens leading to differing levels of metabolites in
biological fluids.4−6 Epigenetics, behavioral, and environmental
factors, including diet and lifestyle, may also contribute to the
observed variations in cancer risk and other major causes of
mortality across different ethnic groups.7−10 Specifically, AA
smokers have been shown to be at a higher risk of developing
tobacco-related lung cancer compared to whites.11,12 Thus, the
global analysis of biological networks and their associated

metabolites in populations with differing lung cancer risk as in
African Americans (AA) and whites could identify new
potential biomarkers to predict susceptibility to the detrimen-
tal effects of tobacco use among smokers. Understanding the
differences in the overall metabolic regulation in smokers
across different ethnic groups, not only those of nicotine and
tobacco-specific carcinogen metabolism, is important in
gaining insights into the impact of ethnic and genetic
differences on lung cancer susceptibility, which could be
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used to develop rational strategies for cancer prevention based
on targeted surveillance of high-risk and susceptible
populations.
Numerous studies have shown differences in genetic

backgrounds result in varying capacities to metabolize drugs,
nicotine, and tobacco-specific carcinogens.9,13−18 For instance,
multiethnic studies demonstrated that AA smokers have a
higher risk of developing lung cancer than white smokers due
in part to the differing activities of metabolic enzymes in these
groups.9,11−13,15,17−21 Interindividual genetic differences can
affect nicotine metabolism, which influence smoking behavior,
toxicity, and detoxification capacity and thus ultimately impact
tobacco-derived carcinogen exposure.9 For example, the gene
variants of cytochrome P450 2A6 (CYP2A6) are associated
with decreased risk of tobacco smoking-related lung cancer.9,22

CYP2A6 is the main enzyme responsible for metabolizing
nicotine. Smokers carrying genetic variants of this gene
associated with slower nicotine conversion are more likely to
smoke less and have reduced exposure to tobacco smoke
carcinogens and thus lower risk of developing lung cancer.9

The reduced activity of CYP2A6 enzyme in Japanese
Americans was observed to be associated with lower risk of
developing smoking related-lung cancer in this population
compared to other ethnic groups.8,9,13,14,23 In addition, the
UDP-glucuronosyltransferases (UGT) are another class of
enzymes implicated in ethnic differences in the metabolism
and detoxification of tobacco-related compounds such as
nicotine and tobacco-derived nitrosamines.15,19,24,25 A low
glucuronidation capacity in AA compared to whites was
observed in several multiethnic studies with the mean urinary
cotinine glucuronidation ratio found to be 0.57 in AA over
whites.15,18,19,24 AA have a high prevalence of UGT2B10 splice
variants resulting in lower cotinine glucuronidation.19,26,27

Similarly, the UGT2B10 splice variants commonly found in AA
may increase their exposure to drugs during treatment.26 The
predominance of these gene variants including the UGTs and
CYP2A6 can lead to differences in the metabolism of nicotine
and tobacco-derived carcinogens, which could provide insights
into the variations in risk and susceptibility to developing
smoking-related cancers in these groups.
Mass spectrometry-based metabolomics have emerged as a

powerful tool to investigate global dysregulation of biological
networks resulting from specific exposures.28 As more
advanced bioinformatics and instrument platforms as well as
spectral databases are being developed, its applicability to
address various biologically relevant questions is rapidly
expanding.29−39 For instance, multiple metabolomics platforms
have been applied to probe global changes and patterns in
altered metabolites between smokers and nonsmokers.40−42

Metabolomics workflows have also been used in in vitro and in
vivo models of tobacco-smoke-induced perturbations to
identify tobacco-related biomarkers for lung cancer and other
diseases.43−47 In addition, metabolomics analysis has been
widely used in human studies to identify biomarkers of
smoking habits and assessment of variability in the metabolism
of tobacco-derived compounds to understand their contribu-
tions in cancer development.40−45,48,49 Although relevant
information has been deciphered from these studies, limited
information is available on the global metabolic dysregulation
in populations with differing genetic backgrounds and in
populations from different ethnicities with varying suscepti-
bility to developing lung cancer due to tobacco smoking. To
address this limitation, we have performed global untargeted

metabolomics profiling in urine of AA and white smokers to
characterize the pattern of metabolites, identify potentially
dysregulated pathways, and correlate these profiles with the
observed variations in lung cancer risk between these two
populations. In order to validate the use of these global
profiles, the results were compared to those obtained with well-
established, traditional targeted MS-based analysis of nicotine-
derived metabolites.

■ EXPERIMENTAL PROCEDURES
Subjects. Urine samples from AA (n = 30) and white (n = 30)

smokers were obtained from the study “Ethnic Differences in Tobacco
Carcinogen Metabolism” at the University of Minnesota. This study
was approved by the University of Minnesota Institutional Review
Board: Human Subjects Committee. The detailed 24 h urine sample
collection and study design have been previously described.50 The
mean age of AA smokers was 46 ± 8 years, while 40 ± 12 years for
white smokers. All subjects used in this study were males and were
smokers with smoking frequency of more than 10 cigarettes per day
(CPD). The total nicotine equivalent (TNE), an established exposure
biomarker of cigarette smoke exposure, and 4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanol (NNAL) levels (a biomarker of carcinogen
exposure) were measured for the 60 subjects as previously described
and reported in the Supporting Table 1.19,51

Caution. NNAL and [13C6]-NNAL are carcinogenic and must be
handled with extreme care and proper personal protective equipment
and ventilation.

Chemicals and Reagents. NNAL, [13C6]-NNAL, NNAL-O-
glucuronide, NNAL-N-glucuronide, NNK-N-oxide, and NNAL-N-
oxide were obtained from Toronto Research Chemicals (Ontario,
Canada). Oasis HLB (3 cc) and Oasis MCX (2 mg solid phase
extraction 96-well plates) were purchased from Waters (Milford,
MA). All acids and organic solvents were MS grade.

Sample Preparation. For the untargeted global metabolomics
and targeted metabolite analysis, the same set of samples were used,
that is, the same aliquots of urine from each subject were processed
and analyzed for both the analyses. Urine samples were centrifuged at
14,000 rpm and 4 °C for 10 min to remove particulates and 500 μL
were used for untargeted metabolomics analysis (Figure 1a). The

samples were cleaned up using Oasis HLB (3 cc) (Waters, Milford,
MA). The cartridge was conditioned with 3 mL of methanol and then
with 3 mL of water. The urine samples were loaded into the cartridge
and washed with 3 mL of water. After which, the metabolites were
eluted with 3 mL of methanol, and the fractions were dried in a
refrigerated vacuum centrifuge (T < 10 °C). The fractions were
resuspended in acetonitrile/water (20/80, v/v) and the volume (30

Figure 1. Experimental workflow for global untargeted and targeted
metabolomics analyses of smokers’ urine from two ethnic groups. (a)
Untargeted approach and (b) targeted approach.
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μL) normalized based on creatinine concentration. The creatinine
concentration (mg/mL) was measured using a colorimetric micro-
plate assay (CRE34-K01) obtained from Eagle Bioscience (http://
stores.eaglebio.com/creatinine-microplate-assay-kit). The total nico-
tine equivalents (TNE: nmol/mL, sum of total nicotine, total
cotinine, total 3-hydroxycotinine, and nicotine-N-oxide) were
determined for these samples as previously described (Table S1).19

Sample normalization was performed based on the creatinine
concentration of each urine sample and the TNE to normalize the
levels of specific nicotine metabolites detected in the metabolomics
analysis to account for the differences in tobacco smoke exposure.
Untargeted LC-HRMS-Based Metabolomics Analysis. LC-

HRMS analyses were performed on Agilent 1200 series microflow
HPLC (Agilent Technologies, Santa Clara, CA) coupled to a Bruker
Impact II quadrupole time-of-flight (Q-TOF) mass spectrometer
(Bruker Daltonics, Billerica, MA) in both positive and negative
ionization mode. Reversed-phase chromatography was performed on
a Waters Atlantis T3 column (3 μm, 1.0 × 150 mm) (Waters, Milford,
MA) equipped with a VanGuard precolumn (2.1 × 5 mm).
Separation was performed at room temperature and flow rate of 65
μL min−1 using 0.1% formic acid in water as mobile phase A and 0.1%
formic acid in acetonitrile as mobile phase B. Four μL of the sample
was injected on-column. Gradient elution was carried out starting
with 2% B for the first 5 min and a linear gradient from 2% to 40% B
over 15 min and to 100% B for 7 min followed by a constant 100% B
for 4 min. Finally, a linear gradient from 100% to 2% B over 2 min
was performed, and the column was re-equilibrated at 2% B for
another 6 min. The total run time was 39 min. For the MS analysis,
full scan data acquisition was performed with a mass range of m/z
50−1000 with a mass resolving power (fwhm) of 30,000. The Funnel
1 RF was set to 150 Vpp, Funnel 2 RF to 200 Vpp, Hexapole RF to 50
Vpp, quadrupole ion energy was 4.0 eV, and collision energy was 7.0
eV. For data-dependent MS/MS, the isolation width was ±0.5 Da,
and 3 ions per full scan were subjected to MS/MS, with exclusion of
ions from subsequent analysis for 1 min. Samples were measured in a
randomized manner with pooled QC samples injected after every six
samples. The QC sample was made by pooling 10 random urine
samples from the 60 subjects. A mixture of authentic reference
standards (NNAL, [13C6]-NNAL, NNAL-O-glucuronide, NNAL-N-
glucuronide, NNK-N-oxide, and NNAL-N-oxide) was utilized as
additional QC measure. Internal calibration was performed by
injecting sodium formate around 35 min within each run. After the
samples were analyzed, they were unblinded and classified into two
groups corresponding to AA and whites. LC-HRMS mass spectral
data were uploaded to the cloud-based XCMS online platform
(http://xcmsonline.scripps.edu) for retention time correction, align-
ment, feature detection, annotation, and statistical analysis.52 Feature
detection parameters include 5 ppm mass tolerance, minimum peak
width of 10 s, and maximum peak width of 60 s; obiwarp was used for
retention time correction with profStep set to 1, mzwid of 0.015,
minfrac of 0.5, bw of 5, allowable retention time deviation of 20 s;
unpaired parametric t test (Welch t test) and posthoc analysis for
statistical analysis with a p-value threshold of 0.001 for highly
significant features, fold change >1.5; adducts considered for the
database search include [M + H]+, [M + Na]+, [M + H + Na]2+, [M +
NH3+ H]+, [M − NH3+ H]+, and [M + H − H2O]

+ for ESI (+) mass
spectral data and [M - H]−, [M + Na−2H]− and [M − H2O]

− for ESI
(−) mass spectral data. Isotopes were searched with m/z absolute
error of 0.005 Da, and 5 ppm mass error and the sample biosource
were set to human. Systems biology pathway analysis was performed
to identify differentially regulated pathways in the two groups of
smokers as previously described.54 Putative metabolites were searched
against the METLIN and HMDB databases.36,53 Multivariate
principal component analysis (PCA) was performed in the XCMS
online platform to identify features that show maximum variation in
the two groups.55 Finally, autonomous multimodal pathway analysis
was performed with a p-value set to 0.01 and 5 ppm mass tolerance on
the XCMS online processed data sets (positive and negative modes)
as previously described.56 Metabolomics data have been deposited to
the EMBL-EBI MetaboLights database (DOI: 10.1093/nar/gkz1019,

PMID:31691833) with the identifier MTBLS1705. The complete
dataset can be accessed here: https://www.ebi.ac.uk/metabolights/
MTBLS1705.71

Targeted LC-MS/MS Quantitation of Nicotine Metabolites.
To determine the levels of nicotine metabolites in the urine of the 60
subjects, we performed targeted LC-MS/MS analysis using selected
reaction monitoring (SRM) of free and total cotinine and trans-3-
hydroxycotinine as previously described.19,57 Briefly, the diluted urine
samples (1:10, 10 μL total) from the 60 subjects were combined with
400 μL of 100 mM ammonium acetate, pH 5.0, and methyl-d3
internal standards (1 ng each). The mixture from each sample was
added to paired 96-well plates, one for the analysis of free cotinine
and trans-3-hydroxycotinine and the second for total (free +
glucuronide) cotinine and trans-3-hydroxycotinine (Figure 1b). One
of the plates (plate 2) was incubated overnight at 37 °C with β-
glucuronidase (500 units) (recombinant β-glucuronidase from
overexpressing E. coli BL21). Samples were cleaned up using mixed-
mode cation solid-phase extraction 96-well plates using Oasis MCX
(2 mg solid-phase extraction 96-well plates) (Waters, Milford, MA).
LC-MS/MS analysis was performed on an Agilent 1100 capillary
HPLC system coupled to a Thermo Scientific TSQ Vantage mass
spectrometer in positive electrospray ionization mode (Thermo
Fisher, San Jose, CA). The samples were resuspended in 25 μL of 100
mM ammonium acetate:methanol, and 4 μL was injected on an
Atlantis HILIC column (300 μm × 100 mm) (Waters, Milford, MA).
Cotinine (tR: 5.03 min) and trans-3-hydroxycotinine (tR: 4.29 min)
were eluted with acetonitrile:water:formic acid (95/3.5/1.5). The
flow rate was 20 μL min−1. SRM transitions used were m/z 177.1 →
80.1 (confirmation) and m/z 177.1 → 98.1 (quantitation) for d0-
cotinine; m/z 180.1 → 80.1 (confirmation) and m/z 180.1 → 101.1
(quantitation) for d3-cotinine; m/z 193.1 → 80.1 (confirmation) and
m/z 193.1 → 134.1 (quantitation) for d0-trans-3-hydroxycotinine; m/
z 196.1 → 80.1 (confirmation) and m/z 196.1 → 134.1
(quantitation) for d3-trans-3-hydroxycotinine. Peak areas were
integrated using Xcalibur 3.0 (Thermo Scientific, Sunnyvale, CA)
and the ratio of d0/d3 for each of the metabolites was determined.
Total cotinine (free cotinine + cotinine glucuronide) and total trans-
3-hydroxycotinine (free trans-3-hydroxycotine + trans-3-hydroxycoti-
nine glucuronide) were measured after β-glucuronidase treatment,
while free cotinine and free trans-3-hydroxycotinine glucuronide were
measured without β-glucuronidase treatment. The levels of cotinine
glucuronide and trans-3-hydroxycotinine glucuronide were obtained
by subtraction of the free metabolites from the total metabolites (±β-
glucuronidase). Statistical analysis was performed using SigmaPlot
12.5 (Systat Software, Inc. San Jose, CA). Group comparisons using t
test and Shapiro−Wilk (P < 0.050) for normality test were performed.
Mann−Whitney rank sum test was then performed for data sets that
failed the normality test. A p-value < 0.05 was considered statistically
significant in the group comparisons.

■ RESULTS
To identify variations in biological pathways and their
associated putative metabolites in smokers from two ethnic
groups with differing lung cancer risk, 60 24 h urine samples
(AA = 30 and whites = 30) were used for the LC-HRMS-based
metabolomics analysis acquired in both positive and negative
modes. The subjects were all males and smoking at least 10
cigarettes per day (CPD). The TNE, which is the sum of
smokers’ urinary nicotine, cotinine, 3-hydroxycotinine, their
corresponding glucuronides, plus nicotine N-oxide accounts
for >85% of the nicotine dose consumed and considered as an
excellent biomarker of cigarette smoke exposure, was measured
for these subjects.58,59 The TNE levels for AA ranged from 30
to 159 nmol/mL, while for whites, it ranged from 20 to 173
nmol/mL (Table S1). In addition, the level of urinary NNAL,
a biomarker of tobacco-specific nitrosamine exposure with a
longer half-life compared to TNE, was measured for the 60
subjects. The average concentration of urinary NNAL in AA
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was 218 pg mL−1 (±119) and 224 pg mL−1 (±110) for whites.
Both TNE and urinary NNAL levels showed no significant
differences (p = 0.587) between the two populations,
indicating that the cohort was exposed to similar levels of
tobacco smoke and tobacco-specific carcinogens (Figure S1
and Table S1).
Metabolic Profiles of Smokers’ Urine from AA and

Whites. The XCMS online platform identified features that
are significantly different between the two groups. The
metabolic cloud plot in positive mode showed 114 features
with fold change ≥1.5 and p-value ≤0.001 (Figure 2a).
Likewise, in negative mode, 36 features were detected with fold
change ≥1.5 and p-value ≤0.001 (Figure 2b). Minimal
retention time shifts (<0.6 min in both modes) were observed
in the chromatographic runs of the 60 samples, which indicate
good run-to-run reproducibility (Figure S2). The multivariate
principal component analysis (PCA) in both positive and
negative modes showed modest separation between the two
groups (Figure 2c,d). This modest clustering was expected as
both groups included only smokers, the sample size was
relatively small, and other factors such as diet/lifestyle factors
were not matched. Overall, a robust and reproducible LC-
HRMS-based metabolomics analysis of the urine samples from

AA and whites yielded features or putative metabolites
associated with differentially regulated metabolic pathways,
with the majority of these pathways being down-regulated and
resulting in lower levels of associated metabolites in AA
compared to whites.

Putative Pathway Analysis for Identifying Differ-
entially Regulated Biological Networks. To identify
differences in metabolic pathways in the two groups of
smokers, an automated pathway analysis tool was performed as
previously described.54 Significant and differentially regulated
features identified by XCMS online were mapped onto known
biological pathways, and differentially regulated biological
networks were identified using the Fisher’s exact test based on
the processed accurate mass spectral data.54 The systems
biology results show metabolic pathways differentially
regulated between the two populations in both positive and
negative modes (Table 1). In addition, an autonomous
multimodal pathway analysis was performed using both the
positive and negative mode-acquired and processed data set as
previously described.56 Using this integrated approach,
metabolic pathways involving carbohydrate/sugar metabolism,
amino acids, nucleic acids, fatty acids, and nicotine were
identified (Tables S3 and S4). The nicotine degradation (p-

Figure 2. Metabolic cloud plots showing significantly upregulated features (green circles) and down-regulated features (red circles) between the
two groups in (a) positive mode and (b) negative mode. PCA analysis in both (c) positive mode and (d) negative mode showing modest
separation between the two groups.
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value = 0.0002) and D-glucuronate degradation (p-value =
0.0002) pathways were significantly and differentially regulated
between the two groups with reduced amounts of the putative

metabolites detected in AA compared to whites. The
metabolites implicated in the nicotine degradation pathway
using the multimodal pathway analysis were 3-pyridylacetate,
4-(3-pyridyl)-butanoate, cotinine methonium ion, cotinine
glucuronide, and trans-3-hydroxycotinine glucuronide (Table
2, Table S4, and Figure S6). The metabolites, cotinine
glucuronide, and trans-3-hydroxycotinine glucuronide, were
down-regulated in AA compared to whites (Table 2). To
confirm the results obtained by our untargeted metabolomics
analysis, the levels of cotinine glucuronide and trans-3-
hydroxycotinine glucuronide were quantified by LC-MS/MS
(Table S2).
In addition, the D-glucuronate degradation pathway was the

top pathway identified being differentially regulated in AA in
both positive (p = 1.10 × 10−8) and negative modes (p = 3.60
× 10−3) as well as in the multimodal pathway analysis (p = 2.0
× 10−4) (Table 2 and Table S3). Figure 3 shows the pathway
of the degradation of D-glucuronate in humans including the
enzymes responsible for each step of the process. The
metabolites associated in this pathway are 3-keto-L-gulonate,
aldehydo-D-glucuronate, L-gulonate, and L-xylulose. The levels
of these metabolites were lower in AA compared to whites
(Table 2, Table S4, and Figure S6). Figure 4 shows a
representative EIC, zoomed precursor ion MS spectrum, and
box plot for L-gulonate. Overall, metabolic pathways involving
carbohydrate/sugar metabolism that are differentially regulated
in AA compared to whites were identified.

Targeted LC-MS Analysis of Nicotine Metabolites. To
confirm the results of our metabolomics analysis, in particular
when considering the metabolites implicated in the nicotine
degradation pathway, the levels of cotinine glucuronide and
trans-3-hydroxycotine glucuronide were measured in the same
samples used for the global untargeted metabolomics analysis.
Total cotinine, total trans-3-hydroxycotinine, free cotinine, free
trans-3-hydroxycotinine, cotinine glucuronide, and trans-3-
hydroxycotinine glucuronide were measured in the 60 samples.
Figure 5 shows the levels of nicotine metabolites (cotinine
glucuronide, trans-3-hydroxycotinine glucuronide, free coti-
nine, free trans-3-hydroxycotinine, total cotinine, and total
trans-3-hydroxycotinine) in the urine samples of AA and
whites. Figures S3a,b and S4a,b show representative chromato-

Table 1. Differentially Regulated Metabolic Pathways
Identified in Positive and Negative Modes

pathway

overlapping
putative

metabolites
all

metabolites p-value

(+) Mode
D-glucuronate degradation 4 4 1.10 × 10−8

lysine degradation I
(saccharopine pathway)

3 6 4.20 × 10−8

lactose degradation III 2 2 1.60 × 10−7

D-galactose degradation V
(Leloir pathway)

2 2 1.60 × 10−7

trehalose degradation 2 3 5.20 × 10−7

bupropion degradation 3 4 1.50 × 10−6

sucrose degradation 3 5 4.20 × 10−6

lysine degradation II
(pipecolate pathway)

2 8 5.50 × 10−5

tRNA charging 2 11 4.10 × 10−4

nicotine degradation V 2 18 9.80 × 10−3

(−) Mode
D-glucuronate degradation 4 4 3.60 × 10−3

tryptophan degradation via
tryptamine

4 4 3.60 × 10−3

gluconeogenesis 2 2 3.10 × 10−2

sorbitol degradation I 2 2 3.10 × 10−2

taurine biosynthesis 2 2 3.10 × 10−2

lactose degradation III 2 2 3.10 × 10−2

D-galactose degradation V
(Leloir pathway)

2 2 3.10 × 10−2

trehalose degradation 2 2 3.10 × 10−2

urate biosynthesis/inosine
5-phosphate degradation

2 2 3.10 × 10−2

adenosine nucleotides
degradation

2 2 3.10 × 10−2

glycolysis 2 2 3.10 × 10−2

putrescine degradation III 2 2 3.10 × 10−2

lysine degradation II
(pipecolate pathway)

3 6 4.60 × 10−2

Table 2. Representative Metabolites Associated with the Nicotine Degradation and D-Glucuronate Degradation Pathways in
Multimodal Pathway Analysis

pathway/metabolite METLIN ID dysregulationa fold change p-value m/z tR (min) adduct type

Nicotine Degradation V
3-pyridylacetate NA down 2.1 4.50 × 10−3 121.0279 12.9 [M − NH3 + H]+1

4-(3-pyridyl)-butanoate NA up 1.7 6.60 × 10−3 166.0855 13.7 [M + H]+1

cotinine-gluc NA down 1.5 7.20 × 10−3 373.1022 14.6 [M + Na − 2H]−1

cotinine methonium ion NA down 1.5 5.00 × 10−3 209.1516 18.8 [M + NH3 + H]+1

trans-3-hydroxycotinine-gluc NA down 2.1 6.00 × 10−3 196.0593 12.8 [M + H + Na]+2

Nicotine Degradation IV
3-pyridylacetate NA down 2.1 4.50 × 10−3 121.0279 12.9 [M − NH3 + H]+1

4-(3-pyridyl)-butanoate NA up 1.7 6.60 × 10−3 166.0855 13.7 [M + H]+1

D-Glucuronate Degradation Pathway
L-xylulose 139 down 2.2 3.00 × 10−3 151.0604 9.1 [M + H]+1

L-gulonate 63,144 down 2.4 2.40 × 10−3 197.0652 12.3 [M + H]+1

L-gulonate 63,144 down 3 1.50 × 10−4 195.0503 12.0 [M − H]−1

aldehydo-D-glucuronate NA down 2 1.70 × 10−3 177.0392 13.2 [M − H2O + H]+1

3-keto-L-gulonate 58,394 down 2 1.70 × 10−3 177.0392 13.2 [M − H2O + H]+1

aDysregulation (fold change) relative to whites; NA: not applicable.
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grams of the LC-MS/MS analysis of total cotinine and total
trans-3-hydroxycotinine detected in the urine of a heavy
smoker with their corresponding d3-labeled internal standard.
The levels of cotinine glucuronide are significantly lower (p <
0.001) in AA compared to whites, while the levels of free
cotinine were significantly higher (p = 0.026) in AA compared
to white smokers. These results are consistent with previous
studies where the levels of cotinine glucuronide are lower and
the free cotinine higher in the urine of AA compared to white
smokers.15 The other metabolites did not show any significant
difference in the levels between the two groups.

■ DISCUSSION

The overall goal of this work is to identify differentially
regulated metabolic pathways and their associated metabolites
using global MS-based metabolomics in a cohort with
established differences in the levels of tobacco-related
metabolites previously measured by targeted approaches. The
identification of other pathways and biomarkers that may be
relevant in cancer development may be used and validated as
new potential panel of biomarkers to better understand and
therefore potentially predict cancer susceptibility in smokers in
future population-based studies. Previous studies demonstrated
that AA smokers are at a higher risk of developing lung cancer

Figure 3. D-Glucuronate degradation pathway in Homo sapiens illustrating the different metabolites associated with the pathway (https://biocyc.
org). The metabolites implicated in the pathway are down-regulated in AA compared to whites (https://humancyc.org/HUMAN/NEW-
IMAGE?type=PATHWAY=PWY-5525=3).

Figure 4. Representative (a) extracted ion chromatogram (EIC), (b) zoomed precursor ion full scan MS spectrum in positive mode, and (c) box
plot of the putative metabolite, L-gulonate (fold change = 2.4; p-value = 0.0024).
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compared to whites.11,12 The metabolic pathways of nicotine
and tobacco-specific carcinogens are well studied in these two
groups, providing an ideal cohort to test the use of untargeted
metabolomics methods to uncover other biologically relevant
and novel pathways that are valuable in understanding the
association of genetics, ethnic differences, and environmental
and lifestyle factors such as smoking in disease development.
The use of untargeted mass spectrometry-based metabolomics
has been widely used to identify differentially regulated
biological pathways resulting from tobacco exposure. For
example, metabolomics analyses were used to compare the
global metabolic profiles between smokers and nonsmokers
and current smokers before and after smoking, and using
mentholated cigarettes.40,42−45 These metabolomics investiga-
tions serve as proof-of-principle for using metabolomics to
identify novel tobacco-exposure biomarkers and provide
important information on the dysregulated pathways and
associated metabolites in smokers, which maybe relevant in
cancer development while confirming the ability to detect the
known differences in these groups.45 Hsu et al. reported the
identification of unique metabolites in smokers’ plasma that are
affected by acute smoking including menthol glucuronide, the
reduction of glutamate, oleamide, and 13 glycerophospholi-
pids.45 However, global metabolomics studies comparing the
variations in metabolic pathways in current smokers from
different ethnic groups are limited or non-existent. There are
metabolomics studies comparing the differences between
nonsmokers and smokers of the same ethnic background,
but limited studies on the combined effects of smoking and
race/ethnic group. Furthermore, because these studies have
only used methods focusing on specific pathways related to a
few toxicants, the overall changes in an individual’s metabolic
pathways could not be explored. Here, we present a unique
study that relates global metabolic changes in smokers’ urine

from two populations of different ethnic backgrounds using
untargeted metabolomics to test the possibility of identifying a
panel of biomarkers, including those traditionally measured in
relation to tobacco smoke that may enable identification and
stratification of highly susceptible population to the
detrimental effects of tobacco use.
Metabolic information can be derived from a number of

biological sources such as saliva, urine, and blood. However,
urine provides a non-invasive and accessible biofluid for
longitudinal studies. In addition, urine is a rich source of
cellular metabolites and has been extensively used for
diagnostic and clinical applications. So far, there are about
4500 metabolites detected in urine associated with approx-
imately 600 human diseases/conditions such as obesity,
cancer, inflammation, neurodegeneration, infectious disease,
and diet to name a few.60 Therefore, it is an ideal biofluid for
global metabolomics studies as it reflects the overall metabolic
network regulation of an individual resulting from specific and
complex exposures. Using global LC-HRMS-based metabolo-
mics, we have identified differentially regulated biological
pathways and metabolites in urine of AA and white smokers.
One pathway we have identified is the nicotine degradation
pathway, which is different in AA compared to whites. The
metabolites associated with the pathway are down-regulated in
AA compared to whites according to our analysis. We have
confirmed the low cotinine glucuronidation in AA using a
targeted LC-MS/MS approach in the same aliquots of urine
and is consistent with previous multiethnic studies.8,13,15,19 In
addition, we also found that trans-3-hydroxycotinine glucur-
onide is significantly lower in AA compared to whites in our
metabolomics analysis. However, we found no significant
difference in the levels of trans-3-hydroxycotinine glucuronide
in AA using a targeted approach (Figure 5). Previous studies
have shown that trans-3-hydroxycotinine glucuronide is not
different within these groups.22,57 When the levels of cotinine
glucuronide and trans-3-hydroxycotine glucuronide were
adjusted to TNE, only cotinine glucuronide (p = 0.027)
showed significantly lower amounts, while trans-3-hydroxyco-
tinine glucuronide (p = 0.061) was not significant anymore in
the metabolomics analysis. These results are consistent with
our targeted analysis and previous studies and support the
need to normalize the levels of nicotine metabolites to TNE,
rather than to CPD, to account for the differences in the
exposure levels or nicotine dose in smokers.15,22 We have used
the indirect measurement of glucuronide metabolites of
nicotine such as cotinine glucuronide and trans-3-hydoxycoti-
nine glucuronide (β-glucuronidase treatment), as reported
previously by others, to allow appropriate comparison of our
current results with previous studies that used such indirect
approaches.15,57 The targeted analysis of nicotine metabolites
in the two groups confirmed the results of our metabolomics
analysis and therefore provided more confidence in the
identification of the other differentially regulated pathways
even those not directly related to nicotine. The biological
relevance of these pathways, however, is still unknown and
warrants further investigation.
The low levels of cotinine glucuronidation in AA are

associated with a relatively higher frequency of UGT2B10
splice variants in this population.19,26,27 For instance,
UGT2B10 is the enzyme responsible for cotinine glucur-
onidation.19,61 The majority (mean = 78% in two studies) of
the UGT2B10-null individuals were AA in a multi-ethnic study
based on the racial/ethnic-specific frequency of the UGT2B10

Figure 5. Quantitation of nicotine metabolites (ng nmol−1) in the 60
subjects using targeted LC-MS approach.
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splice variant.15 Genetic variations in UGT enzyme activities
are associated with increased risk of developing solid cancers
including colon, GI, lung, liver, oral, orolaryngeal, and prostate,
which indicates that these variants are likely involved in
detoxification of various carcinogens.62 Furthermore, the
UGT2B10 splice variants common in AA have been shown
to greatly increase drug exposure in this population and
therefore should be considered in the treatment regimen.26

In addition to the nicotine degradation pathway/cotinine
glucuronidation, we have identified other pathways differ-
entially regulated in the two groups. The D-glucuronate
degradation pathway was highly and significantly dysregulated
in AA in both positive and negative ESI modes and in the
multimodal pathway analysis. The majority of the metabolites
in the D-glucuronate degradation pathway were down-
regulated in AA. We hypothesize that the altered D-glucuronate
degradation pathway could be influenced by the low
glucuronidation in AA, or it could be due to differentially
regulated carbohydrate metabolic pathways. The upstream
pathways such as the sugar/carbohydrate degradation
influence the level of the metabolites associated with
downstream pathways such as the D-glucuronate degradation
pathway. D-Glucuronic acid is important in cellular processes
including glucuronidation in xenobiotic metabolism and as a
precursor for vitamin C biosynthesis.63,64 These results
demonstrate that even without using the nicotine or tobacco-
specific biomarkers to stratify these two groups with differing
lung cancer risk, the variations in the pattern and profile of
metabolites as a result of differentially regulated biological
networks between AA and whites can still be ascertained. For
instance, excluding the nicotine metabolites in the metab-
olomics analysis, unique patterns of metabolites in smokers
were observed and were used to differentiate this population
from nonsmokers based on the global profiles and patterns of
metabolites implicated in other affected pathways.40 The
differential regulation of the D-glucuronate degradation path-
way is not likely smoke induced as both groups of smokers
showed no significant differences in TNE, an established
biomarker of tobacco smoke exposure. We speculate that
analysis of populations of AA and white nonsmokers or healthy
controls using our metabolomics approach would allow for the
observation of the same metabolic alterations as observed for
smokers, except for the nicotine degradation pathway, which is
specific to tobacco use. Further studies are warranted to
elucidate and understand the consequences of the differentially
regulated D-glucuronate degradation pathway as it relates to
ethnic and genetics differences and potentially to lung cancer
susceptibility among smokers.
Variations in other pathways including the metabolism of

amino acids, nucleic acids, and fatty acids were also identified
(Table 1 and Table S3−S4). The fatty acid biosynthesis
pathway was found to be significantly decreased in AA
compared to whites with putative metabolites, palmitate and
oleate, being lower in AA. In addition, the amino acid
degradation pathways (lysine degradation I and II; saccha-
ropine and pipecolate pathways) were differentially regulated
with lower amounts of putative metabolites in AA compared to
whites. Furthermore, the carbohydrate degradation and
biosynthesis pathways (sucrose degradation, lactose degrada-
tion, D-galactose degradation, trehalose degradation, sorbitol
degradation, myo-inositol de novo biosynthesis, D-myo-inositol
(1,4,5)-trisphosphate biosynthesis, glycogenolysis, UDP-N-
acetyl-D-galactosamine biosynthesis II) were also decreased

in AA compared to whites, with levels of putative metabolites
implicated in the pathways being lower in AA (Table S4).
Because the majority of the putative metabolites associated
with the carbohydrate metabolic pathways are isobaric and
associated with other pathways as well, it is difficult to decipher
the exact nature of the differentially regulated metabolic
pathway(s) without synthetic standards. For example, β-D-
glucose is implicated in multiple pathways including the
sucrose degradation, lactose degradation, trehalose degrada-
tion, glycogenolysis, and UDP-N-acetyl-D-galactosamine bio-
synthesis II (Table S4). Further studies are warranted to
investigate the biological relevance and implications of these
differences between the two groups.
This study has its strengths and limitations. This work, for

the first time, provides a comprehensive and global urinary
metabolome of smokers from two ethnic groups with differing
lung cancer risk. Because of the well-established differences in
the metabolism of a few specific nicotine metabolites and
tobacco-derived carcinogens in AA and whites, we were able to
further confirm these variations in the metabolomics analysis
by using a targeted approach to quantify selected nicotine
metabolites in the same samples. In addition, the multimodal
pathway analysis (positive and negative mode data acquisition
and data processing) identified other potentially relevant and
novel pathways and putative metabolites not related to
smoking, which may still be important in understanding
differences in susceptibility to the detrimental effects of
tobacco use. Although we were able to confirm the levels
and structures of a few nicotine metabolites in the same
samples using a targeted MS-based approach, other significant
and differentially regulated metabolites detected need further
confirmation in the future using synthetic standards. In
addition, highly curated and annotated metabolic pathways
should be developed. For instance, the metabolic pathways of
several tobacco-derived carcinogens such as NNK (4-
(methylnitrosamino)-1-(3-pyridyl)-1-butanone), NNN (N′-
nitrosonornicotine), PAHs (polyaromatic hydrocarbons) are
yet to be integrated into online pathway databases such as
BioCyc (https://biocyc.org). Previous work of our colleagues
and others have comprehensively characterized the metabolism
of these tobacco-derived carcinogens as well as the metabolism
of nicotine in both human and animal models.9,15,19,65−67 The
results from this extensive body of work need to be
incorporated into pathway databases or in-house metabolomics
workflows to enable more comprehensive “tobacco-focused”
metabolomics studies in population-based settings to assess
exposure and effects of tobacco use. Because the metabolomics
analysis used here measures global metabolite profiles and
typically the abundant ones in the sample, trace level
compounds due to carcinogen-specific compounds such as
NNK, NNN, and PAHs could be missed during the analysis.
Furthermore, a minimal cleanup (desalting) step was
performed before the metabolomics analysis to capture most
of the metabolites in urine, resulting however in being less
likely to detect trace level metabolites, which need thorough
sample cleanup. In fact, we have previously developed a
“focused” metabolomics analysis of known and unknown NNK
metabolites in rat urine and the workflow involved extensive
cleanup to detect all known and novel NNK metabolites.65 We
plan to evaluate this “focused” metabolomics workflow in
human smokers’ urine to investigate the NNK metabolite
profiles across ethnic groups.
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Another limitation of the present work is that we only used
male subjects. This gender-specific cohort was used to avoid
confounding factors that might complicate the metabolomics
data analysis. Since previous studies have shown differences in
lung cancer susceptibility between gender, females being at
higher risk than males of the same ethnic group.68,69

Furthermore, the differences in the diet between the two
groups of smokers could also affect the observed variations in
the urinary metabolite profiles. For instance, in a randomized,
controlled, crossover trial on healthy volunteers, taking four
different types of diets, differences in the urinary metabolic
profiles were observed between the four groups.70 While it is
possible that the variations we observed in the untargeted
metabolomics analysis could be an indirect or direct effects of
diet on the overall global urinary metabolome in the two
groups of smokers, we did not detect diet-specific metabolites
such as hippurate (a marker of fruit and vegetable
consumption), (N-acetyl)-S-methyl-L-cysteine-sulfoxide (cru-
ciferous vegetables), dimethylamine and TMAO (fish), and 1-
methylhistidine and 3-methyl- histidine (oily fish and chicken)
or observed differences in the levels of these compounds in
smokers’ urine.70 Future investigation is warranted to evaluate
these metabolomics results in a large cohort of subjects
including females, influence of dietary intake, as well as in
other ethnic groups where disparities in the levels of urinary
metabolites are not consistent with the observed cancer risk for
these populations. Finally, the metabolomics analysis was
performed on a relatively small number of subjects (60 subjects
total; AA, n = 30, and white, n = 30), resulting in reduced
ability to perform any stratification. Nevertheless, the
significant differences in the levels of the metabolites detected
in such a small cohort and the consistency of these findings
with previous studies performed on selected metabolites in
larger cohorts support the robustness of the method and the
need to use this approach on a larger study.

■ CONCLUSIONS

The LC-HRMS-based metabolomics analysis of smokers’ urine
from AA and whites with differing lung cancer risk identified
differentially regulated biological pathways and metabolites,
which may be used and validated in future studies as potential
biomarkers for predicting the detrimental effects of tobacco use
and ultimately contribute in the development of bioanalytical
tools to predict lung cancer susceptibility among smokers in
population-based studies. We have identified differentially
regulated pathways including decreased nicotine degradation,
in particular cotinine glucuronidation in AA, and the D-
glucuronate degradation. Other pathways including the
metabolism of amino acids, nucleic acids, and fatty acids
were also identified. Further studies are warranted to
investigate the biological relevance and implications of these
differences in the metabolic pathway regulations between the
two groups. Finally, our metabolomics analysis provides an
alternative approach of characterizing the global patterns of
metabolites in various ethnic groups where the disparities and
differences in risks are not explained by the metabolites
currently being measured and illustrate the importance of
global profiling of all metabolites to identify other relevant
biomarkers and dysregulated biological networks to ultimately
develop tools to identify susceptible populations to smoking-
related lung cancer.
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