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Abstract: It has been reported that donepezil and rivastigmine, the acetylcholinesterase (AchE)
inhibitors commonly used in the treatment of Alzheimer’s disease (AD), do not only inhibit AChE
but also have antioxidant properties. As oxidative stress is involved in AD pathogenesis, in our study
we attempted to examine the influence of donepezil and rivastigmine on the activity of antioxidant
enzymes and glutathione concentration in macrophages—an important source of reactive oxygen
species and crucial for oxidative stress progression. The macrophages were exposed to sodium
fluoride induced oxidative stress. The antioxidant enzymes activity and concentration of glutathione
were measured spectrophotometrically. The generation of reactive oxygen species was visualized
by confocal microscopy. The results of our study showed that donepezil and rivastigmine had
a stimulating effect on catalase activity. However, when exposed to fluoride-induced oxidative stress,
the drugs reduced the activity of some antioxidant enzymes (Cat, SOD, GR). These observations
suggest that the fluoride-induced oxidative stress may suppress the antioxidant action of AChE
inhibitors. Our results may have significance in the clinical practice of treatment of AD and other
dementia diseases.
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1. Introduction

The brain is particularly sensitive to reactive oxygen species (ROS) as a result of its very intense
metabolism and low regenerative capacity [1] in comparison with other tissues. Despite the low weight
it processes 20% of basal O2 consumption [2], using oxygen for transformations in mitochondria in
order to obtain ATP, necessary to maintain a low gradients of ions or in glucose metabolism to obtain
energy for neurons [2].

It has been shown that oxidative stress is associated with neurodegenerative diseases such as
Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). In addition,
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post mortem examination of patients with these diseases have shown that the regions of the brain
affected by neurodegeneration displayed increased ROS indices [1,3–5].

Participating in the body's response to various pathogenic factors, macrophages play a key role
in inflammation, and constitute the main source of ROS in the human body. Although it has been
previously thought that ROS are mainly produced by resident macrophages in the brain, i.e. microglia,
recent reports also indicate the important role of peripheral cells, especially macrophages, which points
to their significance for the modulation and progression of inflammation [6]. A particularly important
source of ROS is activated macrophages, and their increased production may adversely affect the
pro-oxidant–antioxidant balance [7].

The protection of cells against the effects of excessive oxidation depends on the action of
antioxidant enzymes such as superoxide dismutase (SOD, EC 1.15.1.1.1), superoxide peroxidase
(Gpx, EC 1.11.1.9), superoxide reductase (GR, EC 1.6.4.2) and catalase (CAT, EC 1.11.1.6) [8,9]. Their
neuroprotective action has a proven role in supporting the treatment of neurodegenerative diseases
(including Alzheimer's disease) and slowing down the disease process [10].

SOD catalyzes the dismutation of superoxide to hydrogen peroxide [11]. The resulting hydrogen
peroxide is then decomposed and catalyzed by CAT. H2O2 may also be reduced in a reaction catalyzed
by GPx, a selenoprotein that has the ability to reduce not only hydrogen peroxide, but also other
inorganic and organic peroxides (including lipid peroxides) [12]. The availability of glutathione
in the reduced form (GSH) is essential for hydrogen peroxide decomposition catalyzed by GPx,
associated with with glutathione oxidation (GSSG) occurs and H2O2 reduction [13,14]. In order for
the GPx-catalyzed reaction to run smoothly, it is necessary to reconstruct GSH. This glutathione
reduction reaction is catalyzed by GR, with NADPH serving as the electron donor [13]. GSH not only
acts as a cofactor of the aforementioned enzymes, but also has the ability to interact directly with
ROS [8]. Therefore, the proper functioning of the antioxidant system requires the participation of all
the mentioned antioxidant enzymes and glutathione, and any disturbances in their activity or amount
may cause oxidative stress [8,13,14].

As mentioned earlier, AD is an example of a chronic neurodegenerative disease with progressive
course in which imbalance between ROS formation and elimination is one of the pivotal factors [1,15].
Currently, the symptomatic treatment of AD and different kinds of dementias commonly involves
acetylcholinesterase inhibitors usage [16]. In the USA, cholinesterase inhibitors are the only approved
pharmacological treatment for Alzheimer's disease that have appropriate efficacy [15]. They are
medicaments widely used in the pharmacotherapy AD symptoms, at different stages of advancement.
Their action consists in inhibiting at least one of the enzymes catalyzing the hydrolysis of acetylcholine
(ACh) or butyrylcholine (BuChE). The action of the inhibitors results in an elevation in the quantity
accessible ACh and in enhancement of synaptic transmission [17]. Rivastigmine, donepezil or
galantamine belong to medicaments inhibiting AChE. They are used to treat various dementias
(including AD and vascular dementia) [18,19].

Donepezil is one of the most commonly used medicines to treat dementia. It inhibits AChE
with high selectivity and in a non-competitive manner [16,20], is able to cross the blood–brain
barrier (BBB) [21]. Its long-term usage is possible thanks to good tolerance and slow elimination
from the human body [16]. Donepezil's mechanism of action is reported to be mainly related to
AChE inhibition, but also other properties have been recently mentioned, such as stimulation of the
cholinergic transmission, which protects against inflammation (although not influencing BuChE) [16].
Donepezil-dependent defense of microglia against inflammatory processes was also demonstrated in
models without ACh. That suggests more complicated way of action of this drug [22].

Rivastigmine, a long-acting drug, inhibits BuChE or AChE in a quasi-irreversible and not
competitive way [23]. Rivastigmine is able to penetrate through the brain protecting barrier
(BBB) [16,24]. It induces the inhibition of AChE and BuChE by carbamylation of serine in the catalytic
triad [25]. However, the mechanism of the long-term action of rivastigmine is not entirely clear, for
example the causes of a significant upregulation of AChE expression [26]. There are also reports on
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the anti-inflammatory properties of rivastigmine such as the reduced production of cytokines and
inhibition of encephalitogenic T lymphocyte reactivity [27], with the exact mechanism undefined and
requiring further research, similar to donepezil [16].

Fluoride (F) is an element with proven prooxidative properties and an ability to cross the BBB.
It can induce neuroinflammation and neurodegeneration which may be clinically manifested as
memory, concentration or cognitive disorders [28,29]. The most important toxic effects of F in the
brain include increase in prooxidative processes rate with subsequent damage to neurons, impairment
of signal transmission within synapses, and induction of inflammation [30]. Mentioned ravages
concerning fluoride action may possibly be in relation to nervous tissue degenerative changes reported
in AD [31].

Fluoride exerts the inhibitory influence on various enzymes’ expressions and activities.
Cholinesterases belong to the enzymes with their activities being inhibited after fluoride exposure [32].
The arresting effect of fluoride compounds has been reported for at least for tens of years. In 1985,
Baselt et al. reported decreased cholinesterase activity in postmortem, fluoride preserved blood
samples in comparison to the postmortem blood samples with no fluoride preservation [33]. Currently
many studies are focused on the methane sulfonyl fluoride (MSF) examination, because of its
acetylcholinesterase inhibitory properties in the irreversible manner [34]. MSF attaches the enzyme
(AChE) catalytic site solidly, entirely irreversibly [34] and without any possibility of spontaneous
hydrolysis of the covalent MSF-ACh bond [35] MSF exerts the selective inhibitory properties on brain
AChE [36].

Macrophages obtained after THP-1 monocytes transformation can be recognized as a simplified
investigational simulation to study the effect of rivastigmine as well as donepezil on antioxidant
enzyme activity and GSH concentration in brain microglial cells [37,38]. This is because microglial
dysfunction increases the severity of symptoms and accelerates the progress of age–related
neurodegenerative diseases, such as Alzheimer's disease [39]. THP-1 macrophages may constitute
a good experimental model to study the mechanisms of macrophages in atherosclerosis, and vascular
dementia [40], while the model of the proinflammatory and pro-oxidant effects of F on macrophages
has already been used in our earlier works and in the works of other authors [28,41].

The aim of the recent paper is to determine the effect of donepezil and rivastigmine on the
activity of antioxidative enzymes (SOD, CAT, GPx, GR) and the concentration of GSH in macrophages
generated from the THP-1 cell line monocytes using the model of pro-oxidative effect of fluoride.

2. Materials and Methods

2.1. Reagents

Sigma-Aldrich (Poland) was a supplier of: RPMI-1640 medium, amino acid (glutamine),
antibiotics such as streptomycin or penicillin, phorbol myristate acetate (PMA), sodium fluoride
(NaF), dimethyl sulfoxide (DMSO), rivastigmine and donepezil. Assay kits used for determination of
examined enzymes activities and glutathione quantity were obtained from Cayman Chemical (USA).
Bakerbond extraction columns were obtained from JT Baker (USA). PBS (phosphate buffer saline) was
obtained from PAB Laboratories (Vienna, Austria). Fetal bovine serum (FBS) was purchased from
Gibco Invitrogen (Holland). Small laboratory supplies were bought from Becton-Dickinson (USA),
Sarstedt (Germany) or Applied Biosystems (USA). American Type Culture Collection (USA) provided
monocytes of THP-1 line.

2.2. Cultivation and Treatment of Cells

THP-1 monocytes were grown in the Roswell Park Memorial Institute medium 1640
(Sigma-Aldrich, Poland) enriched with FBS (10%), free of fatty acids (FBS; GIBCO, Holland),
and enriched with antibiotic (100 U/ml of penicillin and 100 mg/ml of streptomycin) (Sigma-Aldrich,
Poland). The cell cultivation was conducted at 37 ◦C in 5% CO2. Viability of the monocytic cells
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implemented in experiments was analyzed with the usage of Trypan blue, Bright-Line Hemacytometer
(purchased from Hausse Scientific, USA) and a microscope (Olympus M021, USA). Monocytes
exhibiting viability higher than 95% were chosen to analyze [42,43]. Cells were subsequently placed
in the six-well cultivation plates and activated into macrophages by adding a 100 nM solution of
PMA to the medium [43]. Monocyte culture with PMA was carried out for 24 h. The adherent
macrophages obtained were washed thrice with PBS (PAB Laboratories, Austria), then cultured for
48 h with donepezil or rivastigmine solutions at specific concentrations and combinations as in Tables 1
and 2. The same experiment was performed in macrophages (THP-1) exposed to sodium fluoride,
which exerts pro-oxidant effects (Table 3). The concentration of NaF was 3 µM per single well.

Table 1. Concentrations of the drugs used in the experiment. The concentrations were based on the
concentrations within the serum of the persons that receive the minimal and maximum therapeutic
doses. Drugs were dissolved in dimethyl sulfoxide (DMSO).

Symbol Drug Concentration (ng/mL)

D1 donepezil 20
D2 donepezil 100
R1 rivastigmine 5
R2 rivastigmine 25

Table 2. Diagram of experiment of macrophages exposed to donepezil and rivastigmine.

Group Procedure Donepezil
Concentration

Rivastigmine
Concentration

Control macrophages cultured with DMSO - -
D1 macrophages cultured with donepezil 20 ng/mL -
D2 macrophages cultured with donepezil 100 ng/mL -
R1 macrophages cultured with rivastigmine - 5 ng/mL
R2 macrophages cultured with rivastigmine - 25 ng/mL

D1R1 macrophages cultured with both
medicaments 20 ng/mL 5 ng/mL

D1R2 macrophages cultured with both
medicaments 20 ng/mL 25 ng/mL

D2R1 macrophages cultured with both
medicaments 100 ng/mL 5 ng/mL

D2R2 macrophages cultured with both
medicaments 100 ng/mL 25 ng/mL

Table 3. Schematic presentation of experiments on macrophages treated with sodium fluoride and the
drugs donepezil and rivastigmine dissolved in DMSO.

Group Procedure NaF
Concentration

Donepezil
Concentration

Rivastigmine
Concentration

Control macrophages cultured with NaF
and DMSO 3 µM - -

D1NaF macrophages cultured with
donepezil and NaF 3 µM 20 ng/mL -

D2NaF macrophages cultured with
donepezil and NaF 3 µM 100 ng/mL -

R1NaF macrophages cultured with
rivastigmine and NaF 3 µM - 5 ng/mL

R2NaF macrophages cultured with
rivastigmine and NaF 3 µM - 25 ng/mL

D1R1NaF macrophages cultured with
donepezil, rivastigmine and NaF 3 µM 20 ng/mL 5 ng/mL

D1R2NaF macrophages cultured with
donepezil, rivastigmine and NaF 3 µM 20 ng/mL 25 ng/mL

D2R1NaF macrophages cultured with
donepezil, rivastigmine and NaF 3 µM 100 ng/mL 5 ng/mL

D2R2NaF macrophages cultured with
donepezil, rivastigmine and NaF 3 µM 100 ng/mL 25 ng/mL
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Table 1 shows the concentrations of particular medicaments used in this study. Selection of the
AChIs concentrations was conducted in relation to the concentrations values reported within the blood
serum of people taking the minimal and the maximal allowed doses [44–49].

The applied model of the effect of NaF on macrophages has been previously described, and the
results showed a pro-oxidant and promoting inflammation action [50–53].

2.3. Enzyme Activity

The following reagent kits were used to determine antioxidant enzyme activity: Superoxide
Dismutase Assay Kit (Cayman Chemical, Ann Arbor, MI, USA), Catalase Assay Kit (Cayman Chemical,
Ann Arbor, MI, USA), Glutathione Peroxidase Assay Kit (Cayman Chemical, Ann Arbor, MI, USA),
Glutathione Reductase Assay Kit (Cayman Chemical, Ann Arbor, MI, USA). The determinations were
made spectrophotometrically in accordance with the protocols provided by the manufacturers.

2.4. Glutathione (GSH) Concentration

A Glutathione Assay Kit (Cayman Chemical, Ann Arbor, MI, USA) was performed to
determine the concentration of the reduced form of glutathione. The determination was made by
spectrophotometric method according to the procedure provided by the supplier.

2.5. Fluorescent Studies

Visualization and Quantitative Estimation of ROS Formation Within the Cells

The imaging of ROS synthesis within the cells was performed with the use of luminescent indicator
2′,7′-dichlorofluorescein diacetate (DCFH-DA) (Sigma-Aldrich, Poland) [54–56]. Macrophages were
stuffed with DCFH-DA (5 µM). After the exposition had been terminated, macrophages were washed
thrice with cultivation medium at ambient temperature. Confocal microscope was used to analyze
the obtained preparations. H2O2-dependent oxidation of DCFH-DA is accompanied by fluorescence
(excitation at 495 nm, emission at 525 nm).

To evaluate the amount of ROS produced in the cytosol, the examined cells underwent
pre-treatment with luminescent marker in the conditions like described in the previous sentence.
DCF-dependent signal and its strength was detected by microplate reader. In the next step the results
were converted in relation to protein amount. MicroBCA assay was performed in order to measure the
sample protein value [57,58].

2.6. Protein Assay

All the above-mentioned results were calculated from the protein content in the samples.
Protein concentration was measured using a MicroBCA Protein Assay Kit (Thermo Scientific, Pierce
Biotechnology, USA) and plate reader (UVM340, ASYS) [59].

2.7. Statistic Evaluation

To analyze the results software from StatSoft (Poland)—Statistica 10 was used. The dependent
variables analysis was conducted with use of the Shapiro–Wilk W-test. In calculations nonparametric
tests were performed. The arithmetical mean ± standard deviation (SD) was performed to express the
results. A p-value ≤ 0.05 was recognized as significant.
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3. Results

3.1. Effect of Donepezil and Rivastigmine on Intracellular ROS Generation in Macrophages

Rivastigmine and Donepezil Inhibited ROS Generation in Macrophages

Microscopic studies showed the same green fluorescence level coming from DCF (thereby ROS
generation in the cytoplasm of macrophages) from donepezil and/or rivastigmine-treated cells
vs control (Figure 1). Calculations concerning the fluorescence exertion demonstrated the lack of
differences in ROS amount within drug-treated macrophages vs control cells (Table 1).

3.2. The Effect of Donepezil and Rivastigmine on Intracellular ROS Generation in Fluoride-Exposed
Macrophages

Prooxidative Fluoride Condition Increased ROS Quantity in Macrophages

Analyzes of microscopic images of macrophages cultured with rivastigmine and/or donepezil
in fluoride-exposed macrophages showed intensified ROS generation (in cytosol) in comparison to
control cells (DCF was the source of green fluorescence) (Figure 1). Increased ROS formation in
macrophages cytoplasm vs control (in all studied conditions) was confirmed after the intensity of
fluorescence evaluation (Table 4).
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Figure 1. Formation of intracellular reactive oxygen species (ROS) imaged by confocal microscopy in
THP-1 macrophages exposed to donepezil and/or rivastigmine; and in cells simultaneously exposed
to fluoride.

Cells were treated with rivastigmine and donepezil or with both medicaments. Final concentration
of donepezil was 20 ng/mL (D1) or 100ng/mL (D2) per single well. Concentration of rivastigmine
in an incubation well was concentration of 5 ng/mL (R1) ml or 25 ng/mL (R2). Concentration
of sodium fluoride was 3 µM in a single well. Culture of macrophages together with NaF and
DMSO served as the control. Exposition of macrophages to medicaments (D, R or DR) lasted 48 h.
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The intracellular generation of ROS was visualized by fluorescent indicator 2′,7′-dichlorofluorescein
diacetate (DCFH-DA). Cells were filled with DCFH-DA used at the concentration of 5 µM. Following
15 min lasting exposure, macrophages were rinsed with use of medium at ambient temperature.
Confocal microscope was used to analyze the obtained microscopic preparations. DCFH-DA
dependent fluorescence (excitation at 495 nm, emission at 525 nm) appears as the result of its
intracellular oxidation by H2O2, the red arrow indicates increased ROS level vs control group. (color
should be used in print)

Table 4. Donepezil (D) and/or rivastigmine (R) influence on intracellular ROS synthesis in macrophages
obtained from the THP-1 monocytic cell line or in macrophages exposed to rivastigmine and/or
donepezil in a model of fluoride-induced oxidation.

Experimental
Conditions

(D) and/or (R) (D) and/or (R) + NaF

DCF Fluorescence
Intensity #

% Decrease/Increase
vs. Control

DCF Fluorescence
Intensity #

% Decrease/Increase
vs. Control

C (n = 6) 39.87 ± 1.51 46.58 ± 1.78
D1 (n = 6) 38.25 ± 1.17 −4.06 52.26 ± 1.96 12.19 *
D2 (n = 6) 38.76 ± 2.76 −2.78 52.45 ± 2.02 12.60 *
R1(n = 6) 39.95 ± 3.43 −0.20 54.67 ± 3.67 17.36 *
R2 (n = 6) 41.13 ± 1.15 3.16 55.32 ± 1.43 18.76 *

D1R1(n = 6) 40.01 ± 1.24 0.35 51.43 ± 2.11 10.41 *
D1R2 (n = 6) 40.02 ± 1.14 0.38 50.55 ± 1.32 9.93 *
D2R1(n = 6) 39.55 ± 1.22 −0.80 52.21 ± 2.67 12.08 *
D2R2 (n = 6) 39.85 ± 2.54 −0.05 50.02 ± 1.54 7.39 *

* p < 0.005, significant difference vs control (Mann–Whitney test). # normalized to total protein levels

Cells were incubated with 5 µM of DCFH-DA. A microplate reader was used to estimate the
intracellularly generated ROS. Fluorescence exertion was evaluated in relation to protein quantity,
performed by Bradford method.

In summary, under fluoride-induced oxidative stress we observed a statistically significant higher
concentration of ROS in the cytoplasm of macrophages incubated with donepezil and rivastigmine at
all tested concentrations and combinations of the drugs in comparison to control.

3.3. Donepezil and Rivastigmine Exerted Influence on Superoxide Dismutase Activity (SOD) in Macrophages

3.3.1. Rivastigmine and Donepezil did not Affect SOD Activity in Macrophages

The addition of donepezil at either 20 ng/mL (D1) or 100 ng/mL (D2) did not affect SOD
activity compared to control. Changes in SOD activity were also not observed in cells cultured with
rivastigmine at either 5 ng/mL (R1) or 25 ng/mL (R2). Combined implementation of the drugs also
did not significantly affect the activity of SOD within the macrophages cultured with any of the
concentrations used (D1R1, D1R2, D2R1, D2R2) (Figure 2A).

In summary, the drugs used in the study (both separately and in combination) had no effect on
the activity of SOD in THP-1 macrophages.

3.3.2. Rivastigmine and Donepezil Used Separately Inhibited SOD Activity in Fluoride-Exposed
Macrophages

It was shown that incubation of fluoride-exposed cells with donepezil at 20 ng/mL (D1) resulted
in a statistically significant reduction in SOD activity compared to control of about 30% (p = 0.05)
(Figure 2B). Cultivation of cells with donepezil (100 ng/mL; D2) did not influence SOD activity when
compared to control (p = 0.07) (Figure 2B).

The use of rivastigmine at 5 ng/mL (R1) did not cause statistically significant changes in SOD
activity compared to control (p = 0.34). However, a significant decrease (by approx. 17%) in enzyme
activity was observed in macrophages incubated with rivastigmine at the higher concentration of
25 ng/mL (R2) compared to the control (p = 0.02) (Figure 2B).
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When fluoride-exposed macrophages were treated with donepezil and rivastigmine together at
concentrations: 20 ng/mL and 5 ng/mL (D1R1), 20 ng/mL and 25 ng/mL (D1R2), 100 ng/mL and
5 ng/mL (D2R1) as well as 100 ng/mL and 25 ng/mL (D2R2), it did not cause significant changes in
SOD activity compared to control (p = 0.7, p = 0.12, p = 0.35 and p = 0.25, respectively) (Figure 2B).

In summary, fluoride-exposed macrophages incubated with donepezil at 20 ng/mL or
rivastigmine at 25 ng/mL showed a statistically significantly decreased SOD activity compared
to control. In the other experimental condition, no statistically significant changes in SOD activity
were observed.
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Figure 2. Influence of donepezil and rivastigmine on superoxide dismutase (SOD) activity in THP-1
macrophages (A) and in fluoride-exposed THP-1 macrophages (B).

Donepezil was used at 20 ng/mL (D1) or 100 ng/mL (D2). Concentrations of rivastigmine were
respectively 5 ng/mL (R1) or 25 ng/mL (R2). DMSO-treated cells served as a control. In a model of
fluoride-induced oxidative stress NaF was implemented at a concentration of 3 µM and macrophages
incubated with NaF and DMSO served as a control. Cells were cultured with acetylcholinesterase
inhibitors for 48 h. After incubation cells were harvested by scraping and SOD activity was estimated
spectrophotometrically using Superoxide Dismutase Assay Kit (Cayman Chemical, USA). Data
represent means ± SD for 6 independent experiments. * p < 0.05, statistically significant differences
versus control using Wilcoxon test.
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3.4. Donepezil and Rivastigmine Modulation of Catalase Activity (CAT) in Macrophages

3.4.1. Rivastigmine as well as Donepezil Used Separately Increased the Activity of CAT
in Macrophages

In cells incubated with donepezil, a statistically significant increase in CAT activity was observed
compared to the control for both concentrations used (respectively: for 20 ng/mL (D1) by about
188% (p = 0.04), for 100 ng/mL (D2) by ca. 70% (p = 0.04)). Similar relationships were observed for
rivastigmine: at 5 ng/mL (R1) an increase of about 136% (p = 0.04) and at 25 ng/mL (R2) by 367%
(p = 0.04) compared to the control (Figure 3A).

Combined use of the drugs at the lower concentrations (D1R1) resulted in a 40% increase in CAT
activity in THP-1 macrophages. However, the difference was not statistically significant (p = 0.2). When
using the other concentrations (D1R2, D2R1, D2R2), no statistically significant changes in CAT activity
were observed relative to the control (Figure 3A).

In conclusion, the use of rivastigmine and donepezil separately at both lower and higher
concentrations resulted in an increase in CAT activity compared to controls. The combined use
of the drugs did not have a statistically significant effect on CAT activity in the macrophages.

3.4.2. Rivastigmine and Donepezil Inhibited CAT Activity in Fluoride-Exposed Macrophages

Fluoride-exposed macrophages showed no statistically significant differences in CAT activity
following the incubation of macrophages with donepezil at 20 ng/mL (D1) (p = 0.07) and 100 ng/mL
(D2) (p = 0.12) (Figure 3B) and using rivastigmine at 5 ng/mL (R1; p = 0.75) and 25 ng/mL (R2; p = 0.12)
compared to the control.

A statistically significant (p = 0.04) decrease in CAT activity of approx. 24% in relation to the control
was observed in macrophages exposed to donepezil and rivastigmine, used together, at concentrations
of 100 ng/mL and 5 ng/mL, (D2R1) (Figure 3B).

The use of donepezil and rivastigmine in the other examined combinations (D1R1, D1R2, D2R2)
did not have a statistically significant effect (each p = 0.12) on CAT activity in fluoride-exposed
macrophages in relation to the control.

In summary, in fluoride-exposed macrophages there was a statistically significant lower CAT
activity compared to controls, when incubated with donepezil at 100 ng/mL together with rivastigmine
at 5 ng/mL. In other cell cultures, i.e. those incubated with: D1, D2, D1R1, D1R2, D2R2, there
was no statistically significant effect of the drugs on CAT activity in fluoride-exposed macrophages
(Figure 3A,B).
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Figure 3. Influence of donepezil and rivastigmine on catalase (CAT) activity in THP-1 macrophages (A)
and in fluoride-exposed THP-1 macrophages (B).

Donepezil was used at 20 ng/mL (D1) or 100 ng/mL (D2). Second medicament-rivastigmine
was added at concentrations: 5 ng/mL (R1) mL or 25 ng/mL (R2). Culture of macrophages together
with DMSO was treated as a control. In a model of fluoride-induced oxidative stress, sodium fluoride
was added (3 µM). As a control cells cultivated with addition of NaF and DMSO were set. Cells
were cultured with acetylcholinesterase inhibitors for 48 h. After incubation cells were harvested by
scraping and CAT activity was estimated spectrophotometrically using a Catalase Assay Kit (Cayman
Chemical, USA). Data show means ± SD for six separate experiments. * p < 0.05, differences being
statistically significant in comparison to control using Wilcoxon test.

3.5. Effect of Donepezil and Rivastigmine on Glutathione Peroxidase (GPx) Activity in Macrophages

3.5.1. Rivastigmine and Donepezil Did Not Affect GPx Activity in Macrophages

Cultivation of the cells with donepezil at 20 ng/mL (D1) or 100 ng/mL (D2), did not result in
statistically significant differences in GPx activity in relation to control (p = 0.07 and p = 0.2, respectively).
Similar non-significant relationships were also observed with rivastigmine at 5 ng/mL (R1; p = 0.07) or
25 ng/mL (R2; p = 0.07) (Figure 4A).

Macrophages exposure to the combined use of therapeutics in the studied systems (D1R1, D1R2,
D2R1, D2R2) also had a statistically insignificant effect on GPx activity in macrophages relative to the
control (Figure 4A).

In summary, the use of acetylcholinesterase inhibitors, donepezil and rivastigmine, did not have
a statistically significant effect on GPx activity in macrophages.
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3.5.2. Rivastigmine and Donepezil Did Not Affect GPx Activity in Fluoride-Exposed Macrophages

In prooxidative condition of sodium fluoride (NaF) on macrophages, it was shown that cells
incubation both in the presence of donepezil at 20 ng/mL (D1) or 100 ng/mL (D2) did not affect GPx
activity relative to the control (p = 0.35) (p = 0.46) (Figure 4B).

Similarly, in macrophages incubated with rivastigmine at both concentrations: R1 and R2 no
statistically significant changes in GPx activity were observed compared to control (p = 0.17 and
p = 0.46).

The combined use of both drugs: donepezil and rivastigmine in the studied systems (D1R1, D1R2,
D2R1, D2R2) did not significantly influence the change in GPx activity as compared to the control
(respectively: p = 0.25, p = 0.12, p = 0.6, p = 0.25) (Figure 4B).

In conclusion, in fluoride-exposed macrophages, the separate and combined use of donepezil and
rivastigmine did not affect GPx activity at any of their concentrations studied.Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  12 of 25 
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Figure 4. Influence of acetylcholinesterase inhibitors donepezil and rivastigmine on glutathione
peroxidase (GPx) activity in THP-1 macrophages (A) and in fluoride-exposed THP-1 macrophages (B).

Donepezil was used at 20 ng/mL (D1) and 100 ng/mL (D2). Concentrations of the rivastigmine
used were respectively: 5 ng/mL (R1) and 25 ng/mL (R2). Control group comprised of DMSO-exposed
macrophages. In a conditions of fluoride prooxidative action NaF was used at 3µM and macrophages
cultivated with both incubated with NaF and DMSO were used as a control. Cells were cultured
with acetylcholinesterase inhibitors for 48h. After incubation cells were harvested by scraping and
GPx activity was estimated spectrophotometrically using Glutathione Peroxidase Assay Kit (Cayman
Chemical, USA). Data describes means ± SD for 6 separately conducted experiments. * p < 0.05 value
represents differences that were significant versus control, estimated by Wilcoxon test.
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3.6. Influence of Donepezil and Rivastigmine on Glutathione Reductase (GR) Activity in Macrophages

3.6.1. Rivastigmine and Donepezil Did Not Affect GR Activity in Macrophages

Incubation of the studied macrophages with donepezil at 20 ng/mL (D1) or100 ng/mL (D2)
did not have a statistically significant effect on GR activity compared to the control (p = 0.68; p = 0.9
appropriately). Similarly, the use of rivastigmine at 5 ng/mL (R1) and 25 ng/mL (R2) did not cause
statistically significant differences in GR activity compared to controls (p = 0.2; p = 0.34 appropriately)
(Figure 5A).

No statistically significant differences in GR activity compared to controls were observed in
macrophages treated with combinations of donepezil and rivastigmine in the combinations tested.

In summary, the use of acetylcholinesterase inhibitors donepezil and rivastigmine both separately
and in combination did not have a statistically significant effect on GR activity in macrophages.

3.6.2. Rivastigmine and Donepezil Decreased GR Activity in Macrophages in Fluoride-Exposed
Macrophages

In fluoride-exposed macrophages, no statistically significant differences in GR activity were
observed compared to controls with donepezil applied at either 20 ng/mL (D1; p = 0.6) and 100 ng/mL
(D2; p = 0.46). Similar relationships were noted for both tested rivastigmine concentrations (R1 and R2)
(Figure 5B).

The exposure of macrophages to fluoride and to the combined drugs donepezil and rivastigmine
at 20 ng/mL and 5 ng/mL respectively (D1R1) also did not have a statistically significant effect on
GR activity compared to controls (p = 0.6) (Figure 5B). However, the use of all other combinations
of donepezil and rivastigmine resulted in a significant reduction in enzyme activity with respect to
control. The D1R2 concentration system caused a reduction of GR activity by approx. 40% compared
to the control (p = 0.02), D2R1 decreased the enzyme activity by ca. 62% (p = 0.04), and the D2R2
system by ca. 52% compared to controls (p = 0.02) (Figure 5B).

In fluoride-exposed macrophages, statistically significantly lower GR activity was observed
compared to the control in the cells incubated together with the studied drugs in the following systems:
donepezil 20 ng/mL and rivastigmine 5 ng/mL (D1R2), donepezil 100 ng/mL and rivastigmine
5 ng/mL (D2R1) and in macrophages cultured with the combination of these two drugs at the
maximum concentrations used (D2R2).



Int. J. Environ. Res. Public Health 2019, 16, 10 14 of 25

Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  13 of 25 

 

In summary, the use of acetylcholinesterase inhibitors donepezil and rivastigmine both 360 
separately and in combination did not have a statistically significant effect on GR activity in 361 
macrophages. 362 

3.6.2. Rivastigmine and Donepezil Decreased GR Activity in Macrophages in Fluoride-Exposed 363 
Macrophages 364 

In fluoride-exposed macrophages, no statistically significant differences in GR activity were 365 
observed compared to controls with donepezil applied at either 20 ng/ml (D1; p = 0.6) and 100 ng/ml 366 
(D2; p = 0.46). Similar relationships were noted for both tested rivastigmine concentrations (R1 and 367 
R2) (Figure 5B). 368 

The exposure of macrophages to fluoride and to the combined drugs donepezil and rivastigmine 369 
at 20 ng/ml and 5 ng/ml respectively (D1R1) also did not have a statistically significant effect on GR 370 
activity compared to controls (p = 0.6) (Fig.5B). However, the use of all other combinations of 371 
donepezil and rivastigmine resulted in a significant reduction in enzyme activity with respect to 372 
control. The D1R2 concentration system caused a reduction of GR activity by approx. 40% compared 373 
to the control (p = 0.02), D2R1 decreased the enzyme activity by ca. 62% (p = 0.04), and the D2R2 374 
system by ca. 52% compared to controls (p = 0.02) (Figure 5B). 375 

In fluoride-exposed macrophages, statistically significantly lower GR activity was observed 376 
compared to the control in the cells incubated together with the studied drugs in the following 377 
systems: donepezil 20 ng/ml and rivastigmine 5 ng/ml (D1R2), donepezil 100 ng/ml and rivastigmine 378 
5 ng/ml (D2R1) and in macrophages cultured with the combination of these two drugs at the 379 
maximum concentrations used (D2R2). 380 

(A) 

(B) 

Figure 5. Influence of acetylcholinesterase inhibitors on glutathione reductase (GR) activity in THP-1 381 
macrophages (A) and fluoride-exposed THP-1 macrophages (B). 382 

Donepezil was used at 20 ng/ml (D1) and 100 ng/ml (D2). Rivastigmine was used at 5 ng/ml (R1) 383 
and 25 ng/ml (R2). Macrophages incubated with DMSO were used as the control. In a model of 384 

0
5

10
15
20
25
30
35
40

control D1 D2 R1 R2 D1R1 D1R2 D2R1 D2R2

G
R 

[n
m

/m
in

/m
g 

of
 p

ro
te

in
]

0

50

100

150

200

250

control D1NaF D2NaF R1NaF R2NaF D1R1NaF D1R2NaF D2R1NaF D2R2NaF

G
R 

[n
m

/m
in

/m
g 

of
 p

ro
te

in
]

* *

*

Figure 5. Influence of acetylcholinesterase inhibitors on glutathione reductase (GR) activity in THP-1
macrophages (A) and fluoride-exposed THP-1 macrophages (B).

Donepezil was used at 20 ng/mL (D1) and 100 ng/mL (D2). Rivastigmine was used at 5 ng/mL
(R1) and 25 ng/mL (R2). Macrophages incubated with DMSO were used as the control. In a model of
fluoride-induced oxidative stress, NaF was used at 3 µM and macrophages incubated with NaF and
DMSO were used as a control. Cells were cultured with acetylcholinesterase inhibitors for 48 h. After
incubation cells were harvested by scraping and GR activity was estimated spectrophotometrically
using a Glutathione Reductase Assay Kit (Cayman Chemical, USA). Data represent means ± SD
for six independent experiments. * p < 0.05, statistically significant differences versus control using
Wilcoxon test.

3.7. Effect of Donepezil and Rivastigmine on the Concentration of the Reduced Form of GSH Glutathione in
Macrophages

3.7.1. Rivastigmine and Donepezil Had No Effect on GSH Concentration in Macrophages

The exposure of THP-1 macrophages to donepezil at 20 ng/mL (D1) and 100 ng/mL (D2) did not
have a statistically significant effect on GSH concentration compared to controls (p = 0.68, p = 0.22).
No statistically significant changes in GSH concentration were also observed in macrophages exposed
to rivastigmine at 5 ng/mL (R1) or 25 ng/mL (R2) compared to controls (p = 0.34, p = 0.34) (Figure 6A).

In the macrophages cultured with a combination of donepezil and rivastigmine at the lower
concentrations (D1R1) did not have a statistically significant effect (p = 0.5) on the concentration of
GSH in cells, as well as the use of other combinations: D1R2 (p = 0.5), D2R1 (p = 0.22), D2R2 (p = 0.68)
(Figure 6A).

In summary, incubation of macrophages with acetylcholinesterase inhibitors used in separation
and in combination (D1R1, D1R2, D2R1, D2R2) did not have a statistically significant effect on the
concentration of GSH in cells.

3.7.2. The Combination of Rivastigmine and Donepezil at the Highest Concentrations Reduced the
Concentration of the Reduced Form of Glutathione (GSH) in Fluoride-Exposed Macrophages

Incubation of fluoride-exposed macrophages with donepezil at 20 ng/mL (D1) and 100 ng/mL
(D2) did not significantly affect the concentration of reduced GSH form compared to the control (p =
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0.9, p = 0.2) (Figure 6B). Exposure to rivastigmine at 5 ng/mL (R1) and 25 ng/mL (R2) also had no
effect on GSH concentration (p = 0.07, p = 0.7) (Figure 6B).

The exposure of macrophages to fluoride and the combinations of donepezil and rivastigmine at
20 ng/mL and 5 ng/mL (D1R1; p = 0.2), 20 ng/mL and 25 ng/mL (D1R2; p = 0.14) and 100 ng/mL
and 5 ng/mL (D2R1; p = 0.07) also did not significantly change the concentration of GSH (Figure 5B).
However, at the highest concentrations of donepezil at 100 ng/mL and rivastigmine at 25 ng/mL
(D2R2) did result in a significant reduction (p = 0.04) in GSH concentration by about 20% compared to
controls (Figure 6B).

In summary, in fluoride-exposed macrophages, only the combined use of the drugs at the highest
concentrations showed a reduction GSH concentration. In the other combinations, there were no
statistically significant changes in GSH concentration compared to control.
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Donepezil was used at 20 ng/ml (D1) and 100 ng/ml (D2). Rivastigmine was used at 5 ng/ml (R1) 423 
and 25 ng/ml (R2). Macrophages incubated with DMSO were used as the control. In a model of 424 
fluoride-induced oxidative stress NaF was used at 3 µM and macrophages incubated with NaF and 425 
DMSO were used as a control. Cells were cultured with acetylcholinesterase inhibitors for 48 h. After 426 
incubation cells were harvested by scraping. GSH concentration was estimated 427 
spectrophotometrically using a Glutathione Assay Kit (Cayman Chemical, USA). Data represent 428 
means ± SD for 6 independent experiments. *p < 0.05, statistically significant differences versus 429 
control using Wilcoxon test. 430 

4. Discussion 431 
Alzheimer's disease (AD) is one of the most common causes of dementia, and 432 

acetylcholinesterase inhibitors (AChE) are the most commonly used drugs to treat this disease. 433 
However, no attempt has been made to explain the effect of two popular AChE inhibitors, 434 
donepezil and rivastigmine, on the activity of antioxidant enzymes in a model using an agent 435 
with a proven pro-oxidant effect. There are only a few studies on the impact of these drugs on 436 
the activity of some antioxidant enzymes [60]. This paper is the first attempt to investigate the 437 
effect of donepezil and rivastigmine used in concentrations corresponding to the initial and 438 
maximum dose of drugs in actual treatment of AD on the activity of antioxidant enzymes and 439 
the concentration of glutathione in a model involving the pro-oxidant and inflammation 440 
stimulating properties of fluoride in macrophages. 441 

In our experiment, AChE inhibitors used as standard in AD therapy showed possible 442 
antioxidant activity in macrophages, inhibiting the formation of ROS, as shown by photos from 443 
a confocal microscope. However, under the strong fluoride-induced oxidative stress, the action 444 
of the drugs was insufficient, as shown by an increased formation of ROS in the cytoplasm of 445 
macrophages, also visible under confocal microscopy. 446 

The observed changes may be attributed to the effect of the studied drugs on the activity of 447 
antioxidant enzymes and the concentration of glutathione, which we attempt to explain below. 448 

4.1. Acetylcholinesterase Inhibitors-Induced Changes in SOD Activity 449 
The results of studies on the activity of SOD in people with AD are ambiguous. There are reports 450 

showing a decrease in SOD activity within the frontal cortex and a slight increase in activity in the 451 
caudate nucleus in AD patients, as well as a lack of changes in the activity of this enzyme in AD 452 
patients [61–63]. Increased activity of the mitochondrial SOD isoform (SOD2) has been reported in 453 
the hippocampus of people diagnosed with AD [64,65]. An increase in SOD2 activity has been 454 
observed in the area that is usually the most degenerated, i.e. CA1 within the hippocampus [64,65]. 455 

0
20
40
60
80

100
120
140
160

control D1NaF D2NaF R1NaF R2NaF D1R1NaF D1R2NaF D2R1NaF D2R2NaF

G
SH

 [μ
m

/m
g 

of
 p

ro
te

in
]

*

Figure 6. Influence of acetylcholinesterase inhibitors donepezil and rivastigmine on reduced
glutathione concentration (GSH) in THP-1 macrophages (A) and fluoride-exposed THP-1 macrophages
(B).

Donepezil was used at 20 ng/mL (D1) and 100 ng/mL (D2). Rivastigmine was used at 5 ng/mL
(R1) and 25 ng/mL (R2). Macrophages incubated with DMSO were used as the control. In a model of
fluoride-induced oxidative stress NaF was used at 3 µM and macrophages incubated with NaF and
DMSO were used as a control. Cells were cultured with acetylcholinesterase inhibitors for 48 h. After
incubation cells were harvested by scraping. GSH concentration was estimated spectrophotometrically
using a Glutathione Assay Kit (Cayman Chemical, USA). Data represent means± SD for 6 independent
experiments. * p < 0.05, statistically significant differences versus control using Wilcoxon test.

4. Discussion

Alzheimer's disease (AD) is one of the most common causes of dementia, and acetylcholinesterase
inhibitors (AChE) are the most commonly used drugs to treat this disease. However, no attempt has
been made to explain the effect of two popular AChE inhibitors, donepezil and rivastigmine, on the
activity of antioxidant enzymes in a model using an agent with a proven pro-oxidant effect. There are
only a few studies on the impact of these drugs on the activity of some antioxidant enzymes [60]. This
paper is the first attempt to investigate the effect of donepezil and rivastigmine used in concentrations



Int. J. Environ. Res. Public Health 2019, 16, 10 16 of 25

corresponding to the initial and maximum dose of drugs in actual treatment of AD on the activity of
antioxidant enzymes and the concentration of glutathione in a model involving the pro-oxidant and
inflammation stimulating properties of fluoride in macrophages.

In our experiment, AChE inhibitors used as standard in AD therapy showed possible antioxidant
activity in macrophages, inhibiting the formation of ROS, as shown by photos from a confocal
microscope. However, under the strong fluoride-induced oxidative stress, the action of the drugs was
insufficient, as shown by an increased formation of ROS in the cytoplasm of macrophages, also visible
under confocal microscopy.

The observed changes may be attributed to the effect of the studied drugs on the activity of
antioxidant enzymes and the concentration of glutathione, which we attempt to explain below.

4.1. Acetylcholinesterase Inhibitors-Induced Changes in SOD Activity

The results of studies on the activity of SOD in people with AD are ambiguous. There are reports
showing a decrease in SOD activity within the frontal cortex and a slight increase in activity in the
caudate nucleus in AD patients, as well as a lack of changes in the activity of this enzyme in AD
patients [61–63]. Increased activity of the mitochondrial SOD isoform (SOD2) has been reported in the
hippocampus of people diagnosed with AD [64,65]. An increase in SOD2 activity has been observed
in the area that is usually the most degenerated, i.e. CA1 within the hippocampus [64,65]. The authors
suggest that the initially increased activity of antioxidant enzymes in some brain regions in people
with AD may be an attempt to compensate for oxidative stress [64,65].

Studies on animals show a significant role of SOD in the pathogenesis of AD. Murakami et
al., in their studies on mice, demonstrated the potential role of SOD1 downregulation in AD. The
researchers drew this conclusion based on cognitive impairment, neuronal inflammation, synaptic
protein loss and Tau phosphorylation at Ser-396, oxidative damage or the modulation of soluble
Aβ-state [66]. The tests were carried out on mice which were administered, among others, donepezil
at a dose of 3mg/kg/month, once a day for 10 days. Administration of donepezil to the mice resulted
in an increase in SOD activity in the hippocampus compared to the mice treated with scopolamine
alone [66].

A slightly different observation was made by Li et al. using also another animal model of
AD (intravenous administration of amyloid beta Aβ1-42 to mice). The animals received donepezil
intravenously at a dose of 0.01 mg/kg per day but with no effect on the activity of SOD either
within the hippocampus or the cerebral cortex [67]. A study conducted on a murine model of AD
(intracerebroventricular injection—i.c.v.), showed the ability of rivastigmine to reduce the process of
lipid peroxidation in the brain [68].

In our study, the use of AChE inhibitors donepezil and rivastigmine did not significantly affect
the activity of SOD. No changes in enzyme activity were noted in cells treated with either a single-drug
treatment or in a combination of the drugs at any concentration used.

AChE inhibitors used in this work are the most preferably chosen drugs with proven efficacy
in the treatment of AD. Although the primary reason for the use of AChE inhibitors is the effect on
acetylcholine levels, our research and the results of other authors indicate a much wider spectrum of
these drugs [16,60]. Activities that may have a beneficial effect on the prevention of disease progression
include their effects on antioxidant enzymes [60]. However, our study on THP-1 macrophages has
a pioneer character, which makes it difficult to interpret and discuss in the light of other reports. Thus
far, no such studies have been conducted on the effects of both drugs.

We observed a reduced activity of SOD in macrophages under fluoride-induced oxidative stress,
treated with donepezil at the lower of the tested concentrations (D1, 20 ng/mL). The reduction of this
enzyme's activity was also observed after the addition of rivastigmine at a higher concentration (R2,
25 ng/mL). Current literature indicates the pro-oxidant and suppressive activity of fluoride against
antioxidant enzymes (including SOD). Vani et Reddy demonstrated a reduced activity of SOD in the
brain and muscle of albino mice receiving NaF (20 mg/kg body weight/day) [69]. The negative effect
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of fluoride on SOD activity has been described, among others, by Patel and Chinoy, in the murine
ovary exposed to fluoride [70]. A similar effect—impairment of SOD activity in the liver, kidneys and
heart of mice receiving fluoride—was observed by Sun et al. [71]. A reduction in SOD activity was
also described in primary cultured hippocampal neurons cultured with NaF [72]. However, the effect
of AChE inhibitors on SOD in fluoride-exposed macrophages has never been investigated, and the
results presented in our work are completely novel.

4.2. Catalase (CAT) Activity Alterations in Response to Inhibitors of Acetylcholinesterase

The results obtained in our study show that the separately used anti-Alzheimer drugs increased
the activity of catalase (CAT) in the macrophages. An increase in enzyme activity was observed for
each concentration of the drugs used, i.e. for donepezil used at 20 ng/mL (D1) and 100 ng/mL (D2)
and for rivastigmine at 5 ng/mL (R1) and 25 ng/mL (R2). However, in the cases where the drugs were
used together, no statistically significant variations in CAT activity were observed.

In current literature, in a group of AD patients, Klugman et al. showed that the use of AChE
inhibitors did not significantly affect the activity of catalase in patients taking medications compared
to the so-called drug-naive patients [73]. However, research conducted by Zhang and Tang on rat
pheochromocytoma line PC12 shows that pretreatment of cells with donepezil (10 µM) before exposure
to H2O2 led to improved cell survival, and enhanced antioxidant enzymes activities (including catalase).
According to the authors, the neuroprotective effect of the drugs resulting from their antioxidative
activity could partly be responsible for the clinically observed efficacy of these preparations [74].
The results of studies on the effect of AChE on CAT activity are ambiguous. In a mouse AD model
(induction of disease caused by scopolamine), administration of donepezil 5 mg/kg once a day for
nine days prior to scopolamine administration resulted in increased CAT activity within whole brain
lysate [75]. The authors concluded that the drugs they used, including donepezil, resulting in the
increased activity of antioxidant enzymes (including CAT), weakened peroxidation and showed anti
amnesic activity due to the decreased activity of AChE [75].

In our model of fluoride-induced oxidative stress, a decrease in CAT activity was observed in
macrophages incubated with a combination of donepezil and rivastigmine at 100 ng/mL and 5 ng/mL,
respectively (D2R1). In the other experimental conditions, no significant effect of AChE inhibitors on
CAT activity was observed.

So far, little research has been done on the effects of AChE inhibitors on CAT activity, and the
results obtained have varied. This paper is the first in which an attempt was made to study the
influence of AChE inhibitors on fluoride-exposed macrophages at given concentrations. In recent
years, attention has been increasingly focused on the role of fluoride in the pathogenesis of oxidative
stress, and the mechanism of this phenomenon is explained both by the effect of this element on ROS
and the direct activity of antioxidant enzymes themselves, including CAT [76]. The most frequently
described effect caused by fluoride is the inhibition of catalase activity, as demonstrated in studies
on human and animal tissues [50,77,78]. The exact mechanism of the action of fluoride on enzyme
activity is still being investigated. However, it is being currently suggested that the inhibitory effect of
fluoride on CAT activity results from the F− ability to interact with the metal ions (including tri- as
well divalent ions) situated within the antioxidant enzymes catalytic site. Described interaction may
possibly result in the enzymes (counting CAT) inhibition [79,80].

4.3. The Effect of Acetylcholinesterase Inhibitors on the Activity of Glutathione Peroxidase (GPx), Glutathione
Reductase (GR) and the Concentration of the Reduced Form of Glutathione (GSH)

In our study, macrophage exposure to donepezil and rivastigmine did not cause changes in GPx
activity. No effect on enzyme activity was observed for either the drugs used separately (at lower
and higher concentrations: D1, D2, R1, R2) or for the drugs used in combination (D1R1, D1R2, D2R1,
D2R2). After the use of donepezil and rivastigmine (separately and in all combinations), there were no
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changes in the activity of glutathione reductase. In addition, no changes in the concentration of the
reduced form of glutathione (GSH) were observed after the use of the drugs.

As has already been mentioned, for some time researchers have emphasized the need for
a thorough investigation of drugs used in Alzheimer's disease (AD) on the parameters of the body's
antioxidant system [60]. However, no study results have been published describing the effect of
donepezil and rivastigmine on GR and GPX activity and glutathione levels. In the current reports,
only a few items can be found regarding the influence of AChE inhibitors on the antioxidative system
associated with glutathione [60].

The value of the current work seems to be all the more important due to the fact that current
studies on the influence of AChE inhibitors on GPx activity were carried out primarily in an animal
model of AD. Klugman et al. demonstrated that AD patients receiving AChE inhibitors did not show
any change in GR activity compared to the drug-naive group of patients with AD [73]. Gubandru et
al. showed that in patients with AD, receiving rivastigmine or donepezil with memantine did not
significantly affect the concentration of GSH [81]. Li et al. observed that in mice with Aβ–induced
AD, the administration of donepezil 0.01 mg/kg/day (ICV) resulted in an increased concentration of
GSH in the hippocampus and cerebral cortex, and the increased activity of GPx [67]. An increase in
GSH within the hippocampus was also confirmed by Hou et al. In a model of AD using transgenic
animals, a decrease in GSH concentration was observed after a 16-week treatment with donepezil at
a dose of 2.5 mg/kg [82]. A decrease of GSH concentration was also described by Kumar et al. after
administration of galantamine, and the decrease was accompanied by increased GPx activity [83].
Khurana et al., who conducted studies on a rat model of AD, administering rivastigmine at 2.5 mg/kg
for 28 days, followed by colchicine, did not cause any changes in GSH concentration in the brains of
the rats studied [84].

In our study we found no changes in GPx activity in fluoride-exposed macrophages compared
to controls. However, a decrease in GR activity was observed in cells incubated with donepezil at 20
ng/mL with rivastigmine at 25 ng/mL (D1R2), and donepezil at 100 ng/mL with rivastigmine at 5
ng/mL (D2R1), and donepezil at 100 ng/mL with rivastigmine at 25 ng/mL (D2R2).

In our model of fluoride toxicity, we found only a decrease in the concentration of GSH
in macrophages incubated with donepezil at 100 ng/mL and rivastigmine at 25 ng/mL (D2R2).
As mentioned above, this paper is the first to attempt to investigate the influence of the most
commonly used AChE inhibitors on the activity of antioxidant enzymes in the model of fluoride
toxicity on macrophages. Although, as in the case of the previously described components of the
enzyme antioxidant system, the effect of fluoride on the activity and concentration in the case of GPx,
GSH and GR varies, the most often mentioned is the fluoride-induced inhibition of the activity of these
enzymes, a reduction in GSH and SOD levels, as well as increased lipid peroxidation in rats receiving
sodium fluoride in drinking water [85]. The pro-oxidant effect of fluoride, its inhibitory effect on GPx
activity, and a reducing effect on GSH concentration have also been described by Inkielewicz et al. [86].

4.4. Potential Mechanism of Inhibitory Effects of Fluoride on Acetylcholinesterase Inhibitors

The results of this study show that the AChE inhibitors donepezil and rivastigmine had a different
effect on the activity of antioxidant enzymes and GSH concentration in macrophages not exposed to
fluoride compared to our model of fluoride-induced oxidative stress. This observation is in agreement
with the results of our previous study on the influence of AChE inhibitors on the activity and expression
of cyclooxygenases in the same model of fluoride toxicity.

In the present study, AChE inhibitors increased CAT activity or did not affect the activity of
SOD, GPx, GR and GSH concentration in macrophages not exposed to fluoride. In contrast exposure
to fluoride and AChE inhibitors resulted in a decrease in CAT, SOD, GR and GSH concentrations.
Therefore, exposure to a pro-oxidant agent (such as fluoride used in our model) seems to be a factor
that can modulate or even cancel the antioxidant effect of AChE inhibitors.
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AChE inhibitors have been repeatedly shown to decrease neurotoxicity associated with the action
of β-amyloid peptide in AD. Interestingly, one of the suggested mechanisms of β-amyloid peptide
neurotoxicity is pro-oxidant activity, just as in the case of fluoride [87]. Inhibition of β-amyloid peptide
is most likely associated with the mechanism of upregulation and higher expression of α subtypes (7
along with 3) [88] with the stimulation of α7 l nicotinic acetylcholine receptors of neurons (nAChRs)
belonging to ligand-gated ion channels, key for learning and memory [89–91], and defending against
the β-amyloid peptide toxicity [92]. On the other hand, fluorosis does not result in a change of α7
subunit at the mRNA level in the rat brain [93].

In this study, the antioxidant effect of AChE inhibitors seemed to be suppressed in the presence of
fluoride, resulting in the inhibition of antioxidant enzyme activity and reduced GSH concentration.
This is in line with the results obtained by Goschorska et al. and Gutowska et al. in their studies
on the same model, showing that the fluoride-induced overproduction of ROS [28,94] resulted in
phosphorylation [95] and elevated activity JNK1/2, MAPK ERK1/2 or p38 [96–98], presumably via
the tyrosine kinase stimulation together with simultaneous tyrosine phosphatases suppression [99].
These results are all the more significant as MAP kinases are mentioned in literature as enzymes with
a particularly high redox sensitivity [100].

Although fluoride does not affect expression of the 7α subunit at the position of mRNA in the rats’
cerebrum, it does affect the signaling pathways associated with the activation and activity of MAP
kinases. Activation of MAPK is one of the first mechanisms of fluoride's neurotoxic action (including
pro-oxidant) in the CNS [77], with particular severity observed in the hippocampus [101]. In response
to the mentioned properties exhibited by fluoride, the RAS-stimulated reactions are accelerated. As the
consequence of the above discussed interactions, the activation of MEK/MEKK and further ERK
(extracellular signal-regulated protein kinase) enhancement occurs [102]. Activation of Ras, resulting
from increased peroxidation, induces recruitment of phosphatidylinositol 3'- kinase to Ras, which is
essential for the further activation of Akt and MAP [103].

It is possible that a MAPK-dependent pathway is responsible for the inhibitory effect of fluoride
on the pro-oxidant action of AChE inhibitors. Stimulating the 7α nAChR subunit, donepezil and
rivastigmine affect the activation of mainly two pathways: the phosphatidylinositol 3-kinase-Akt
signaling pathway and the MAPK pathway [104,105]. The effect on the MAPK-dependent pathway is
associated with the positive effect of donepezil on the parameters of Clinical Dementia Rating used to
assess the status of patients with dementia [106].

This paper, based on proven pro-oxidative and pro-inflammatory effects of fluoride, is the first
attempt to demonstrate the influence of environmental factors (such as fluoride) on the action of two
most frequently and widely used acetylcholinesterase inhibitors at concentrations corresponding to
the actual doses of drugs (the lowest and maximum therapeutic doses). The results of this study are
extremely interesting and important from the scientific and clinical perspective. On the one hand, they
suggest that these drugs, used so widely in developed countries, may stimulate the activity of catalase
(CAT) or have no significant effect on the activity of antioxidant enzymes or GSH. On the other hand,
under conditions of severe stress resulting from the presence of fluoride, they lowered the activity of
some antioxidant enzymes.

5. Conclusions

Donepezil and rivastigmine are considered to be the most effective and most commonly used
AChE inhibitors during Alzheimer's disease pharmacotherapy. For a long time, attention has also
been paid to their immunomodulatory, anti-inflammatory and antioxidant properties. The latter effect,
including the effect on antioxidant enzymes and GSH concentration, has been the least researched. In
addition, studies in this field have been carried out in different models (mainly rodents), and usually
concerned one of the drugs and only selected antioxidant enzymes.

This work is the first attempt to demonstrate the effect of fluoride-induced oxidative stress on the
antioxidant action of two most common and widely used AChE inhibitors, donepezil and rivastigmine,
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at concentrations corresponding to the actual doses of the drugs used in clinical practice. On one
hand, we found that these drugs stimulated catalase (CAT) activity in THP-1 macrophages but had
no significant effect on the activity of other antioxidant enzymes or GSH concentration. However,
when the macrophages were exposed to fluoride and rivastigmine and/or donepezil, we observed
a decrease in the activity of CAT, SOD and GR. This observation suggests that the fluoride-induced
oxidative stress may suppress the antioxidant action of AChE inhibitors.

As mentioned above, methanesulfonyl fluoride, which irreversibly and selectively inhibits brain
acetylcholinesterase, has been taken under consideration in AD treatment. Therapeutic positive effects
seem to exceed those exerted by the most commonly used and approved medications [36]. In relation
to the information above, it is not excluded that low (3µM) concentration of NaF would also exert
the inhibition of acetylcholinesterase. Thus, further research concerning this aspect seems to have
significant importance.

Our results may have significance in the clinical practice of treatment of AD and other dementia
diseases, by neurologists, psychiatrists, geriatricians, internists and general practitioners, as they
suggest that oxidative stress may suppresses any potential antioxidant effect of AChE inhibitors.
They also point to the need for further research in this direction.
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