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Abstract. The requirements for nuclear targeting of a 
number of U snRNAs have been studied by analyzing 
the behavior of in vitro-generated transcripts after mi- 
croinjection into the cytoplasm of Xenopus oocytes. 
Like the previously studied U1 snRNA, U2 snRNA is 
excluded from the nucleus when it does not have the 
2,2,7mGpppN cap structure typical of the RNA poly- 
merase II (pol II)-transcribed U snRNAs. Surprisingly, 
two other pol H-transcribed U snRNAs, U4 and U5, 
have a much less stringent requirement for the tri- 
methyl cap structure. The 3,-monomethyl triphosphate 
cap structure of the RNA polymerase III-transcribed 
U6 snRNA, on the other hand, is shown not to play a 
role in nuclear targeting. Wheat germ agglutinin, 

which is known to prevent the import of many proteins 
into the nucleus, inhibits nuclear uptake of U6, but 
not of U1 or U5 snRNAs. Conversely, a 2,2,7mGpppG 
dinucleotide analogue of the trimethyl cap structure in- 
hibits transport of the pol II U snRNAs, but does not 
detectably affect the transport of either U6 snRNA or 
a karyophilic protein. From these results it can be de- 
duced that U6 enters the nucleus by a pathway similar 
or identical to that used by karyophilic proteins. The 
composite nuclear localization signals of the trimethyl 
cap-containing U snRNPs, however, do not function 
in the same way as previously defined nuclear target- 
ing signals. 

T 
hE vertebrate U-rich small nuclear RNAs (U snRNAs) 
can be divided into three categories: nucleoplasmic 
RNAs transcribed by RNA polymerase II, like U1, 

U2, U4, and U5 snRNAs; nucleoplasmic RNAs transcribed 
by RNA polymerase UI, like U6 snRNA; and nucleolar 
RNAs transcribed by RNA polymerase II, like U3, U8, and 
U13. The major nucleoplasmic U snRNAs function in the 
processing of messenger RNA precursors (Steitz et al., 
1988; Sharp, 1987; Maniatis and Reed, 1987), while, of the 
nucleolar RNAs, U3 has been shown to play a role in riboso- 
mal RNA maturation (Tyc and Steitz, 1989; Kass et al., 
1990). 

The assembly of the RNA polymerase II class of nucleo- 
plasmic U snRNAs with proteins, in the formation of U 
snRNPs, involves migration of the RNA components from 
the nucleus to the cytoplasm, assembly with proteins, and 
finally movement of the RNP back to the nucleus (for re- 
views see Mattaj, 1988 and Zieve and Sauterer, 1990). The 
binding of a group of common proteins to a region of the 
RNAs called the Sm binding site is of particular importance 
in this pathway. Mutant U snRNAs which cannot bind these 
proteins remain in the cytoplasm (Mattaj and De Robertis, 
1985; Hamm et al., 1990). In addition, binding of the com- 
mon proteins to U1 and U2 snRNAs has been shown to be 

required for the hypermethylation of their cap structures to 
the 2,2,7mGpppN structure characteristic of the U snRNAs 
(Mattaj, 1986; Hernandez and Weiner, 1986; Hamm et al., 
1987). Recently, it has been demonstrated that the nuclear 
targeting signal of the U1 snRNP is bipartite. One compo- 
nent is the trimethylated cap structure and the other is thought 
to be a signal situated on the common U snRNP proteins 
(Hamm et al., 1990; Fischer and Liihrmann, 1990). Both of 
these components are essential for efficient nuclear uptake 
of the U1 snRNP. 

The intracellular movements of the RNA polymerase III- 
transcribed U6 snRNA have also been studied in Xenopus 
oocytes, albeit less extensively. After transcription, this 
RNA does not leave the nucleus (Vankan et al., 1990). How- 
ever, if it is microinjected into the cytoplasm it will move 
from there to the nucleus (Harem and Mattaj, 1989). Al- 
though this ability is apparently unnecessary in oocytes, it 
may well be important in dividing cells, where nuclear com- 
ponents have to re.accumulate after mitosis. A region of U6 
snRNA (nucleotides 20-24) is required for nuclear migra- 
tion. By analogy with the Sm binding site of the pol II U 
snRNAs, it has been proposed that this may be the binding 
site for a U6 snRNP protein (Hamm and Mattaj, 1989). 
Substitution of the v-methyl triphosphate cap structure nor- 
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mally found on U6 snRNA (Singh and Reddy, 1989) with 
2,2,7mGpppG allows nuclear import. However, if GpppG, 
7mGpppG, or 2,7mGpppG is incorporated at the 5' end of 
U6, the RNA remains in the cytoplasm (Hamm et al., 1990). 
This was interpreted as evidence for a role of the "y-methyl 
triphosphate cap in nuclear targeting. 

Here, evidence is presented that different U snRNAS have 
diverse requirements for nuclear transport. First, it is shown 
that the "y-methyl triphosphate cap is not involved in intracel- 
lular transport of U6. Rather, the presence of a monomethyl 
(7mGpppG) cap structure on 126 is shown to inhibit nuclear 
transport by binding to a cytoplasmic component(s). Fur- 
thermore, wheat germ agglutinin, (WGA),~ a general inhib- 
itor of nuclear protein localization (Finlay et al., 1987; Da- 
bauvalle et al., 1988), inhibits the transport of U6 snRNA, 
but does not prevent nuclear migration of the pol II class 
of U6 snRNAs. Conversely, a dinucleotide analogue of the 
trimethyl cap inhibits transport of the pol II U snRNAs, but 
does not affect transport of U6 snRNA or of the karyophilic 
Lamin L1 protein. These latter results confirm and extend 
the conclusions of a recent study (Michaud and Goldfarb, 
1991) in which the existence of different pathways of nuclear 
transport was proposed. 

Materials and Methods 

Immunoprecipitation 
Purified RNAs were precipitated directly. RNA was purified by homogeniz- 
ing oocytes in homomedium (10 oocytes per ml; 50 mM Tris-HC1 [pH 7.5], 
5 mM EDTA, 1.5 % SDS, 300 mM NaC1, 1.5 mg/rnl proteinase K), extract- 
ing proteins with phenol equilibrated with 10 mM Tris-HC1 (pH 8), 1 mM 
EDTA, and then with phenol-chloroform, and precipitating the RNA with 
3 vol of ethanol. The purified RNAs were resuspended in 10 pl of H20 per 
oocyte. Monoclonal anti-TMG cap antibodies (Bochnig et al., 1987) were 
used for each precipitation. Immunoprecipitation was performed as de- 
scribed previously (Mattaj and De Robertis, 1985), but at 4°C using buffer 
IPPs0 (10 mM Tris-HC1 [pH 8], 50 mM NaCI, 0.1% NP-40, 0.1% sodium 
azide). 

U snRNA Genes 
The U snRNA genes used for generation of the 1"7 U snRNA genes were 
a Xenopm/aev/s UI gene (Zeller et al., 1984), an X./aev/s U2 gene (Mattaj 
and Zeller, 1983), a chicken I34 gene (Hoffmann et al., 1986), an X./aev/s 
U5 gene (Kazmaier et al., 1987), and an X. tropicalis U6 gene (Krol et al., 
1987). The "1"7 promoter sequences and the restriction sites at the Y ends 
of the T7 genes (U1, BamHI; U2, DraI; U4, Eco47RI; U5, Eco47IR; U6, 
DraI) were introduced by site-directed mutagenesis (Kramer et al., 1984). 
The T7 constructs were generated by J. Hamm (see Harem et al., 1987). 

T7 U snRNA Synthesis 
The T'/U snRNA genes were linearized by cutting at the introduced restric- 
tion sites, l/~g of linearized DNA was incubated in a 10-#1 vol of 40 mM 
Tris-HC1 (pH 8), 8 mM MgCl2, 2 mM spermidine, 50 mM NaC1, 30 mM 
DTT, 0.04 mM ATP/GTP/CTP/UTP, 10 U of T7 RNA polymerase, 10 U 
of RNasin, 0.1 mM cap dinucleotide, 20 #Ci [c~32P]UTP for 30 rain at 
37°C. Water was added to a final volume of 100 pl, proteins were extracted 
with phenol-chloroform, unincorporated nucleotides were removed with 
spun columns, and RNAs were precipitated with 3 vol of ethanol (including 
3 mg of glycogen as a carrier). RNAs were suspended in 10 #! of HzO. 
Dinucleotide cap analogues, synthesized as described (Darzynkiewicz et 
al., 1988, 1990) or obtained commercially were added to the reactions to 
a final concentration of 400 #M. "y-Methyl GTP (Darzynkiewicz et al., 
1985) was added to similar transcription reactions to a final concentration 
o f l  mM. 

1. Abbreviation used in this paper: WGA, wheat germ agglutinin. 

Oocyte Injections 
T7 U snRNAs were mixed in ratios to obtain similar intensities of radioac- 
tive signals on autoradiographs. Approximately 20 nl was injected into the 
vegetal half of oocytes. Oocytes were dissected manually after transfer into 
J buffer (70 mM NH4Ci, 7 mM MgClz, 0.1 mM EDTA, 2.5 mM DTT, 20 
m_M Tris-HC! [pH 7.5], 10% glycerol), and RNA was extracted from the 
oocyte fractions with homomedium as described in the immunoprecipita- 
tions section. Extracted RNAs were analyzed on denaturing 8% polyacryl- 
amide gels, and 0.5-1 oocyte equivalents of RNA were loaded on gels of 
0.4 mm thickness. In the experiments where cap analogs were coinjected 
with the T7 U snRNAs, they were mixed with the RNA and injected at a 
final concentration of either 5 mM (most experiments) or 50 mM (Fig. 5 
B). Because of variation in the rate and extent of accumulation observed 
between different experiments, internal controls were always included where 
appropriate, and each experiment was repeated at least three times. 

Oocyte Injections of In Vitro Translated Protein LI 
Injection and analysis of in vitro-translated protein was carried out as fol- 
lows: 1-3 /~g m7G-capped Xenopus Lamin L1 mRNA (transcribed from 
eDNA clone M8; Krohne et al., 1989) was added to 25 pl rcticulocyte lysate 
(Promega Biotec, Madison, WI), 2.5 #l amino acid mix (1 mM) without 
methionine, 5 pl 3sS methionine (1,000 Ci/mmol), and 45 pl HzO and in- 
cubated for 90 rain at 30°C. The in vitro-translated protein was injected 
without further purification directly into the cytoplasm of oocytes and in- 
cubated in Barth's medium supplemented with 100 #g/ml cyclobeximide. 

Oocytes were dissected in 5:1 medium (83 mM KC1, 17 mM NaCl, and 
10 mM Tris-HCl, pH 7.4). The isolated nuclei were fixed and pelleted in 
95% ethanol. The cytoplasms were homogenized in ice-cold 5:1 medium, 
and the insoluble fraction was removed by centrifugation. The protein in 
the supernatant was precipitated with 5 vol acetone for 1 h at -80°C. 

Precipitated proteins were dissolved in protein sample buffer and sepa- 
rated by a SDS-PAGE (Laemmli, 1970). The gels were subsequently fixed 
in 40% McOH/10% acetic acid and rinsed for 30 min in amplify solution 
(Amersham International, Amersham, UK) before drying on a gel dryer. 
Exposure times varied between 1 and 3 d. 

Results 

The "y-Methyl Triphosphate Cap Structure Cannot 
Substitute for 2,2,7mGpppG on U1 snRNA 
As mentioned in the introduction, U6 RNA with either a 5' 
'y-methyl triphosphate (made in vivo) or a 2,2,7mGpppG cap 
structure (made in vitro) can migrate from the cytoplasm to 
the nucleus, while U6 with a 7mGpppG cap cannot. This 
suggested that the 2,2,7mGpppG and 'y-methyl triphosphate 
cap structures might be interchangeable in nuclear targeting. 
To test this idea, U1 RNA with a 'y-methyl triphosphate 5' 
end was made. Chemically synthesized "y-methyl GTP (Dar- 
zynkiewicz et ai., 1985) was used as a substrate in T7 RNA 
polymerase-catalyzed in vitro transcription reactions. Incor- 
poration of-t-methyl GTP at the 5' end of T7-transcribed U1 
or U6 (T7U1, T7U6) RNAs was monitored both by direct 
analysis (data not shown) and by the fact that "y-methyl 
triphosphate-capped RNAs were stable upon injection into 
oocytes (Fig. 1 A), while the same RNAs with unmodified 
triphosphate 5' ends were unstable (Hammet al., 1990 and 
our unpublished data). 

In the first experiment, T7U1 RNAS were made with 
'y-methyl triphosphate ('ymTP) or 7mGpppG 5' ends. They 
were coinjected with 'y-methylated T7U6 RNA as an internal 
control. T7U1 RNA capped with 7mGpppG becomes tri- 
methylated after injection, and moves to the nucleus (Hamm 
et al., 1990; Fischer and Lfihrmann, 1990). This is shown 
on the right of Fig. 1 A. The internal control, "y-methylated 
T7U6, also accumulates in the nucleus. T7U1 with a'y-methyl 
triphosphate 5' end is, however, excluded (Fig. 1 A, left). 
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Figure 1. -g-Methyl triphosphate-capped U1 and U5 snRNAs. (A) TTU1 RNA with either a -/-methyl triphosphate (left) or a 7mGpppG 
(right) cap was coinjected into the cytoplasm of oocytes with ,y-methyl triphosphate-capped T7U6 RNA. To, RNA extracted immediately 
after injection; T, C, N, RNA extracted from total oocytes or from cytoplasmic or nuclear fractions 16 h after injection. The RNA was 
analyzed on an 8 % polyacrylamide denaturing gel. Asterisks mark transcripts of unknown structure generated in the TTU1 transcription 
reaction. The blob on the far left lane is an autoradiographic artefact. (B) T7U5 RNA with either a 2,2,7mGpppG, an ApppG, or a 7-methyl 
triphosphate cap was coinjected into the cytoplasm of oocytes with 2,2,7mGpppG-capped T7U1 RNA. RNA fractions were analyzed as 
in A. 

The behavior of the differently capped TTU snRNAs in this 
and the following experiments is summarized in Table I. 

U1 RNA is longer than U6, and has a very different 
predicted secondary structure, while U5 RNA resembles U6 
more closely in both of these respects (Steitz et al., 1988). 
T7U5 RNA was therefore synthesized using ~/-methyl GTP 
as a substrate, in order to test whether the modified triphos- 
phate cap was functional in nuclear targeting when present 
on U5 RNA. 3,-Methylated U5 RNA accumulated in the nu- 
cleus similarly to 2,2,TmGpppG-capped U5 (Fig. 1 B, left 
and right panels, trimethyl-capped T7U1 served as an inter- 
nal control), suggesting that the ~/-methyl triphosphate 5' end 
might indeed function when placed on T7U5 RNA. How- 
ever, as a further control of the specificity of this effect, 
T7U5 capped with ApppG, a dinucleotide whose incorpora- 
tion prevents nuclear import of T7U1 RNA (Fischer and 
Liihrmann, 1990; Hamm et al., 1990) was analyzed. To our 
surprise, this RNA also accumulated in the nucleus, to an 
extent similar to that of the trimethyl-capped RNA (Fig. 1 
B, middle). In repeated experiments, ApppG-capped T7U5 
RNA accumulation in the nucleus was always only slightly 
less efficient than that of trimethylated T7U5 when measured 
after overnight (16 h) incubation. The cytoplasmic/nuclear 
ratio of the ApppG-capped T7U5 RNA varied between 1.3 
and 1.9 times greater than that of the 2,2,7mGpppG-capped 
RNA in different experiments (data not shown). 

Table L Nuclear Transport of  U snRNAs by Cap Structures 

UI U2 U4 U5 U6 

2,2,7mGpppG + + + + + 
2,7mGpppG + + + + - 
7mGpppG + + + + - 
GpppG + + + + - 
• ,/mpppG - NT NT 5: + 
/3mppG NT NT NT NT + 
ApppG - - + 5: + 

NT, not tested. + indicates that the cap allows nuclear transport, but with re- 
duced efficiency. Note that 2,7mGpppG, 7mC-pppG, and GpppG are converted 
to 2,2,7mGpppG upon microinjection when they are added to UI-U5 RNA but 
not to U6 RNA. 

Differential Requirements:for the Trimethyl 
Cap Structure 

This result suggested that the previously characterized re- 
quirement for the 2,2,7mGpppG cap structure for nuclear 
migration might be confined to U1 snRNA. To investigate 
this possibility further, T7 transcripts of U1, U2, U4, and U5 
RNAs with ApppG caps were generated. The U1, U2, and 
U4 RNAs were coinjected with 7mGpppG-capped U5 RNA 
as an internal control, while the U5 RNA was coinjected 
with 7mGpppG-capped U1 RNA. The results (Fig. 2 A) 
confirmed the fact that ApppG-capped U1 RNA is excluded 
from the nucleus while ApppG-eapped U5 RNA is not. 
ApppG-capped U2 RNA, like U1, was excluded from the nu- 
cleus, while ApppG-capped U4 behaved in an intermediate 
way, showing reduced nuclear accumulation compared to 
7mGpppG-capped U4 RNA (compare U4 in Fig. 2 A with 
the control 7mU4 of 2 B). 

One possible trivial explanation for these results was that 
the (symmetrical) ApppG dinucleotide might for some rea- 
son be incorporated in the opposite orientation to that ex- 
pected when incorporated into U4 and U5 RNA. If  this were 
so, the G would be available for trimethylation. To exclude 
this possibility, mixtures of ApppG and 7mGpppG-capped 
RNAs were injected into oocytes and immunoprecipitated 
immediately upon injection or 16 h later. Immunoprecipita- 
tion was carried out with an antitrimethyl cap antibody under 
conditions where it exhibits weak affinity for 7mGpppG and 
strong affinity for 2,2,7mGpppG (see Materials and Meth- 
ods). The first mixture (Fig. 2 C, lanes 1, 2, 5, and 6) con- 
tained ApppG-capped U2, U4, and U5 RNAs together with 
7mGpppG-capped U1 RNA; the second (lanes 3, 4, 7, and 
8) contained ApppG-capped U1 together with 7mGpppG- 
capped U5. The total RNAs from one oocyte equivalent at 
time zero (lanes 1 and 3) or after 16 h (lanes 2 and 4) are 
shown together with the immunoprecipitated RNAs from 
five oocytes (lanes 5-8). It is clear that the ApppG-capped 
RNAs are not immunoprecipitable, and, therefore, that they 
have cap structures in the expected orientation. 

To confirm the unexpected differences in cap dependence, 
a competition experiment was carried out. It has been 
shown that coinjection of the dinucleotide cap analogue 
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Figure 2. Differential require- 
ments for the trimethyl cap 
structure. (A) T7-transcribed 
U2, U1, and U4 RNAs with 
an ApppG cap structure were 
coinjected with T7U5 RNA 
capped with 7mGpppG. The 
three RNAs were coinjected 
with T'/U5 separately. The be- 
havior of the T7U5 was iden- 
tical in all three cases, but is 
only shown for the T7U4 ex- 
periment. In the lower part of 
tbe figure, a mixture of ApppG- 
capped T7U5 and 7mGI~pG- 
capped U1 were coinjected. 
RNA fractions were analyzed 
as in Fig. 1 A. The asterisk 
marks a degradation product 
of T7U4 produced after mi- 
croinjection. (B) T7U1, U2, 
U4, and U5 RNAs capped with 
7mGpppG were coinjected in- 
to the cytoplasm of oocytes 
with 3,-methyl triphosphate- 
capped TTU6 RNA and either 
7mGpppG or 2,2,7mGpppG 
dinucleotide cap analogue (5 
mM). RNA fractions were 
analyzed as in Fig. I A. Aster- 
isks mark transcripts gener- 
ated from T7U2 during tran- 
scription or from T7U4 after 
injection. The internal control 

-/-methyl triphosphate-capped T7U6 RNA was coinjected in each 
case, and behaved identically, but is only shown in the T7U5 panel. 
(C) Mixtures of ApppG-capped T7U2, U4, and U5 RNA with 
7mGpppG-capped T7UI RNA (lanes 1, 2, 5, and 6) or of ApppG- 
capped T7UI RNA with 7mGpppG-cappcd T7U5 RNA (lanes 3, 
4, 7, and 8) were microinjected into oocytes. Total RNAs were iso- 
lated and RNA equivalent to one oocyte was analyzed immediately 
after injection (lanes I and 3) or 16 h later (lanes 2 and 4). RNA 
equivalent to five oocytes was immunoprecipitated with an mAb 
that interacts weakly with 7mGpppG and strongly with 2 , 2 , 7 m ~  
either immediately after injection (lanes 5 and 7) or 16 h later 
(lanes 6 and 8). 

2,2,7mGpppG can inhibit nuclear migration of U1 RNA 
(Fischer and Liihrmann, 1990). The inhibition was specific 
since similar concentrations of 7mGpppG had no effect. 
These two dinucleotides were therefore coinjected with 
7mGpppG-capped U1, U2, U4, and U5 RNAs. ~-Methyl 
triphosphate-capped U6 was coinjected with each RNA as 
an internal control. The trimethylated dinucleotide had a 
large inhibitory effect on the nuclear accumulation of U1 and 
U2 RNAs. However, while the nucleo-cytoplasmic ratios of 
U4 and U5 RNA were altered when compared with samples 
coinjected with monomethylated analogue, the inhibition of 
U4 and U5 transport by the trimethylated dinucleotide was 

clearly less than for U1 or U2 (Fig. 2 B). Thus, the trimethyl 
cap structure did indeed have a differential effect on the nu- 
clear uptake of different U snRNAs. 

The Trimethyl Cap Structure Has a Kinetic Effect 
on U5 snRNP Nuclear Migration 

In all the above experiments the nucleo-cytoplasmic ratio of 
the RNAs was determined after 16 h of incubation. To deter- 
mine whether the cap structure had any effect at all on U5 
snRNP migration, a kinetic experiment was performed. The 
rates of nuclear accumulation of 2,2,7mGpppG and ApppG- 
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Figure 3. Kinetics of T7U5 accumulation. T7U5 RNA with either 
a 2,2,7,mGpppG (top) or an ApppG can (bottom) was coinjected 
into the cytoplasm of oocytes with 7mGpppG-capped T7U1 RNA. 
RNA was extracted and analyzed either from total oocytes or from 
cytoplasmic and nuclear fractions 0, 2, 4, and 8 h later. 

capped U5 RNAs were compared, with 7mGpppG T7U1 as 
an internal control. The result (Fig. 3) showed that the tri- 
methyl cap did have an effect on the kinetics of nuclear ac- 
cumulation. When the cytoplasmic/nuclear ratio of ApppG 
or 2,2,7mGpppG T7U5 RNA was quantified by densitome- 
try the C/N ratio of ApppG-capped T7U5 was >20:1 after 
4 h and 4.2:1 after 8 h. The corresponding ratios for the 
trimethylated T7U5 RNA were 10:1 and 2.5:1, respectively. 
Similar results were obtained in three separate experiments. 
As mentioned above, the cytoplasmic/nuclear ratio observed 
with the ApppG-capped T7U5 RNA was also consistently 
higher than that of the trimethylated T7U5 RNA when mea- 
sured after 16 h. Additionally, the inhibition of transport by 
the 2,2,TmGpppG dinucleotide seen in Fig. 2 B, where the 
cytoplasmic/nuclear ratio is increased from 0.9:1 to 3.5:1 by 
the inhibitor, further confirms that the trimethyl cap has a 
role in the nuclear transport of U5 RNA. Thus, although the 
trimethyl cap structure is not essential for nuclear uptake in 
the case of the U5 snRNP, its presence does affect the rate 
of import. 

Nuclear Migration of  U6 snRNA 

The results presented in Fig. 1 showed that the 33-methyl 
triphosphate cap structure could not substitute for a trimethyl 
cap structure in nuclear import of U1 snRNA. We therefore 
wished to examine its role in U6 RNA migration in more de- 
tail. Previous experiments (Hammet al., 1990) had indirectly 
suggested that 33-methylation might be important for nuclear 
migration. T7U6 RNA with a triphosphate 5' end is very un- 
stable when injected into oocytes (our unpublished data). 
T7U6 with either a 7mGpppG or 2,2,7mGpppG cap struc- 
ture is stable. While the 7mGpppG-capped U6 remains in the 
cytoplasm after microinjection, the 2,2,7mGpppG-capped 
RNA moves to the nucleus (Fig. 4 A; see also Harem et al., 
1990). T7U6 with a 3,-methyl triphosphate 5' end also mi- 
grates to the nucleus with an efficiency similar to that of the 
internal U1 RNA control (Fig. 4 A). These results would sup- 
port the possibility that the 33-methyl cap has an active role 

in transport and that it can be functionally replaced by the 
trimethyl cap structure. 

However, two further cap structures which would not be 
expected to have an active function in transport, ApppG and 
t-methyl diphosphate, both allowed nuclear accumulation of 
U6 RNA (Fig. 4 A, right). These results cast doubt on the 
role of the 33-methyl cap, and so further experiments were un- 
dertaken to clarify this issue. 

First, it was shown that none of the cap structures allows 
nuclear accumulation of U6 RNA in an unspecific way. It has 
previously been shown that mutation of nucleotides 20-25 
of the U6 sequence drastically decreases its entry into the nu- 
cleus after cytoplasmic injection (Hammet al., 1990). This 
U6 mutant, U6AD, was made in vitro with four different cap 
structures. None of these RNAs was able to accumulate in 
the nucleus (Fig. 4 B). The same was true of t-methyl di- 
phosphate-capped U6AD transcripts (data not shown). Thus, 
the migration of the ApppG and /3-methyl diphosphate- 
capped RNAs was not due to some fortuitous positive effect 
of these structures on transport. 

A second approach to defining the role of the 33-methyl cap 
structure in U6 migration, analogous to Fig. 2 B above, was 
to attempt to inhibit U6 migration by the coinjection of cap 
analogs. -t-methyl GTP, 7mGpppG, and 2,2,7mGpppG were 
therefore coinjected with 33-methyl triphosphate-capped 
T7U6 RNA and trimethyl-capped T7U1 RNA as an internal 
control. While, as before, the trimethylated dinucleotide in- 
hibited U1 transport (Fig. 5 A, right), neither the mono- 
methyl dinucleotide nor the 33-methyl triphosphate affected 
U1 transport, and none of the cap analogues affect the trans- 
port of 33-methylated U6 RNA (Fig. 5 A). 

This was strong evidence against the idea that the 33-methyl 
triphosphate and 2,2,7mGpppG cap structures had a func- 
tionally equivalent, or interchangeable, role in transport 
since, if they had, the 2,2,7mGpppG dinucleotide should 
also have inhibited U6 migration and an effect of 33-methyl 
GTP on U1 transport might have been expected. To deter- 
mine whether any evidence for a role of the 3,-methyl struc- 
ture in transport could be obtained a kinetic experiment was 
performed. 3,-Methyl triphosphate and ApppG-capped U6 
RNAs were coinjected into the cytoplasm with 7mGpppG- 
capped U1 snRNA. At various times after injection oocytes 
were dissected and the nucleo-cytoplasmic distribution of the 
RNAs was determined. The results (Fig. 6) showed that there 
was no difference in the rate of accumulation between the 
ApppG and the 33-methyl triphosphate-capped U6 snRNAs. 
This strongly implied that the 33-methyl triphosphate cap 
has no role in nuclear import. 

This left unexplained the result which had first suggested 
to us that the 33-methylated structure might have a function 
in transport. Why did 7mGpppG-capped U6 snRNA not mi- 
grate to the nucleus when every other cap structure tested 
allowed migration to take place? A possible reason was that 
cytoplasmic cap-binding proteins (Shatkin, 1985) might 
bind to the RNA and anchor it in the cytoplasm. To test 
this possibility, 7mGpppG-capped U6 RNA was coinjected 
into the cytoplasm together with the 7mGpppG dinucleotide, 
which can bind to at least some cytoplasmic cap-binding 
proteins (Darzynkiewicz et al., 1988 and references there- 
in). GTP was coinjected in control oocytes. GTP, as ex- 
pected, had no effect on 7mGpppG-capped T7U6 RNA mi- 
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Figure 4. Cap requirements for U6 transport. (A) T7U6 RNA with either a 3,-methyl triphosphate, a 7mGpppG, a 2,2,7mGpppG, an ApppG, 
or a B-methyl diphosphate cap structure was coinjected into the cytoplasm of oocytes together with 7mGl~pG-capped T7U1 RNA. RNA 
was extracted and analyzed as in Fig. 1 A. Asterisks mark truncated products of unknown structure generated during TTU1 transcription. 
(B) T7U6AD is a mutant form of U6 in which nucleotides 20-25 are changed from UAUACU to CUCGAG. T7U6 RNA with the four 
indicated cap structures was coinjected with 7mGpppG-eapped U1 RNA, and analyzed as in A. 

gration (Fig. 5 B, left), while the monomethyl cap analogue 
allowed~the 7mGpppG-capped RNA to accumulate in the nu- 
cleus to a level similar to U1 RNA (compare Fig. 5 B, right 
with Fig. 5 A, left). This result strongly suggests that the 
7mGpppG-capped U6 snRNA is retained in the cytoplasm 
because it binds to a monomethyl cap-binding protein. Fur- 
ther experiments (not shown) with other cap analogues 
showing different affnifies for cap-binding proteins are fully 
consistent with this proposal. The significance of this obser- 
vation for the intracellular migration of the pol II U snRNAs 
is discussed below. 

Differential Inhibition of Nuclear Import 
We wished to obtain further, more direct, evidence for the 
role of protein-based signals in U snRNP transport, and 
for this purpose made use of transport inhibitors. In a first 
experiment it was shown that the nuclear accumulation of 
microinjected, in vitro made, Xenopus Lamin L1 protein 
(Krohne et al., 1989) was not affected by coinjection of the 
2,2,7mGpppG dinucleotide (Fig. 7, A and B). As expected, 

coinjection of wheat germ agglutinin (WGA) ~ did inhibit LI 
migration (Fig. 7 C). 

Recently Michand and Goldfarb (1991) have shown that in- 
jection of high concentrations of a specific nuclear localiza- 
tion signal (a peptide from SV40 T antigen) coupled to BSA 
inhibited nuclear uptake of a karyophilic protein. The same 
inhibitor also reduced U6 snRNA migration, but had no 
effect on the uptake of U2 snRNA. WGA represents a more 
efficient and possibly a more general (Finlay et al., 1987; 
Dabanvalle et al., 1988) inhibitor of the nuclear uptake of 
proteins. We therefore tested the effect of WGA on the trans- 
port of trimethyl-capped T7U1 and T7U5 snRNAs. Under 
identical conditions to those in which Lamin L1 transport 
was quantitatively inhibited, WGA allowed U1 or U5 snRNP 
transport to proceed, although the rate appeared to be some- 
what reduced (Fig. 8). The kinetics of T7U1 transport are 
slower than those of L1 transport (compare Figs. 3 and 7), 
raising the possibility that the lack of inhibition might be due 
to WGA having a limited half-life. However, T7U1 transport 
was seen even after repeated WGA injection (data not 
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Figure 5. Cytoplasmic retention of U6. (A) -y-Methyl triphosphate- 
capped TTU6 RNA was coinjected with 2,2,7mGpppG-eapped 
T'/U1 RNA and either 7,-methyl guanosine triphosphate, 7mGpppG 
dinucleotide, or 2,2,7mGpppG dinucleotide (all three at 5 mM). 
RNA was analyzed as in Fig. 1 A. The asterisk marks a truncated 
product generated during TTUI transcription. (B) 7mGpppG- 
capped TTU6 and T7U1 snRNAs were coinjected into the cyto- 
plasm of oocytes together with GTP or 7mGpppG dinucleotide 
(both at 50 raM). RNA was analyzed as in Fig. 1 A. 

Figure 6. Kinetics of U6 RNA 
accumulation. T7U6 RNA with 
either a 7-methyl triphosphate 
(top) or an ApppG (bottom) 
cap structure was coinjected 
into the cytoplasm of oocytes 
together with 7mGpppG-capped 
TTU1 RNA. RNA was ~ 
and analyzed either from total 
oocytes or from cytoplasmic 
and nuclear fractions 0, 1.5, 3, 
6, and 12 h later. 
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Figure 7. Protein transport is inhibited by WGA but not by 
m2,2,7GpppG cap analogue. In vitro-translated Lamin LI was in- 
jected alone (A), with 5 mM m3GpppG (B), or with a WGA solu- 
tion saturated in PBS, pH 7.4 (C) into the cytoplasm of ooc, ytes. 
Proteins from the nuclear (N) and cytoplasmic (C) fraction were 
analyzed 5, 7, and 12 h later. 

shown), and WGA is able to inhibit transport of U6 RNA 
over a period of at least 12 h (see below). 

Having established that 2,2,7mGpppG and WGA were 
differential inhibitors of nuclear transport, it was possible to 
use them to investigate transport of U6. As shown previously 
(Fig. 5 A), the trimethylated cap analogue does not inhibit U6 
transport. WGA, on the other hand, completely prevented 
nuclear uptake of U6. This can be seen by comparing the 
12-h time points in the control panel (Fig. 9 A) with those 
in the WGA-injected panel (Fig. 9 B). 

Figure 8. WGA does not inhibit nuclear migration of pol II U 
snRNAs, m2,2,7GpppG-capped UI and U5 snRNAs were injected 
either alone (A) or with a saturated WGA solution (B), dissected 
into nuclear (N) and cytoplasmic (C) fractions, and analyzed at the 
indicated timepoints as described in Fig. 1 A. 

Figure 9. Nuclear migration of U6 RNA is inhibited by WGA. T7 
U6RNA with a ~/-methyl triphosphate cap structure was injected ei- 
ther alone (A) or with a saturated WGA solution (B) into the 
cytoplasm of oocytes. The oocytes were dissected at the indicated 
timepoints into nuclear and cytoplasmic fractions and analyzed as 
described in Fig. I A. 

Discussion 

A series of experiments that illustrate the diversity of the 
requirements of different U snRNAs/snRNPs for nuclear 
migration have been presented. The pol H-transcribed, 
2,2,7mGpppG-capped RNAs clearly fall into a different 
class than the pol m-transcribed, -y methyl-phosphate con- 
taining U6 RNA. However, diversity was uncovered even 
within the pol II class, with UI and U2 snRNAs showing a 
much stronger dependence on the trimethyl cap structure for 
nuclear migration than did the shorter U4 and U5 snRNAs. 

This latter difference was unexpected. However, even in 
the case of U5, where the effect of the trimethyl cap structure 
was least apparent, it was possible to demonstrate that the 
trimethyl cap had an effect on the kinetics of nuclear accumu- 
lation. This suggests a unified model for the signaling of nu- 
clear localization among the pol II-U snRNPs in which the 
cap functions as an accessory signal to increase the efficiency 
of nuclear transport. In the absence of the cap, the presence 
of an Sm binding site, whose function is discussed below in 
more detail, would be sufficient to allow nuclear accumula- 
tion of the U5 snRNP, but not of the U1 or U2 snRNPs. What 
might be the reason for this difference? 

One possible clue may lie in the apparent inverse correla- 
tion between RNA size and transport efficiency in the ab- 
sence of the cap. U2 and U1, the longer RNAs, are excluded 
from the nucleus if they have an ApppG cap, and their trans- 
port is completely inhibited by the dinucleotide 2,2,7mGpppG 
analogue (Fig. 2). U5, the smallest RNA, is least affected by 
these treatments and U4, which lies between U1 and U5 in 
size, shows an intermediate behavior with respect to inhibi- 
tion of its nuclear transport. It may, therefore, be that the big- 
ger the snRNA the more difficult its transport, and the larger 
the dependence on the cap signal. However, it should be 
borne in mind that it is not the naked snRNA, but rather the 
(at least partially) assembled snRNP, that moves to the nu- 
cleus (Mattaj, 1988; Zieve and Sauterer, 1990). It is cur- 
rently unknown whether only the common, or core, snRNP 
proteins associate with the RNAs before migration or whether 
the proteins that are specific to particular snRNPs also as- 
semble before transport. If the latter were the case, the U5 
snRNP would actually be more massive than either the U1 
or U2 snRNPs (Liihrmann, 1988; Bach et al., 1989). At the 
present state of knowledge, it is therefore too early to draw 
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any firm conclusions about the molecular basis of the ob- 
served variability. 

Compared to the relatively small differences between the 
individual pol II U snRNPs, there is a more obvious diver- 
gence between them as a class and the pol llI-transcribed U6. 
Contrary to our previous hypothesis (Hamm et al., 1990), 
the cap structure of this RNA, a -y-methyl triphosphate, was 
shown here not to be involved in signaling nuclear migration. 
The experiments that demonstrated this revealed, however, 
that the trirnethyl cap plays a dual role in transport. First, the 
cap must interact directly with some component of the trans- 
port machinery, since injection of a 2,2,7mGpppG cap ana- 
logue prevents transport, presumably by competing for bind- 
ing to the transport component. Second, the trimethyl cap 
prevents interaction with some 7mGpppG cap-binding com- 
ponent that anchors RNA in the cytoplasm. This was shown 
by the activation of transport of 7mGpppG-capped U6 RNA 
by coinjection of the 7mGpppG dinucleotide analogue. Again 
the likely mechanism is competition for binding to a (this 
time monomethyl) cap binding protein. The best-character- 
ized cytoplasmic cap binding proteins are involved in the ini- 
tiation of translation (Shatldn, 1985). This binding activity 
may well also anchor mRNAs in the cytoplasm, since mRNA 
has never been reported to show anything other than unidirec- 
tional export from the nucleus to the cytoplasm. The pol 1I U 
snRNAs escape this inhibition since their caps are rapidly 
trimethylated in the cytoplasm (Mattaj, 1988; Zieve and 
Sauterer, 1990). 

While transport of U6 is not affected by the 2,2,7mGpppG 
cap analogue, it is inhibited by coinjection of WGA. It has 
recently been reported that BSA-coupled peptides corre- 
sponding to the nuclear localization signal of SV40 T anti- 
gen, which act as inhibitors of protein uptake into the nu- 
cleus, also reduce U6 import while having no effect on the 
nuclear accumulation of U2 RNA (Michaud and Goldfarb, 
1991). This was interpreted as evidence for the existence of 
two pathways of migration into the nucleus. Our results con- 
firm and extend this hypothesis by showing that WGA, a 
general inhibitor of protein import into the nucleus (Finlay 
et al., 1987; Dabauvalle et al., 1988), prevents U6 accumu- 
lation while it has only a minor effect on the movement of 
pol II U snRNPs. The trimethylated cap dinucleotide acts in 
the inverse way, inhibiting pol 1I U snRNP transport, but not 
that of U6 snRNA or a karyophilic protein. 

Several points arise from these observations. The first con- 
cerns U6 migration. It would appear from these and earlier 
results that U6 transport closely resembles protein migration 
in that it is inhibited by WGA, reduced by BSA-nuclear local- 
ization signal conjugates, and cap independent. Thus, the 
signal for migration of the U6 snRNP is likely to be similar 
to the better-characterized signals on karyophilic proteins 
(for review see Dingwall and Laskey, 1986). On the other 
hand, the signals on the pol II U snRNPs may have nothing 
in common with this class. The evidence that proteins are in- 
volved in signaling migration of these RNPs rests on the fact 
that mutation of the binding site (on the RNA) for the com- 
mon set of U snRNP proteins prevents nuclear migration 
(Mattaj and De Robertis, 1985; Harem et al., 1990). This 
is clearly an indirect argument. More direct experimental 
identification of the "non-cap" part of the bipartite targeting 
signal of these U snRNPs remains an elusive goal. 
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