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Abstract 

Background:  Porcine reproductive and respiratory syndrome virus (PRRSV) has caused huge economic losses in the 
global swine industry. Frequent genetic variations in this virus cause difficulties in controlling and accurately diagnos‑
ing PRRSV.

Methods:  In this study, we investigated the genetic characteristics of PRRSV-1 and PRRSV-2 circulating in Korea from 
January 2018 to September 2021 and evaluated three one-step real-time reverse transcription polymerase chain reac‑
tion (RT-PCR) assays.

Results:  A total of 129 lung samples were collected, consisting of 47 samples for PRRSV-1, 62 samples for PRRSV-2, 
and 20 PRRSV-negative samples. Nucleotide sequence analysis of open reading frames (ORFs) 5, ORF6, and ORF7 
genes from PRRSV samples showed that PRRSV-1 belonged to subgroup A (43/47, 91.49%) and subgroup C (4/47, 
8.51%), whereas PRRSV-2 was classified as lineage 1 (25/62, 40.32%), Korean lineage (Kor) C (13/62, 20.97%), Kor B 
(10/62, 16.13%), lineage 5 (9/62, 14.52%), and Kor A (5/62, 8.06%). Amino acid sequence analysis showed that the neu‑
tralizing epitope and T cell epitope of PRRSV-1, and the decoy epitope region and hypervariable regions of PRRSV-2 
had evolved under positive selection pressure. In particular, the key amino acid substitutions were found at positions 
102 and 104 of glycoprotein 5 (GP5) in some PRRSV-2, and at positions 10 and 70 of membrane protein (M) in most 
PRRSV-2. In addition, one-step real-time RT-PCR assays, comprising two commercial tests and one test recommended 
by the World Organization for Animal Health (OIE), were evaluated.

Conclusion:  The results revealed that two of the real-time RT-PCR assays had high sensitivities and specificities, 
whereas the real-time RT-PCR assay of the OIE had low sensitivity due to mismatches between nucleotides of Korean 
PRRSVs and forward primers. In this study, we genetically characterized recent PRRSV occurrences and evaluated three 
one-step real-time RT-PCR assays used in Korea.
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Background
Porcine reproductive and respiratory syndrome virus 
(PRRSV) is an enveloped, single-stranded positive-sense 
RNA virus belonging to the family Arteriviridae of the 
order Nidovirales. PRRSV causes reproductive failure in 
sows and respiratory distress in pigs of all ages, result-
ing in significant economic losses for the swine industry 
worldwide [1, 2]. The PRRSV genome contains 10 open 
reading frames (ORFs), including ORF1a, 1b, 2a, 2b, 3, 
4, 5a, 5, 6, and 7 [3, 4]. ORF1a and ORF1b code for two 
large polyproteins that are generate 14 nonstructural 
proteins [4]. Eight structural genes (ORF2a, ORF2b, 
ORF3–7, and ORF5a) encode structural proteins, includ-
ing glycoprotein (GP) 2, small envelope (E), GP3, GP4, 
GP5, membrane (M), nucleocapsid (N), and ORF5a 
proteins, respectively [5, 6]. PRRSV can be divided into 
two genotypes: European PRRSV type 1 (PRRSV-1) and 
North American PRRSV type 2 (PRRSV-2). Recently, 
PRRSV-1 was taxonomically classified into the species 
Betaarterivirus suid 1 and PRRSV-2 into the species 
Betaarterivirus suid 2 based on international commit-
tee on taxonomy of viruses (ICTV). The two prototype 
genomes, the Lelystad strain for PRRSV-1 and VR-2332 
strain for PRRSV-2, share approximately 60% homology 
in their nucleotide sequences [7]. In Korea, PRRSV-2 
has spread rapidly since its first report in 1994 [8], and 
PRRSV-1 was identified in 2005 [9]. Genetic diversity and 
phylogeny have been reported based on genetic analysis 
of ORF5 sequences of PRRSVs prevailing in Korea [10–
13]. The Korean PRRSV-1 isolates belong only to subtype 
1, whereas Korean PRRSV-2 isolates are classified as line-
ages 1, 4, 5, and Korean lineages (Kor) A, B, and C [11, 
13, 14].

The ORF5 sequence of PRRSV has been widely used 
to study phylogeny, genetic variation, and molecular epi-
demiology [15]. Many PRRSVs that were genetically and 
geographically differentiated, were classified into sub-
types 1–4 from PRRSV-1 and lineages 1–9 from PRRSV-2 
[3, 16]. ORF6 encodes the most conserved structural pro-
tein of PRRSV. The phylogenetic tree derived from ORF7 
resembles the tree derived from the full-length genomes 
of PRRSV [17]. The conserved regions of ORF6 and 
ORF7 are often used as target regions for PRRSV detec-
tion by nucleotide-based assays [18–22].

ORF5 encodes a highly variable envelope protein, 
GP5, which plays an important role in viral infectiv-
ity and contains immunological domains related to viral 
neutralization [23, 24]. GP5 and M protein, two major 

envelope proteins, form a disulfide-linked heterodimer 
or a disulfide-linked multimer that is essential for virion 
formation [25, 26]. GP4, GP5, and M proteins induce 
neutralizing murine monoclonal antibodies (MAbs). In 
particular, MAbs recognizing GP5 neutralize PRRSV 
more effectively than other MAbs [27]. Therefore, GP5 
has been considered a major target protein for vaccine 
design as it is involved in the production of neutraliz-
ing antibodies, followed by protection against PRRSV 
[28]. The non-neutralizing epitope of PRRSV is highly 
immunodominant and exhibits some features of decoy 
epitopes, which have been demonstrated to inhibit rec-
ognition of neutralizing epitopes in several viral infec-
tions [28].

Nucleic acid-based diagnostic methods have been com-
monly used to diagnose PRRSV owing to their sensitivity, 
specificity, and relatively rapid test times [29–31]. How-
ever, RNA viruses, such as PRRSV and swine influenza 
virus (SIV), have high mutation rates, rapid evolution, 
and genetic variability, these complicate the develop-
ment of reliable diagnostic methods [32–35]. Many stud-
ies have shown that genetic differences or mismatches 
between nucleotides of PRRSV and the primers in 
molecular-based assays can lead to false results [36–39]. 
Therefore, the continuously increasing genetic diversity 
of PRRSV with the emergence of new strains dictates the 
need for an accurate diagnosis.

In this study, we investigated the genetic diversity of 
PRRSVs circulating in Korea through phylogenetic analy-
sis and amino acid analysis from January 2018 to Septem-
ber 2021 and evaluated three one-step real-time reverse 
transcription polymerase chain reaction (RT-PCR) assays 
used in Korea.

Methods
Clinical sample and detection of PRRSV
A total of 129 lung samples submitted to the Diagnos-
tic Division of the Animal and Plant Quarantine Agency 
(APQA) to diagnose swine disease, were collected from 
January 2018 to September 2021. The samples were 
collected from farms across all Korean provinces and 
included mainly clinical signs of PRRS such as acute 
respiratory disease in growing pigs or late-term abor-
tion in sows. All lung tissue samples were homogenized 
with alpha modification of Eagle’s minimum essential 
medium (EMEM) (Gibco, Grand Island, NY, USA) con-
taining 1% antibiotic (Gibco). Viral RNA was extracted 
from the supernatant of tissue homogenates using the 
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RNeasy Mini Kit (QIAGEN, Hilden, Germany) according 
to the manufacturer’s instructions. Commercial VDX® 
PRRSV HP MP RT-PCR and NA/EU Typing Nested PCR 
(Median Diagnostics, Gangwon, South Korea) were used 
for detecting and genotyping PRRSV.

Sequencing and phylogenetic analysis of ORF5, ORF6, 
and ORF7 of PRRSV
ORF5, ORF6, and ORF7 were amplified from PRRSV-
positive samples by RT-PCR with specific primer sets 
(Table  1). RT-PCR amplification was performed under 
the following conditions: reverse transcription for 30 min 
at 50  °C, and termination of reverse transcription for 
15  min at 95  °C, followed by 35 cycles of denaturation, 
annealing, and extension for 30 s at 94 °C, 30 s at 55 °C, 
50 s at 72 °C, respectively, and a final extension of 10 min 
at 72 °C. The PCR products were sequenced by commer-
cial sequencing service company (Macrogen, Daejeon, 
South Korea). Some ORF5, ORF6, and ORF7 genome 
sequences among the all sequences obtained in this study 
were submitted to GenBank under accession number 
ON892744–ON892781. Reference strains, such as global 
PRRSV strains, Korean PRRSV strains, and two PRRSV 
prototype strains (Lelystad and VR2332) obtained from 
National Center for Biotechnology Information (NCBI), 
were included in the dataset for phylogenetic analysis. 
A phylogenetic tree was generated by maximum likeli-
hood analysis using the Kimura two-parameter model 
(K2P) with MEGA 7.0 (Pennsylvania State University, 
State College, Pennsylvania, USA), and was evaluated 
by 1,000 bootstrap replicates. The Markov Chain Monte 
Carlo (MCMC) algorithms implemented in the BEAST 
v1.7.5 package was used to estimate the substitution rate 
per site per years (s/s/y) of the Korean PRRSV strain 

from 1997 to 2021. The dataset consisted of a total of 
238 PRRSV-1 ORF5 sequences and 319 PRRSV-2 ORF5 
sequences including Korean PRRSV reference strains 
available in NCBI and ORF5 sequences obtained in this 
study. Evolutionary rate was estimated using the relaxed 
molecular clock model with GTR + Γ4 mixed substitu-
tion according to a previous study [40].

Amino acid analysis of GP5 and M protein
Amino acid analysis between lineages and sequence 
entropy at each codon indicating amino acid diversity 
was conducted according to a previous study [41]. Briefly, 
graphical sequence logos for each lineage were generated 
using the WebLogo tool (http://​weblo​go.​berke​ley.​edu/) 
and sequence entropy was generated using the Shannon 
Entropy-One tool implemented in the HIV database tool 
(https://​www.​hiv.​lanl.​gov/). To determine the action of 
selection pressure on the structural proteins of PRRSV-1 
and PRRSV-2, site-by-site selection at single codon sites 
of each structural protein was estimated using the mixed-
effects maximum likelihood model of evolution available 
at DataMonkey (http://​www.​datam​onkey.​org/) [42, 43]. 
Sites with a p-value ≤ 0.05 were inferred to be positively 
selected.

One‑step real‑time RT‑PCR assays
Two commercially available certified one-step real-time 
RT-PCR assays (A and B tests) are the most commonly 
used for detecting PRRSV in Korea. Test A and B were 
performed using each kit provided under the same lot 
number. The one-step real-time RT-PCR (C test) is rec-
ommended in the OIE manual of diagnostic tests [44] 
and is used by a private animal disease diagnostic center. 
The C test was performed using the QuantiNova Probe 

Table 1  Primers for RT-PCR amplification of ORF 5, ORF6, and ORF7 genes of PRRSV

a The target regions of Korean PRRSV-1 and PRRSV-2 strains collected from the NCBI database were aligned and the primer were designed in conserved sequences of 
target genes

Genotype Target Primer Sequence 5’ – 3’ Reference

PRRSV-1 ORF5 EU ORF5 F CCG​TCT​GTG​ATG​AGR​TGG​GC Kang et al., 2018 [13]

EU ORF5 R GGA​YAC​TTT​TAG​GGC​RTA​TA

ORF6 EU ORF6 F GTC​GTC​CTC​GAA​GGG​GTT​AAAG​ In this studya

EU ORF6 R YGG​CGC​TGG​GAC​TTY​ATC​A

ORF7 EU ORF7 F GCA​TAC​GCT​GTG​AGA​AAG​C

EU ORF7 R CTA​TTC​AAT​TAG​GGC​GAC​CGTG​

PRRSV-2 ORF5 NA ORF5 F GTG​GGC​RAC​YGT​TTT​AGC​CT

NA ORF5 R CAT​AGT​GAG​CGC​GAC​CYT​AT

ORF6 NA ORF6 F TYG​TGC​TTG​ATG​GTT​CCG​YG

NA ORF6 R AGY​TGA​TTG​ACT​GGC​TGG​CC

ORF7 NA ORF7 F AAC​GGY​ACA​YTG​GTG​CCC​

NA ORF7 R CTA​TTC​AAT​TAG​GGC​GAC​CGTG​

http://weblogo.berkeley.edu/
https://www.hiv.lanl.gov/
http://www.datamonkey.org/
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RT-PCR kit (QIAGEN). The reaction mix was prepared 
using 10 μL of 2 × probe RT-PCR Master Mix, 0.2 μL of 
QN Probe RT-Mix, 3 μL of the final concentration of for-
ward/reverse primer and probe mix according to a previ-
ously described protocol [45], 2 μL of RNase-free water, 
and 5 μL of RNA. Reactions were performed according to 
the manufacturer’s instructions.

Sensitivities and specificities of each assay using reference 
strains
The sensitivities of the assays were evaluated using two 
reference strains, the Lelystad strain for PRRSV-1 and 
LMY strain (GenBank No. DQ473474) for PRRSV-2. 
Lelystad virus (105.0 50% tissue culture infective dose per 
ml [TCID50/ml]) and LMY virus (105.2 TCID50/ml) were 
serially tenfold diluted from 105 to 10–1 TCID50/ml and 
applied to each one-step real-time RT-PCR. To estimate 
diagnostic specificity, other respiratory viruses, such as 
porcine circovirus type 2 and type 3 (PCV2 and PCV3), 
classical swine fever virus (CSFV), porcine parvovirus 
(PPV), and SIV were tested for cross-reactivity.

Clinical evaluation of three one‑step real‑time RT‑PCR 
assays
The three one-step real-time RT-PCR assays were eval-
uated for 129 clinical samples, and PRRSV-positive 
samples were determined by sequencing. In order to 
eliminate PCR inhibition of total RNA extracted from tis-
sue samples, false-negative samples were diluted tenfold 
in five concentrations (10–1, 10–2, 10–3, 10–4, and 10–5) 
[46, 47]. The threshold value was set at 200 relative fluo-
rescence units (RFU) above the noise band. The samples 
were tested in independent runs in separate rooms for a 
one-step real-time RT-PCR assay.

Results
Phylogenetic analysis of PRRSV
PRRSV was detected in 109 samples, which consisted 
of 47 samples for PRRSV-1 and 62 samples for PRRSV-
2. Twenty samples were negative for PRRSV. Through 
ORF5 analysis, the PRRSV-1 samples belonged to pan-
European subtype 1 and were classified into subgroup 
A (43/47, 91.49%) and subgroup C (4/47, 8.51%) (Fig. 1). 
The PRRSV-1 nucleotide sequence homologies of ORF5 
to Lelystad were 79.74–87.23% and 90.69–94.78% for 
subgroup A and subgroup C, respectively. The nucleotide 
sequence homologies of ORF5, ORF6, and ORF7 among 
the different PRRSV-1 samples were 79.59–99.83%, 
85.85–100%, and 86.52–100%, respectively. The PRRSV-2 
samples by ORF5 analysis were classified into lineage 1 
(25/62, 40.32%), Kor C (13/62, 20.97%), Kor B (10/62, 
16.13%), lineage 5 (9/62, 14.52%), and Kor A (5/62, 8.06%) 
(Fig. 2A). The PRRSV-2 nucleotide sequence homologies 

of ORF5 to VR2332 were 79.88–82.52%, 78.71–83.90%, 
84.63–85.77%, 95.54–99.33%, and 82.78–86.14% for lin-
eage 1, Kor C and B, lineage 5, and Kor A, respectively. 
The nucleotide sequence homologies of ORF5, ORF6, 
and ORF7 among different samples of PRRSV-2 were 
74.81–100%, 83.21–99.81%, and 79.66–100%, respec-
tively. Among lineage 1, 22 samples (22/62, 35.48%) 
could be classified into sublineage 1.8 (NADC30-like) 
and three samples (3/62, 4.84%) belonged to sublineage 
1.6 (Fig. 2B). The mean evolutionary rates of 238 Korean 
PRRSV-1 and 319 PRRSV-2 were 6.931 × 10–3/site/year 
(95% HPD intervals from 5.8521 × 10–3 to 7.9748 × 10–3) 
and 5.131 × 10–3/site/year (95% HPD intervals from 
4.516 × 10–3 to 5.7664 × 10–3), respectively.

Amino acid analysis of GP5 and M protein from PRRSV‑1
Previous studies identified one neutralizing epitope 
at amino acid (aa) 29–35 in GP5, which was reported 
to be 29WSFADGN35 in the Lelystad strain. Addition-
ally, there were T cell epitopes and four B cell epitopes 
(GP5-I, GP5-II, GP5-III, and M-I) in GP5 and M protein 
of PRRSV-1 [48–51]. As shown in Fig.  3, the neutraliz-
ing epitope was conserved with a low level of entropy. 
Subgroup A did not show much variation in the neutral-
izing epitope region, while only the 20R44-37–1 sample 
belonging to subgroup C showed variation in position 
31 (31F → 31S) and 35 (35 N → 35S). By contrast, the GP5-
III and M-I regions were variable with a high level of 
entropy, indicating genetic diversity (Fig.  3). A total of 
16 codon sites were positively selected in the GP5 and M 
proteins of PRRSV-1 (Table 2). Interestingly, one positive 
selection site at position 35 was included in the neutral-
izing epitope region (positions 29–35), and two positive 
selection sites at positions 56 and 60 were included in the 
T cell epitope region (positions 53–75). Positive selection 
sites at positions 5, 7, 9, 20, 35, 36, and 104 in GP5 were 
observed with p-value < 0.01.

Amino acid analysis of GP5 and M protein from PRRSV‑2
Both a decoy epitope and a neutralizing epitope located 
at GP5 of PRRSV-2 have been identified, comprising resi-
dues 27–30 (27VLVN30) and residues 37–45 (37SHLQLI-
YNL45), respectively (Ostrowski et al., 2002). The diversity 
of amino acid sequences occurred in two previously iden-
tified B cell epitopes, aa 1–15 and aa 187–200, and two 
previously identified T cell epitopes, aa 117–131 and aa 
149–163 (de Lima et al., 2006; Vashisht et al., 2008; Zhou 
et al., 2009). As shown in Fig. 4A, critical amino acid vari-
ations in the B cell and T cell epitopes were also found in 
GP5 of PRRSV-2. In the decoy epitope compared with the 
VR2332 strain, significant diversity was found with higher 
amino acid entropy. Interestingly, a specific substitution 
at position 44 (44 N → 44 K) was found in the 21R2-15–1 



Page 5 of 13Shin et al. BMC Veterinary Research          (2022) 18:327 	

Fig. 1  Phylogenetic analysis of ORF5 of PRRSV-1 isolates. The tree was constructed by maximum likelihood method. Prototype viruses, vaccine 
viruses used in Korean swine farms were marked with and , respectively. Subgroup A and C of field strains obtained from this study was marked 
with and , respectively
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(A)

(B)

Fig. 2  Phylogenetic analysis of ORF5 of PRRSV-2 isolates (A). The tree was constructed by maximum likelihood method. Prototype viruses, vaccine 
viruses used in Korean swine farms were marked with and , respectively. Lineage 1, lineage 5, Kor A, Kor B, and Kor C of field strains obtained 
from this study was marked with , , , , and , respectively. Genotyping of PRRSV-2 lineage 1 circulating in Korea (B)
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sample belonging to lineage 1. In addition, 18R10-16–2 
and 20D007-2 samples belonging to Kor C and 21D82-1 
sample belonging to lineage 1 had a cysteine at position 
102 in GP5. The 18R10-16–2 sample belonging to Kor 
C and 20D253-2 sample belonging to lineage 1 have an 
arginine at position 104 in GP5. Previous studies identi-
fied two B cell epitope regions at positions 10 and 70, and 
three T cell epitope regions at aa 9–23, aa 33–47, and aa 
57–71 of M proteins [52–54]. The M protein region was 
relatively more conserved compared with that of GP5 
(Fig.  4B). A specific substitution at position 8 (8F → 8L) 
was found in the 19R44-3–2 sample belonging to lineage 
5. In addition, amino acid mutations and higher amino 
acid entropy at position 10 in 50 PRRSV-2 and position 
70 in 11 PRRSV-2 were found. Positive selection pressure 
analysis confirmed 18 codon sites in GP5 (Table 2). Four 
positive selection sites at positions 2, 5, 6, and 15 were 
included in the B cell epitope region (positions 1–15), 
two positive selection sites at positions 28 and 30 were 
included in the decoy epitope region (positions 27–30), 
and five positive selection sites at positions 32, 33, 34, 35, 
and 59 were included in hypervariable regions 1 and 2. 

Subsequently, two positive selection sites at positions 102 
and 104 were included in the B cell epitope regions, and 
one positive selection site at position 151 was included in 
the T cell epitope region (positions 149–163). A total of 
four codon sites were found to be positively selected in M 
protein of PRRSV-2 (Table 2). One positive selection site 
at position 10 was included in the B cell epitope region, 
and three positive selection sites at positions 15, 16, and 
66 were included in the T cell epitope regions (Table 2).

Sensitivities and specificities of three one‑step real‑time 
RT‑PCR assays
The sensitivities of three one-step real-time RT-PCR 
assays with two reference strains (Lelystad and LMY 
strain) were estimated to be 100 TCID50/100μL. In the 
specificities of all one-step real-time RT-PCR assays 
determined by testing respiratory disease-causing 
viruses, such as PCV2, PCV3, CSFV, PPV, and SIV, no 
cross-reactivity was observed (data not shown).

Fig. 3  The alignment and entropy plot (amino acid diversity) of GP5 and M of PRRSV-1 samples with Lelystad strain. Multiple alignments of GP5 (A) 
and M (B) protein of PRRSV-1 are numbered from start of the GP5 domain (aa 1–201) and M protein domain (aa 1–100), respectively. The sequence 
of Lelystad is shown at the top of (A) and (B). The size of each aa letter at each sequence logos is proportional to the frequency. Amino acids are 
color-coded: blank, nonpolar; green, polar uncharged; red, polar with a positive charge; blue, polar with negative charge. A red square box indicates 
a B-cell epitope region, and a red round box indicates a T-cell epitope region. NE: neutralizing epitope, T epitope: T-cell epitope
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Clinical evaluation of three one‑step real‑time RT‑PCR 
assays
Twenty PRRSV-negative clinical samples showed the 
same results in all one-step real-time RT-PCR assays. As 
shown in Table 3, the A test detected 100% of PRRSV-1 
(47/47) and PRRSV-2 (62/62) in the samples. The B 
test detected 100% of PRRSV-1 (47/47) and 98.39% of 
PRRSV-2 (61/62) in the samples. Only 18D283-1 sam-
ple, belonging to Kor A of PRRSV-2, was not detected in 
the B test. When identifying inhibitors in the 18D283-1 
sample, none of the diluted samples was detected (data 
not shown). Meanwhile, the C test detected 72.34% of 
PRRSV-1 (34/47) and 69.35% of PRRSV-2 (43/62) in the 
samples. There were 13 undetected samples of PRRSV-1 
belonging to subgroups A (n = 12) and subgroup C 
(n = 1), and 19 undetected samples of PRRSV-2 belonged 
to Kor C (n = 8), Kor A (n = 4), lineage 1 (n = 4), Kor B 
(n = 2), and lineage 5 (n = 1). On comparison with the 
nucleotide sequences of the primers and probe in the 
C test, several nucleotide mismatches were observed 
in the forward primer sequences. The forward primer 
against PRRSV-1 was located at positions 14,792–14,809 
in ORF7 of the Lelystad strain. Several mismatches 
were observed of nucleotide positions 14,792 (G/A), 
14,795 (C/T), 14,798 (C/T), 14,801 (C/T), 14,804 (C/T), 

14,805 (C/T), 14,806 (A/T), and 14,808 (A/G) (Supple-
mentary Fig.  1A). The forward primer against PRRSV-2 
was located at positions 15,257–15,274 in 3′ end of 
ORF7 and 3′-untranslated regions (UTR) of the VR2332 
strain. Several mismatches were identified at nucleotide 
positions 15,257 (A/G/T), 15,261(T/C), 15,262(G/A), 
15,263(G/A/T), 15,265(C/T/A), 15,267(G/A), 
15,268(G/T/A), 15,269(C/T), 15,270(A/T) 15,271(T/C), 
15,272(T/C), and 15,274(C/T). In particular, the 18R10-
52–1 sample, belonging to Kor C of PRRSV-2, has 15 
nucleotide deletions in the detection region of the for-
ward primer (Supplementary Fig. 1B).

Discussion
After 30  years of PRRSV emergence, PRRSV infection 
remains a critical disease that causes enormous eco-
nomic losses to the swine industry worldwide. Despite 
widespread efforts to control and prevent PRRSV infec-
tion, the virus has rapidly spread worldwide and has 
increasing genetic diversity [55]. The evolutionary rate 
of PRRSV (4.71–9.8 × 10–2/sites/year) is the highest 
among RNA viruses [56], which allows genetic diver-
sity within PRRSV and the emergence of new pheno-
types. In this study, a phylogenetic analysis of Korean 
PRRSV was performed using clinical samples collected 

Table 2  Positive selection sites of Korean PRRSV identified between January 2018 and September 2021

a Amino acid position based on Lelystad strain
b Amino acid position based on VR2332 strain

Type PRRSV-1 PRRSV-2

Structural protein GP5 M GP5 M

Positively selected sites Sitea P-value Sitea P-value Siteb P-value Siteb P-value

2 0.03 58 0.02 2 0.03 10  < 0.01

5  < 0.01 5 0.02 15 0.03

7  < 0.01 6 0.03 16  < 0.01

8 0.02 15 0.04 66  < 0.01

9  < 0.01 26 0.03

12 0.04 28 0.01

14 0.03 30 0.04

20  < 0.01 32  < 0.01

22 0.04 33 0.01

35  < 0.01 34  < 0.01

36  < 0.01 35 0.02

56 0.02 59 0.04

60 0.01 61 0.03

103 0.03 73 0.02

104  < 0.01 98 0.02

102 0.05

104 0.05

151 0.05
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from January 2018 to September 2021. Our results are 
consistent with previous findings in which all Korean 
PRRSV-1 belong to pan-European subtype 1, and most 
belong to subgroup A. On the other hand, Korean 
PRRSV-2 belongs to lineage 1, lineage 5, and Korean 
lineages (Kor A, B, and C) and the majority of Korean 
PRRSV-2 belongs to lineage 5 [13, 41]. However, in this 

study, lineage 1 shows the highest prevalence (25/62, 
40.32%) followed by Kor C (13/62, 20.97%), Kor B 
(10/62, 16.13%), lineage 5 (9/62, 14.52%), and Kor A 
(5/62, 8.06%). A recent report showed that the PRRSV-2 
lineage 1 population increased from 2014 (1.8%) to 
2019 (29.6%) in Korea owing to the spread of subline-
age 1.8 (NADC30-like viruses) and introduction of 

Fig. 4  The alignment and entropy plot (amino acid diversity) of GP5 and M of PRRSV-2 samples with VR2332 strain. Multiple alignments of GP5 (A) 
and M (B) protein of PRRSV-2 are numbered from start of the GP5 domain (aa 1–200) and M protein domain (aa 1–100), respectively. The sequence 
of VR2332 is shown at the top of (A) and (B). The meaning of the size and color of the sequence logos is explained in the legend to Fig. 3. A red 
square box indicates a B-cell epitope region, and a red round box indicates a T-cell epitope region. DE: decoy epitope, NE: neutralizing epitope, HVR: 
hypervariable region, B epitope: B-cell epitope, T epitope: T-cell epitope
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sublineage 1.6, comprising the second-largest popula-
tion after lineage 5 (31.1%) in 2019 [41]. These changes 
may support the hypothesis for these epidemic situa-
tions such as the importing of breeding pigs and arti-
ficial insemination [57, 58]. Although the prevalence of 
PRRSV-2 in Korea should be confirmed in a larger sam-
ple size, we speculate that lineage 1 will become highly 
prevalent over time in Korea.

Previous studies showed ORF5 sequence homology of 
85.8–90.9% between Korean PRRSV-1 and Lelystad virus 
in 2005–2009, and 84.9–98.4% in 2013–2016 [13]. The 
ORF6 of Korean PRRSV-1 showed sequence homology 
of 93.2–98.6% among the Korean strains and 85.6–94.4% 
among the non-Korean strains in 2012 [59]. The ORF7 
of Korean PRRSV-1 showed a sequence homology of 
88.8–99.7% among the Korean strains and 79.1–95.0% 
among the non-Korean strains in the 2000s [11, 14]. In 
this study, the lowest nucleotide sequence homology 
of ORF5 between PRRSV-1 and the Lelystad strain was 
79.74%, indicating a decrease of 6.06% over approxi-
mately 15  years. The lowest homologies of ORF6 and 
ORF7 among the different PRRSV-1 isolates were 85.85% 
and 86.52%, respectively, indicating decreases of 7.35% 
and 2.28%, respectively. The ORF5 sequence homology 
between Korean PRRSV-2 and VR2332 was 84.7–99.5% in 
2003–2010 and 82.3–99.3% in 2013–2016 [13]. The ORF6 
nucleotide sequence identity among the Korean PRRSV-2 
strains was 85.5–98.2% [60]. The ORF7 of Korean 
PRRSV-2 showed a sequence homology of 86.2–100.0% 
with each other and 88.3–100% with isolates from other 
geographic regions [61]. In this study, the lowest nucleo-
tide sequence homology of ORF5 between PRRSV-2 and 
VR2332 was 78.71%, indicating a decrease of 5.99% in 
over approximately 20  years. The lowest homologies of 
ORF6 and ORF7 among the different PRRSV-2 isolates 
is 83.21% and 79.66%, respectively, indicating decreases 
of 2.29% and 6.54%, respectively. Previous study showed 
nucleotide substitution rates of 1.46 × 10–3 for PRRSV-2 
viruses and 3.29 × 10–3 substitutions/site/year for two 
genotype isolates based on ORF5 sequences data [16, 
62] and 4.17–9.8 × 10–2 substitutions/site/year based on 
ORFs 3–5 sequences of two genotype PRRSVs [56]. Con-
sistent with theses previous investigations, our results 

also indicate that Korean PRRSV has high substitution 
rates of 5.8521–7.9748 × 10–3 for Korean PRRSV-1 and 
4.516–5.7664 × 10–3 for Korean PRRSV-2. Therefore, it is 
suggested that the mutation rate of PRRSV circulating in 
Korea has increased over time.

In this study, the neutralizing epitope of PRRSV-1 was 
found to be conserved, but the GP5-III and M-I regions 
of PRRSV-1 were variable. Recent studies on the amino 
acid analysis of GP5 of Korean PRRSV-1 also showed a 
relatively conserved pattern in the B cell epitope regions, 
except for GP5-III (aa 165–176) [13, 41, 63]. GP5 and M 
of PRRSV-1 are not susceptible to antibody-mediated 
virus neutralization, in contrast to GP5 of PRRSV-2 is 
generally considered the main target for virus-neutral-
izing antibodies [50]. To understand the mechanism of 
neutralizing antibody against the Korean PRRSV-1, fur-
ther analysis of the neutralizing antibody-escape mutants 
of PRRSV in other minor envelope glycoproteins such as 
GP2, GP3, and GP4 is required. The residue at position 
44 of PRRSV-2 GP5 plays a critical role in virus infec-
tivity; position 50 of GP5 and position 8 of the M pro-
tein are essential for assembly of PRRSV particles [64, 
65]. In this study of PRRSV-2, the key residues at posi-
tion 44 of GP5 and position 8 of M protein were variable 
in some samples. The key residues at positions 102 and 
104 of PRRSV-2 GP5, which determine susceptibility to 
viral neutralization, were variable [66]. Residues (V102C 
and G104R) that were identical to those in a neutraliz-
ing antibody-escape mutant and with higher amino acid 
entropy were found in our several samples under posi-
tive selective pressure. In addition, amino acid mutations 
at positions 10 and 70 of PRRSV-2 M protein are related 
to susceptibility to viral neutralization [53, 54]; these 
features were validated in our samples. The hypervari-
able regions can modulate the accessibility of neutraliz-
ing antibodies to the neutralizing epitope [67]. Recently, 
variability in the decoy epitope region and hypervari-
able regions of GP5, as well as mutations in key residues 
related to neutralizing antibody-escape mutants, have 
been commonly found in Korean PRRSV-2 amino acid 
analysis studies [13, 41, 60]. These variations were also 
found among the PRRSV-2 samples in this study. There-
fore, Korean PRRSV-2 has evolved to genetic variants 
with resistance to neutralization and may be able to 
escape neutralization by antibodies that are induced by 
commercial PRRS modified live vaccines (MLV).

A positive selection signal was detected in the neutral-
izing epitope region of PRRSV-1. Incidentally, sequence 
analysis of PRRSV-2 revealed variation and positive 
selection pressure within the decoy epitope and the neu-
tralizing epitope regions. Recent research demonstrated 
that vaccination resulted in the emergence of antibody-
escaping mutants, in which strong positive selection 

Table 3  Comparison of three one-step real-time RT-PCR with 47 
PRRSV-1 and 62 PRRSV-2

Genotype Number of 
samples

Number of positive (%)

A test B test C test

PRRSV-1 47 47 (100) 47 (100) 34 (72.34)

PRRSV-2 62 62 (100) 61 (98.39) 43 (69.35)

Total 109 109 (100) 108 (99.08) 77 (70.64)
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contributed to amino acid substitutions [68]. In a com-
parative analysis of PRRSV genetic diversity before and 
after vaccine adoption in Korea, PRRSV vaccination 
increased positively selected sites and the emergence of 
new glycosylation sites [63]. Currently, several commer-
cial PRRS MLVs are available in Korea for the control of 
PRRSV infections. In this respect, it can be inferred that 
PRRSV vaccination leads to affecting positive selection, 
resulting in the emergence of escape variants.

Several reports have shown that genetic variability 
of PRRSV resulting in mutations at the primer binding 
sites leads to failure of RT-PCR tests [35, 69]. In the B 
test, only one sample (18D283-1) was not detected for 
PRRSV-2, which was not owing to an inhibitory effect. 
However, the nucleotide sequence could not be con-
firmed because the information on the primers and 
probe of the B test was confidential. The C test showed 
the lowest detection rate of 72.34% (34/47) for PRRSV-1 
positive samples and 69.35% (43/62) for PRRSV-2 posi-
tive samples. On comparing the sequence of the false-
negative samples of PRRSV-1 or PRRSV-2 and primers 
or probes of the C test, several nucleotide differences 
were found in several PRRSV-1 and PRRSV-2 posi-
tive samples. In general, inconsistencies in diagnostic 
results are known to be more common in the detection 
of PRRSV-1 than PRRSV-2. This observation could be 
explained by the large genetic diversity of the viruses 
within the PRRSV-1 genotype [35, 44, 70–72]. However, 
this study showed similar proportions of inconsisten-
cies in the detection of PRRSV-1 and PRRSV-2 samples 
in the C test, suggesting that the genetic diversity of the 
viruses within PRRSV-2 was also increased.

Conclusions
Our results demonstrate that two one-step real-time 
RT-PCR assays (A and B tests) efficiently detected 
PRRSV-1 and PRRSV-2 in the clinical samples. How-
ever, considering the emergence of the dominant pop-
ulation, diversification of evolution within the epitope 
regions of PRRSV structural protein, and character-
istics of PRRSV in which genetic mutations continue 
to occur, frequent evaluation of diagnostic methods is 
essential for an accurate diagnosis of PRRSV. In addi-
tion, regular monitoring of the emergence of new 
PRRSV will provide information on the implementation 
of control and preventive measures against PRRSV.
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