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Abstract: Fatty acids (FAs) have structural and functional diversity. FAs in the heart are closely
associated with cardiac function, and their qualitative or quantitative abnormalities lead to the
onset and progression of cardiac disease. FAs are important as an energy substrate for the heart,
but when in excess, they exhibit cardio-lipotoxicity that causes cardiac dysfunction or heart failure
with preserved ejection fraction. FAs also play a role as part of phospholipids that compose cell
membranes, and the changes in mitochondrial phospholipid cardiolipin and the FA composition of
plasma membrane phospholipids affect cardiomyocyte survival. In addition, FA metabolites exert a
wide variety of bioactivities in the heart as lipid mediators. Recent advances in measurement using
mass spectrometry have identified trace amounts of n-3 polyunsaturated fatty acids (PUFAs)-derived
bioactive metabolites associated with heart disease. n-3 PUFAs have a variety of cardioprotective
effects and have been shown in clinical trials to be effective in cardiovascular diseases, including
heart failure. This review outlines the contributions of FAs to cardiac function and pathogenesis of
heart diseases from the perspective of three major roles and proposes therapeutic applications and
new medical perspectives of FAs represented by n-3 PUFAs.

Keywords: fatty acid; heart failure; lipid dynamics; lipotoxicity; lipid droplet; cardiolipin; lipid
mediator; n-3 PUFA

1. Introduction

Many lipids are subjected to precise enzymatic control to maintain the homeostasis of
tissues in living organisms, and it is important to regulate the qualitative and quantitative
balance of lipids in the heart. In the stressed heart, alterations in lipid composition and
structural remodeling of membrane lipids occur mainly through changes in the expres-
sion of enzymes related to lipid synthesis, metabolism, remodeling, and oxidation. The
changes in the cardiac lipid profile act pathologically or compensatory to heart injury and
characterize heart failure.

Fatty acids (FAs) are used as (1) energy sources, (2) components of membrane phos-
pholipids, and (3) bioactive mediators. In this review, from the point of view of these three
major roles, we introduce and discuss the recent advances in understanding lipid dynamics,
especially focusing on FA changes in heart failure.

2. FAs Control the Heart as an Energy Source

In the heart, FA uptake, storage, and metabolism are strictly regulated to produce
adenosine triphosphate (ATP) in the mitochondria via FA oxidation (FAO) (Figure 1).
Excessive supply of FAs to the heart due to overeating or metabolic disorders is known
to produce excess energy and damage cardiomyocytes by lipotoxicity [1]. In fact, lifestyle
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diseases such as obesity, diabetes, and metabolic syndrome are closely associated with the
pathogenesis of heart disease. In addition, “heart failure with preserved ejection fraction
(HFpEF)” due to left ventricular (LV) diastolic dysfunction, which has been increasing in
number in recent years, has obesity and diabetes as risk factors, and it has been pointed
out that cardiac lipotoxicity is involved in the pathogenesis [2,3]. Additionally, some
of the oversupplied FAs are not only consumed but are also stored as lipid droplets
(LDs). In addition to functioning as a reservoir, LDs play important roles in cell survival,
including the regulation of lipid dynamics and antioxidant stress action. In recent years,
the molecular mechanism underlying the myocardial damages caused by abnormal cardiac
lipid metabolism resulting from systemic metabolic disorders is gradually being elucidated.
This chapter outlines cardiac lipotoxicity and LD multifunctionality due to excessive FA
loading.
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Figure 1. FA dynamics in cardiomyocytes. The supply, storage, and metabolism of the FAs are
strictly controlled in healthy hearts. TAG, triacylglycerol; ATGL, adipose triglyceride lipase; Plin5,
perilipin 5.

2.1. Cardiac Lipotoxicity Due to the Imbalance between Supply and Oxidation of FAs

Free FAs are taken up into cardiomyocytes via transporters, such as CD36 and FA
transport protein (FATP), and are then rapidly converted to acyl-CoA by long-chain acyl-
CoA synthase (ACSL) [4]. Acyl-CoA undergoes β-oxidation in mitochondria to produce
ATP. Cardiac dysfunction caused by abnormal lipid metabolism in cardiomyocytes is called
lipotoxic cardiomyopathy. Lipotoxicity is observed not only on the left heart but also on
the right heart failure due to pulmonary hypertension [5]. The molecular mechanism of
cardiac lipotoxicity is complex, and the definitive mechanism by which lipid overload
leads to cardiac dysfunction and HFpEF remains unclear. Previous reports have presented
that lipotoxicity is involved in mitochondrial dysfunction, autophagy disruption, reactive
oxygen species (ROS) production, endoplasmic reticulum (ER) stress, and cardiotoxic
lipid (such as ceramide or diacylglycerol) accumulation [6]. In obesity and diabetes, the
supply of FAs is increased, and FAO is enhanced [7,8]. Increased FAO in the heart has long
been thought to lead to cardiac dysfunction due to overproduction of ROS and decreased
mitochondrial function. However, recent studies have shown that the upregulation of
FAO by removal of the acetyl-coenzyme A carboxylase 2 (ACC2), which inhibits the
transport of FA to mitochondria, attenuates cardiac dysfunction caused by metabolic stress
from a high-fat diet (HFD) or pressure overload by transverse aortic constriction [9,10].
From the above, it is considered that the imbalance in which the FA supply exceeds the
FA oxidation characterizes the lipotoxicity of the heart and that the elimination of this
imbalance contributes to the improvement of cardiac dysfunction [4].

Patients with HFpEF account for about half of all patients with heart failure, and
recently, the number of patients has been increasing. However, there is little evidence of
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clinically effective treatments [11,12]. HFpEF is a typical phenotype of lipotoxic cardiomy-
opathy because of the presence of excessive lipid accumulation in the heart or the presence
of major risk factors, such as obesity and metabolic dysfunction [13,14]. To date, HFD-
or obesity-induced HFpEF animal models have commonly been used. Recently, a new
animal model has been developed that combines mechanical stress (L-arginine methyl ester
[L-NAME]) in addition to metabolic stress (HFD) as an HFpEF model that more accurately
mimics the pathology [15]. In this novel HFpEF model, the poor activation of the X-box-
binding protein-1(XBP1) which is one of the key molecules of unfolded protein response
increased the abundance and activation of the transcription factor Forkhead box protein
O1 (FoxO1) responsible for lipid metabolism, resulting in excessive lipid accumulation in
cardiomyocytes [16]. Interestingly, FAO does not increase in HFpEF [16]. These results also
suggest that FAO is not adaptively activated, and abnormal lipid accumulation occurs in
cardiomyocytes, which induces cardiotoxicity and contributes to the appearance of HFpEF.

2.2. Oversupplied FAs Are Stored in LDs

Some of the oversupplied FAs are stored in the form of triacylglycerols (TAGs) in LDs.
LDs have a stable structure with a single layer of phospholipids surrounding the TAGs.
Notably, LDs in cardiomyocytes are smaller than those in adipocytes, and the TAGs stored
in LDs are enzymatically released in response to energy demand and used for β-oxidation.
LDs are spatially located near mitochondria, and the functional and structural interactions
between LDs and mitochondria enable an accurate and rapid supply of FAs [17]. Therefore,
dysregulation of LDs has been implicated in various cardiovascular diseases, including
heart failure [18].

In cardiomyocytes, the TAG hydrolysis enzyme, adipose triglyceride lipase (ATGL),
and the scaffold protein, perilipin 5, are highly expressed on the surface of LDs, and play
an important role in the turnover of TAG in myocardial LDs [19,20]. Since ATGL is the
rate-limiting enzyme for TAG breakdown in lipolysis, ATGL-deficient mice develop heart
failure early and die due to decreased lipolysis and excessive accumulation of TAG in the
heart [21]. The ATGL gene also causes the novel and intractable disease triglyceride deposit
cardiomyovasculopathy, which progresses to advanced heart failure [22]. Interestingly, the
hearts of ATGL-deficient mice exhibit reduced expression of target genes for peroxisome
proliferator activated receptor alpha (PPARα) and oxidative phosphorylation in mitochon-
dria [21,23]. The nuclear receptor PPARα is a transcription factor that comprehensively
controls FA uptake, TAG synthesis, and oxidation. A decrease in PPARα activity, and not
an excessive accumulation of TAG, leads to cardiotoxicity in ATGL-deficient mice.

In addition to excess lipids, changes in the quality of lipids also affect the properties
and functions of the heart. FA desaturation has many beneficial roles in cardiomyocytes,
such as increasing the fluidity of cell membranes and suppressing ER stress, but desaturated
FAs are still susceptible to oxidation. Lipid oxidation often has detrimental effects on human
health. Since low-density lipoprotein (LDL) contains PUFAs such as linoleic acid, it is easily
oxidized by ROS and radicals. Uptake of oxidized LDL by macrophages generated foam
cells that accumulated LDs, leading chronic inflammation and smooth muscle proliferation,
resulting in advanced atherosclerosis [24]. Taking advantage of the oxidizable properties
of PUFAs, LDs also have a role as absorbers to take on lipid oxidative damage to cells. In
the neural stem cell niche exposed to hypoxia and oxidative stress, polyunsaturated FAs
(PUFAs) move from the cell membrane to the LDs, preventing cellular peroxidation [25].

The composition of LDs depends on the metabolic environment of the tissue in which
LDs are accumulated. LDs in cardiomyocytes mainly store TAG, while steroid-producing
cells such as macrophages and adrenocortical cells mainly store CE [26]. Although one study
reports on the differences in the proteome expressed in triglyceride-rich LDs and cholesterol-
rich LDs [27], the role of cholesterol-rich LDs in cardiomyocytes and its relationship to
heart disease remain unclear.
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3. FAs Control the Heart as a Component of Membrane Phospholipids

FAs play an important role as major components of phospholipids. Many studies have
shown that dysregulation and disruption of lipid dynamics in cell and mitochondrial mem-
branes are associated with heart failure. Importantly, FAs not only form bilayer membranes
as part of phospholipids but also function as lipid metabolites with physiological activity by
undergoing various oxidative and metabolic processes in the cell membranes (see Section 4).
The diversity of FA profiles in phospholipids greatly affects cell function through changes
in cell membrane fluidity and the production of bioactive lipids. Glycerophospholipids
have different properties due to the binding of choline, ethanolamine, serine, or inositol
to the phosphate group, but the composition of FA esters bound to the glycerol backbone
also greatly affects the functional diversity of phospholipids [28]. Generally, saturated FAs
(SFAs) and monounsaturated FAs are ester-bonded to the sn-1 position, and PUFAs are
bonded to the sn-2 position of the glycerol backbone, respectively. The composition of FAs
with different chain lengths and the number of unsaturated bonds are defined by each
tissue and cell.

Phospholipids are not only produced from glycerol-3-phosphate in the de novo
Kennedy pathway [29]; various phospholipases and lysophospholipid acyltransferases
are involved in the remodeling process (Lands’ cycle) [30,31], resulting in the structural
diversity of phospholipids. In recent years, these enzymes which are involved in lipid
remodeling and various pathological conditions have been identified (Figure 2). Here, we
outline the cardiac effects of FA composition in phospholipids, including cardiolipin (CL),
a phospholipid abundant in the heart.

Figure 2. Intracellular dynamics of phospholipid-containing FAs. The diversity of the FAs is charac-
terized by the action of various enzymes involved in the synthesis and remodeling processes. FA,
fatty acid; CL, cardiolipin.

3.1. Balance of FA Saturation in Membrane Phospholipids

Changes in FA composition observed in heart disease are regulated, at least in part, by
the FA synthesis system. The most abundant FAs have 16 or 18 carbon molecules, which are
major products of endogenous FA synthesis and are essential for cellular activity. Further-
more, the addition of double bonds and the extension of carbon chains are enzymatically
conducted to produce unsaturated FAs.

Several reports have shown the differential effects of saturated FA and monounsatu-
rated FA on cellular and cardiac function [32,33], while desaturation enzymes are associated
with heart disease. Stearoyl-CoA desaturase 1 (SCD-1) introduces a double bond into C16:0
or C18:0 saturated FAs to produce C16:1 (n-7) or C18:1 (n-9) monounsaturated FAs. SCD-1
is highly expressed in the hearts of patients with obesity or diabetes, and an increase in
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SCD-1 alleviates SFA-induced adverse FA catabolism and eventually prevents SFA-induced
apoptosis [34]. Moreover, SCD-1 is regulated by Sirtuin 1 (SIRT1), a well-known longevity
gene, and acts suppressively against SFA overload-induced membrane phospholipid sat-
uration to restore LV diastolic dysfunction. Therefore, in one study, the administration
of nicotinamide mononucleotide, which enhances the activity of Sirt1, improved the LV
diastolic function of SFA-rich HFD-fed mice [33,35].

There is accumulating evidence that the desaturase enzyme family, fatty acid desat-
urase (FADS), is also associated with cardiovascular diseases. FADS2 (also known as δ-6
desaturase [D6D]) is a rate-limiting enzyme that produces long-chain PUFAs, such as
arachidonic acid (AA) from linoleic acid (LA) or docosahexaenoic acid (DHA) from α-LA.
Since FADS2 activity is increased in the hearts of patients with dilated cardiomyopathy,
LA levels are lower and levels of AA and DHA are reciprocally higher in the hearts of
patients compared to the hearts of healthy controls [36]. The alteration of the FA profile is
attenuated in heart failure chronically unloaded with an LV assist device. Furthermore, the
administration of D6D inhibitors prevents remodeling of FA composition and attenuates
myocardial elevations in pathogenic eicosanoid species and lipid peroxidation to suppress
cardiac hypertrophy, fibrosis, and contractile dysfunction [36,37], indicating that aberrant
activation of FADS2 has a pathogenic role that exacerbates heart failure through unwanted
desaturation of FAs.

From the above evidence, the balance between the saturation and unsaturation of FAs
in the heart is important for maintaining organ homeostasis. Some desaturase enzymes
play a role in protecting against cellular damage due to over-saturation of cardiac FA
composition, while others cause over-desaturation to promote lipid peroxidation and the
production of inflammatory mediators.

3.2. FA Remodeling in Cardiolipin and Heart Disease

CL is a major phospholipid that constitutes the mitochondrial membrane and is
essential for maintaining the function of mitochondrial proteins involved in energy produc-
tion [38,39]. CL is localized to the inner mitochondrial membrane in healthy cells. However,
the distribution is dramatically changed upon mitochondrial injury and depolarization,
when a significant portion of CLs is translocated to the outer mitochondrial membrane,
and they are associated with apoptosis and mitophagy [40–42].

CL is a diphosphatidylglycerol with a dimeric structure, and in the mitochondria of
healthy human hearts, tetra-linoleic-CL with C18:2 (n-6) four acyl chains (symmetrical CL)
comprises approximately 80% of CL [43]. Loss of CL and/or tetra-linoleic-CL results in
dysfunction of the oxidative phosphorylation machinery, elevated production of ROS, and
alterations of mitochondrial morphology [44]. The amount of CL and its FA composition
(mainly C18:2 content) are altered in various pathological human and animal models of
heart failure, ischemia/reperfusion injury, and diabetic cardiomyopathy [45–47]. These
alterations are also observed in both left and right ventricular diseases [48]. The symme-
try of CL is lost if it contains at least one different FA residue or oxidative modification,
and such an asymmetric CL is involved as a precursor signaling molecule [40]. In addi-
tion, when CL is oxidized that electrostatically holds cytochrome C, the cytochrome C is
released and accumulates in the inter-membrane space, triggering apoptosis. Thus, oxi-
dized CL is closely related to acute tissue damage, including cardiac ischemia/reperfusion
injury [49–51]. Furthermore, positively charged doxorubicin, which is a well-known an-
ticancer drug that causes cardiomyopathy, is attracted to the highly negatively charged
CL, and the doxorubicin and generated ROS oxidize the CL, causing structural change,
cytochrome C release, and disruption of the electron transfer system [52].

CL is first produced in a highly saturated FA-rich form of phosphatidic acid (PA)
through a de novo synthetic pathway, and it matures by incorporating unsaturated chains,
such as C18:2 via the re-acylation pathway [45]. Proper remodeling and maintenance of
C18:2 chain content in CL play important roles in maintaining normal heart functioning.



Metabolites 2022, 12, 210 6 of 15

Variants of the gene encoding the re-acylation enzyme of CL, tafazzin, cause Barth
syndrome, which is a rare X-linked, multisystem disorder characterized by cardiomyopathy,
skeletal myopathy, neutropenia, and growth retardation [53]. A lack of tafazzin results in
low CL levels, and the acyl chain composition shifts toward less unsaturated species [54].
Additionally, tafazzin deficiency leads to unique developmental cardiomyopathy character-
ized by ventricular myocardial hypertrabeculation/noncompaction and early lethality [55].
In the hearts of adults, CL deficiency promotes the development of hypertrophic lipotoxic
cardiomyopathy [56].

There is accumulating evidence on the relationship between CL remodeling and
mitochondrial molecules. In cardiomyocytes with the tafazzin variant, the production
of ROS from mitochondria with unhealthy CL is increased to activate Ca2+/calmodulin-
dependent protein kinase II (CaMKII), leading to myocardial contractile disorders and
arrhythmias [57]. On the other hand, in tafazzin-deficient myocardium, ROS production
under hypoxic conditions is reduced and nuclear factor kappa B (NF-κB) activation is
suppressed, resulting in a decrease in hypoxia-inducible factor (HIF)-1α signaling. Tafazzin-
deficient murine hearts with decreased HIF-1α levels exhibit maladaptive hypertrophy with
heart failure in response to pressure overload [58]. Dilated cardiomyopathy with ataxia
(DCMA), hereditary cardiomyopathy caused by a mutation in a mitochondrial membrane
protein, DNAJC19, presents Barth syndrome-like symptoms [59]. Mutant DNAJC19 forms
a complex with prohibitin (PHB) present in the inner mitochondrial membrane, and the
loss of DNAJC19/PHB complexes affects CL acylation, leading to the accumulation of CL
species with altered acyl chains [60].

In addition to tafazzin, several enzymes affect the carbon chain composition of CL.
Acyl-CoA lysocardiolipin acyltransferase-1 (ALCAT1; also known as LCLAT1 or LYCAT)
has been identified as the enzyme responsible for the novel remodeling pathway of CL [61].
ALCAT1 is induced by oxidative stress. It exacerbates mitochondrial function [62] and
is involved in mitochondrial fusion [63] and various pathological conditions, such as car-
diomyopathy, Parkinson’s disease, fatty liver, and pulmonary fibrosis [64–67]. Importantly,
ALCAT1 also uses phosphatidylinositol (PI) as a substrate; therefore, interpretation of
its role in lipid dynamics should be carried out cautiously [68]. Acyl CoA synthetase-1
(ACSL1) is another enzyme required to incorporate LA into the CL. Deletion of ACSL1
markedly reduced C18:2 content in CL [69]. In addition, since ACSL1 expression is low in
heart failure when ACSL1 is forcibly expressed to enhance the acylation of long-chain FAs,
mitochondrial energy production is maintained, resulting in cardioprotection in pressure
overload-induced heart failure [70].

4. FAs Control the Heart as Bioactive Mediators

PUFAs are released from the sn-2 position of phospholipids by phospholipase A2.
Then, they are converted into a variety of unique bioactive metabolites, so-called lipid
mediators, by enzymes, such as cyclooxygenase (COX), lipoxygenase (LOX), and the
cytochrome p450 (CYP) family [71]. Lipid mediators are locally produced and act as
signaling molecules in various physiological processes. Arachidonic acid (AA)-derived
mediators are particularly active, many of which are pro-inflammatory, but some have
protective functions for the heart. In addition, recent developments in mass spectrometers
have made it possible to measure trace amounts of n-3 PUFA-derived metabolites, and it has
become clear that these have anti-inflammatory cardioprotective functions. Furthermore,
mass spectrometry has also made it possible to simultaneously measure a large number
of FA metabolites from animal and human biological samples, and the dynamics of FA
metabolites in various pathological conditions are being elucidated. This chapter presents
the role of n-6 PUFA-derived mediators, including eicosanoids, and n-3 PUFA-derived
mediators, including specialized pro-resolving mediators (SPMs), which are known to
possess cardioprotective effects on heart disease.
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4.1. n-6 PUFA-Derived Mediators

Eicosanoids, AA-derived lipid mediators such as prostaglandin (PG), leukotriene (LT),
and thromboxane (TX) have various effects on cardiac function and are involved in the
pathogenesis of heart diseases. Many reports have shown that eicosanoids are involved in
the pathophysiology of blood vessels such as thrombus formation, endothelial function,
and atherosclerosis. Eicosanoids are also known to be involved as pro-inflammatory me-
diators in inflammation-based pathologies for heart diseases. In systemic inflammatory
conditions, the eicosanoids TXA2 and PGF2alpha act directly on the heart to cause tachy-
cardia [72]. AA metabolites produced by cardiac 12/15-LOX are also involved in heart
disease. 12/15-LOX was upregulated in heart failure of a Dahl-sensitive rat and 12-HETE,
which is a major metabolite from AA by 12/15-LOX is involved in the development of heart
failure by increasing monocyte chemoattractant protein 1 (MCP-1) expression [73]. In the
heart of streptozotocin-induced diabetic cardiomyopathy, 12/15-LOX and inflammatory
cytokines are upregulated and the disruption of 12/15-LOX reduced cardiac dysfunction
and fibrosis [74].

While AA-derived mediators are pro-inflammatory and promote the development
of heart disease, some mediators act protectively on the heart. Prostaglandin I2, a repre-
sentative tissue-protective mediator, suppresses the onset of pressure overload-induced
cardiac hypertrophy or attenuates ischemia-reperfusion injury via prostaglandin I2 (IP)
receptor [75,76]. PGE2 also protects the heart from ischemia/reperfusion injury via the EP3
or EP4 receptor [77,78]. Prostaglandin D2, an AA metabolite produced by the COX pathway
in cardiomyocytes protects hearts from ischemia/reperfusion injury by activating nuclear
factor-erythroid 2-related factor 2 (Nrf2) [79,80]. Epoxyeicosatrienoic acids (EETs), which
are metabolites of AA by CYP epoxygenases, are known to possess beneficial effects of car-
diac remodeling and ischemia/reperfusion injury by various effects against inflammation,
fibrosis, or apoptosis [81,82]. The metabolites of linoleic acid (LA), one of n-6 PUFAs such as
AA, have been reported to affect the myocardium. 12,13-Dihydroxy-9z-octadecenoic acid
(12,13-diHOME), an oxidized LA metabolite released from brown adipose tissue (BAT),
is known to increase FA uptake into BAT and skeletal muscle and reduces circulating
triglycerides [83,84]. Furthermore, brown adipose tissue-derived 12,13-diHOME affects
cardiomyocytes directly, improves hemodynamics, and enhances cardiac function [85].

4.2. n-3 PUFA-Derived Mediators

Many basic studies have reported that n-3 PUFAs (which have multiple double bonds,
including a third double bond from the methyl end) have cardiovascular protective ef-
fects [86]. The physiological effects of various n-3 PUFA metabolites are also important in
generating cardiovascular protective effects.

18-hydroxyeicosapentaenoic acid (18-HEPE) is a primary oxidation product of EPA
which exhibits anti-inflammatory and anti-fibrotic effects in the heart [87]. Transgenic mice
which expressed Caenorhabditis elegans fat-1 protein, an n-3 desaturase that converts n-6
PUFAs to n-3 PUFAs, showed enrichment of n-3 PUFAs in almost all cells and tissues [88]
and displayed resistance to numerous inflammatory diseases, including colitis, pancreatitis,
osteoarthritis, atherosclerosis, obesity-linked insulin resistance, and some cancers [89]. In
fat-1 transgenic mice, the decline in LV function and cardiac remodeling was suppressed
even under pressure overload.

In recent years, novel n-3 PUFA-derived inflammation-regulating mediators, known
as SPMs, have been identified and are attracting particular attention. SPMs are produced
at the site of inflammation using n-3 PUFAs as the precursor and are actively involved
in the direction of inflammation resolution [90–92]. Resolvin E1 and protectin D1, the
representative SPMs, showed bioactivity at nanomolar levels that inhibited neutrophil
migration and inflammatory cytokine production. In pathological model studies, various
effects of SPMs have been reported, including the suppression of pathological angiogenesis
in retinopathy [93], leukocyte infiltration, and tissue damage in ischemia-reperfusion injury
in the brain and kidneys [94,95], and neutrophil infiltration in peritonitis [90]. Although the
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contribution of SPMs in the heart is poorly understood, SPMs are likely to reduce infarct
foci in an ischemia-reperfusion model [96]. Resolvin D1 induces SPM production in the
spleen, alters the phenotype of intraventricular macrophages, and inhibits fibrosis after
myocardial infarction [97].

5. n-3 PUFAs Protect the Heart

Among the FAs, n-3 PUFAs (especially eicosapentaenoic acid [EPA] and DHA) have
been validated in numerous clinical trials and used as therapeutic agents in the clinical
management of cardiovascular diseases. In addition, several epidemiological studies have
also revealed the beneficial effects of a high ratio of n-3/n-6 PUFA on the prevention of
cardiovascular diseases [98]. Since the serum n-3/n-6 PUFA ratio is highly dependent on
dietary contents, modern Western diets have approximately 15-fold higher amounts of n-6
PUFA compared to n-3 PUFA, thus increasing the risk of cardiovascular diseases. Therefore,
improving the ratio of n-3/n-6 PUFA by supplementing with n-3 PUFA is expected to be
one of the strategies to prevent cardiovascular diseases. In this chapter, we summarize
various clinical trials using n-3 PUFAs, provide an overview of studies that elucidated the
molecular mechanism of n-3 PUFAs in the pathogenesis of cardiovascular diseases, and
discuss the differences between EPA and DHA.

5.1. n-3 PUFAs in Clinical Trials

In the 1960s, an epidemiological study showed that the Inuit people who had a diet
high in n-3 PUFAs due to large consumption of fish had a significantly lower prevalence of
myocardial infarction than the Danish people who mainly ate meat (other than fish) [99].
Since then, numerous interventional clinical trials have been conducted worldwide. In
particular, the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico
(GISSI)-Prevenzione study, Japan EPA Lipid Intervention Study (JELIS), and Reduction of
Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT) have accumu-
lated evidence for the secondary prevention of ischemic heart disease [100–102]. Although
there are a few studies that can confirm the effectiveness of n-3 PUFAs, we are yet to reach
an absolute consensus because of varying results due to different study designs.

The most famous large-scale prospective study that validated the effectiveness of n-3
PUFAs in patients with heart failure was the GISSI-HF trial [103]. This trial showed that
n-3 PUFAs could reduce total mortality by 9%, and cardiovascular mortality and hospi-
talizations were reduced by 8% in patients with symptomatic chronic heart failure who
were receiving standard treatments, including aspirin, β-blockers, angiotensin-converting
enzyme inhibitors/angiotensin receptor blockers, and aldosterone receptor blockers. Al-
though the effect was small, the results were significant considering that the treatment was
an addition to the standard of care. Furthermore, in patients with dilated cardiomyopathy,
the addition of n-3 PUFAs to evidence-based medical therapy restored LV systolic function
and functional capacity and decreased hospitalization for heart failure [104]. In addition,
circulating levels of n-3 PUFAs were significantly associated with a reduced risk of heart
failure with both reduced and preserved ejection fraction [105]. Although evidence is still
limited, experimental reports have shown that n-3 PUFA supplementation is protective
against cardiac hypertrophy and heart failure [106,107], suggesting its potential as a new
treatment option for heart failure.

5.2. Pleiotropic Effects of n-3 PUFAs

In parallel with clinical trials, many basic research studies have been conducted to
elucidate the molecular mechanism underlying the cardioprotective effects of n-3 PU-
FAs. Various mechanisms have been proposed for the beneficial effects of n-3 PUFAs
on the cardiovascular system, including anti-arrhythmic, plasma triglyceride lowering,
anti-thrombotic, anti-atherosclerotic, endothelial relaxation, blood pressure lowering, anti-
inflammatory, and anti-fibrotic effects [71,86,108].
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FAs are involved in a variety of bioactivities owing to their high structural plasticity.
As mentioned before, while FAs are metabolized to function as bioactive mediators (see
Section 4), free FAs can directly bind to receptors on the cell surface and function as
ligands. In fact, orphan G-protein coupled receptors (GPCRs), such as GPR40 (Ffar1) and
GPR120 (Ffar4), have been identified as receptors for long-chain free FAs [109,110]. In
cardiac fibroblasts, Ffar4 is involved in the anti-fibrotic action of n-3 PUFAs [111]. Through
Ffar4, n-3 PUFAs suppress transforming growth factor β (TGF-β) signaling by inhibiting
the nuclear translocation of Smad2/3 and preventing pressure overload-induced cardiac
fibrosis [106,112].

Free FAs also act as endogenous ligands or transcriptional regulators of various nuclear
receptors and transcription factors. For example, n-3 PUFAs suppress PPAR [113,114] and
the transcriptional regulator, sterol regulatory element-binding protein 1c (SREBP1c) [115],
which are key molecules of lipid metabolism, thereby simultaneously controlling the tran-
scription of downstream genes involved in triglyceride biosynthesis, including acetyl CoA
carboxylase (ACC), FA synthase (FAS), and acyl-CoA synthetase (ACS). Additionally, n-3
PUFAs also affect cholesterol metabolism in the body. N-3 PUFAs enhance the activity of
lipoprotein lipase which mediates the hydrolysis of triglyceride (TG) in TG-rich lipoprotein,
such as chylomicron and very low-density lipoprotein (VLDL), at the luminal side of the en-
dothelium, thereby enhancing the catabolism of VLDL to lower the blood VLDL level [116].
Furthermore, n-3 PUFAs suppress the generation of small dense LDL by reducing the
expression of cholesterol ester transfer protein (CETP) which shuttles cholesteryl ester from
HDL to apo-B protein [117]. Thus, n-3 PUFAs have various improving effects on lipid
profile, and as a result, exert a strong anti-arteriosclerotic effect in combination [118,119].

Furthermore, n-3 PUFAs can be incorporated into the phospholipid bilayer of cell
membranes and can affect membrane fluidity, lipid microdomain formation, and signaling
across membranes. Cardiomyocytes enriched with n-3 PUFA (DHA) in the cell membrane
showed the alteration of cholesterol homeostasis that increased cholesterol biosynthesis,
cholesterol efflux, and free cholesterol pool size, compared to n-6 PUFA (AA)-enriched
cardiomyocytes [120]. Additionally, n-3 PUFAs modulate ion channels, such as L-type
calcium channels and sodium channels within the cell membrane of cardiomyocytes,
resulting in an anti-arrhythmic effect [121,122].

5.3. The Differences between EPA and DHA

To the best of our knowledge, there are no interventional studies comparing the
preventive and therapeutic effects of DHA or EPA alone on cardiovascular diseases; there-
fore, it is difficult to conclude which FA contributes to the cardioprotective roles of n-3
PUFAs. A recent REDUCE-IT study [102] (high-dose, high-purity EPA intake 4 g/day)
showed positive results supporting the potential of n-3 PUFAs, while the Vitamin D and
Omega-3 Trial (VITAL) and A Study of Cardiovascular Events in Diabetes (ASCEND)
studies [123,124] published at the same time (normal dose of EPA and DHA intake of 1
g/day) showed negative results for the effectiveness of n-3 PUFAs. These results suggest
that the use of high doses of high-purity EPA is necessary to exert cardioprotective effects.
However, the results of the most recently published Statin Residual Risk Reduction With
Epanova in High CV Risk Patients With Hypertriglyceridemia (STRENGTH) study (EPA
[4 g] and DHA) were negative, rekindling the debate on the efficacy of n-3 PUFAs. On
the other hand, in the Omega-3 Acid Ethyl Esters on Left Ventricular Remodeling After
Acute Myocardial Infarction (OMEGA-REMODELED) study, the patients with “post-acute
myocardial infarction” who were treated with high-dose EPA and DHA showed a reduction
in adverse LV remodeling and non-infarct myocardial fibrosis [125]. High-dose, high-purity
EPA administration may be the most effective requirement, but this is not yet conclusive.
Therefore, it is important to select the appropriate patient population for treatment with n-3
PUFAs based on the patient background, intervention, and outcomes of each clinical trial.

In basic research, there is still a lack of evidence to determine the differences between
the roles of EPA and DHA in cardiovascular diseases, especially heart failure. Several
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studies have reported anti-oxidant effects of EPA not found in DHA, suggesting EPA-
specific vascular benefits [71]. Interestingly, DHA is more abundant than EPA in the heart,
but the reason and significance for this observation are unknown. Of note, the mechanism
by which DHA is selectively taken up in the brain and retina has been reported [126–128],
but is not well understood in the heart.

6. Conclusions

As discussed above, FAs play three important roles in living organisms: (1) energy
sources, (2) components of membrane phospholipids, and (3) bioactive mediators. The
dynamics of FAs in the heart are elaborate and complex. The conventional theory that ATP
production in the healthy heart is dependent on FAO but shifts to dependence on glucose
metabolism in pathological conditions, such as ischemia and heart failure, has become more
complicated under the modern lifestyle exposed to metabolic stress. The development
of lipid measurement technology enables a highly accurate qualitative assessment of FAs
and their derivatives, and the roles of various molecules that regulate FA dynamics are
becoming clear. Understanding and accumulating knowledge of the complex dynamics of
FAs at the cellular, tissue, and systemic levels are expected to establish new therapeutic
targets for heart failure.
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