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Abstract

Visually inferring material properties is crucial for many tasks, yet poses significant compu-

tational challenges for biological vision. Liquids and gels are particularly challenging due to

their extreme variability and complex behaviour. We reasoned that measuring and model-

ling viscosity perception is a useful case study for identifying general principles of complex

visual inferences. In recent years, artificial Deep Neural Networks (DNNs) have yielded

breakthroughs in challenging real-world vision tasks. However, to model human vision, the

emphasis lies not on best possible performance, but on mimicking the specific pattern of

successes and errors humans make. We trained a DNN to estimate the viscosity of liquids

using 100.000 simulations depicting liquids with sixteen different viscosities interacting in

ten different scenes (stirring, pouring, splashing, etc). We find that a shallow feedforward

network trained for only 30 epochs predicts mean observer performance better than most

individual observers. This is the first successful image-computable model of human viscos-

ity perception. Further training improved accuracy, but predicted human perception less

well. We analysed the network’s features using representational similarity analysis (RSA)

and a range of image descriptors (e.g. optic flow, colour saturation, GIST). This revealed

clusters of units sensitive to specific classes of feature. We also find a distinct population of

units that are poorly explained by hand-engineered features, but which are particularly im-

portant both for physical viscosity estimation, and for the specific pattern of human re-

sponses. The final layers represent many distinct stimulus characteristics—not just

viscosity, which the network was trained on. Retraining the fully-connected layer with a

reduced number of units achieves practically identical performance, but results in represen-

tations focused on viscosity, suggesting that network capacity is a crucial parameter deter-

mining whether artificial or biological neural networks use distributed vs. localized

representations.
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Author summary

How the brain visually computes the physical properties of complex natural materials is a

major open challenge in visual neuroscience. Here, we focussed on the perception of liq-

uids—a particularly challenging class of materials due to their extreme mutability and

diverse behaviours. We present the first image-computable model that can predict average

human viscosity judgments from fluid simulation movies as well as individual observers

can across a wide range of viewing conditions. We trained artificial neural networks to

estimate viscosity from 100,000 20-frame simulations, and find that the models best pre-

dict human perception after relatively little training—long before they have reached opti-

mal performance. This suggests that while human viscosity perception is remarkably

good, even better performance is theoretically possible. Probing the networks with ‘virtual

electrophysiology’ reveals many different features the networks use to estimate viscosity.

Surprisingly, we find that the represented features are highly influenced by the size of the

networks’ parameter space, while prediction performance remains practically unchanged.

This implies that some caution is required in making direct inferences between neural

network models and the human visual system. However, the methods presented here pro-

vide a systematic framework for comparing humans to neural networks.

Introduction

For centuries, researchers have tried to unravel the mechanics of the human visual system—a

system that can successfully identify complex, naturalistic objects and materials across an

unimaginably wide range of images. Many of the lower-level mechanisms within this system

are now quite well understood [1–3]. For example, networks of cells have been identified that

are specifically tuned to orientations, colours, spatial frequencies, temporal frequencies,

motion directions, and disparities [4,5]. Cells further along the visual processing hierarchy are

sensitive to more complex stimulus characteristics, and are much harder to characterize [6].

However, recent advances in artificial neural networks hold some promise for developing

detailed, image-computable process models of sophisticated visual inferences, such as object

recognition in arbitrary photographs [7–10].

Artificial neural networks provide an experimental platform for simulating complex visual

abilities, and then carefully probing the role of specific objective functions, training sets and

network architectures that yield human-like performance. By concentrating on a single task—

such as the estimation of a particular physical property from the image—it becomes easier to

single out the learned features of a network. Having developed a model that mimics human

behaviour, the response properties of all units in the network can be measured with arbitrary

precision over arbitrary conditions, like an idealised form of in vivo systems neuroscience per-

formed on a model system rather than real tissue.

A particularly intriguing visual ability is the perception of liquids. Liquids can adopt an

extraordinary range of different appearances because of their highly mutable shapes, which are

influenced both by internal physical parameters, such as viscosity, and external forces, such as

gravity. The most important physical property distinguishing different liquids is viscosity. Yet

to estimate viscosity, the visual system must somehow discount the contributions of the exter-

nal forces to the observed behaviour. For example, a viscous liquid can be made to flow and

splash somewhat like a runny liquid if propelled with sufficient speed. The behaviour of liquids

is governed by complex physical laws, and it is rather unlikely that we infer the viscosity of a

given liquid by explicitly simulating the flow of particles within the liquid (although see
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[11,12]). Previously, we found that observers draw on a range of optical, shape and motion

cues to identify liquids and infer their properties [13–16]. However, the stimulus features

underlying such inferences are often only loosely defined. To date there is still no image-com-

putable model that can predict the perception of liquids or their viscosity. Here, we sought to

leverage recent advances in deep neural networks (DNNs) to develop such a model and then

probe its inner workings to generate novel hypotheses about how the human visual system

estimates viscosity.

In machine learning, most work on artificial neural networks concentrates on achieving the

best possible performance in a given task. In this study, by contrast, rather than seeking to

develop a network that is mathematically optimal at estimating viscosity, instead we seek to

develop a feedforward convolution network that most closely mimics the behaviour of the

human visual system. To evaluate the extent to which models resembled humans, we asked

observers to judge viscosity in the same movies that were shown to the trained neural

networks.

The neural networks used here had a ‘slow-fusion’ architecture [17] for processing movie

data (as opposed to static frames). They were trained on a dataset of 100.000 computer-gener-

ated fluid simulation animations, 20 frames long, depicting liquids interacting in ten different

scene classes, which induced a wide variety of behaviours (pouring, stirring, sprinkling, etc;

Fig 1). Their training objective was to estimate the physical viscosity parameter in the simula-

tions. To test generalization, the tenth scene was not used during training and 0.8% of the sim-

ulations in each scene were withheld for validation during training. The training labels

corresponded to the sixteen different physical viscosity steps that were simulated. For compari-

son, human observers performed a viscosity rating task, in which they viewed 800 of these sti-

muli and assigned perceived viscosity labels. The networks were trained on physical viscosity

labels—not human ratings—but we used Bayesian optimization of the network’s hyperpara-

meters (e.g., learning rate, momentum) and layer specific settings (kernel sizes, number of fil-

ters) to search for networks that correlated well with humans on the 800 perceived viscosity

labels. Importantly, training was relatively short with only 30 epochs (30 repetitions of the

entire training set). With the networks in hand, we then analysed their internal representations

to identify characteristics that led to human-like behaviour.

Fig 1. Stimuli overview showing the ten different scenes. Different liquid interactions were simulated, as pouring,

rain, stirring and dipping. Optical material properties and illumination maps were randomly assigned with the white

plane and square reservoir staying constant. S1 Video shows the moving stimuli.

https://doi.org/10.1371/journal.pcbi.1008018.g001
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Our main analyses and findings are as follows. To determine whether we have a model that

is sufficiently close to human performance to warrant further analysis, we first compared the

networks’ predictions with human perceptual judgments on a stimulus-by-stimulus basis. We

find that a network trained to estimate physical viscosity indeed predicts average human vis-

cosity judgments roughly as well as individual humans do. This need not have been the case.

Humans learn to perform a much wider range of visual tasks on a much more diverse visual

diet, so it is not trivial that such a network trained on physical labels and computer simulations

predicts both the errors and successes of human performance. We also find that the best pre-

dictions arise when networks are trained for a relatively short duration.

Second, having established that the network mimics human performance, we sought to

gain insights into the inner workings of the network, by analysing the response properties of

individual units at various stages of the network (‘virtual electrophysiology’). We did this by:

(a) comparing their responses to a set of hand-engineered features and ground-truth scene

properties, (b) identifying stimuli that most strongly or weakly drive units, and (c) directly

visualizing features through activation maximization. Together, these analyses revealed that

many units are tuned to interpretable spatiotemporal and colour features. Yet we also find a

distinct population of units with nontrivial responses properties (i.e., whose responses are

poorly explained by any of the features we considered), and which are especially important for

the performance of the network. We also show that linear combinations of the hand-engi-

neered features are insufficient on their own to account for human viscosity perception, fur-

ther reinforcing the importance of the additional units.

Third, we analysed network representations at the level of whole layers (‘virtual fMRI’), and

studied the effects of network capacity (i.e., number of units) on the internal representation.

The main findings are: (1) a gradual transition from low-level image descriptors to higher level

features along the network hierarchy, and (2) a striking dependency of the internal representa-

tions on the number of units, practically independently of overall performance and the ability

to predict human judgments. This suggests that caution is required in inferring the properties

of biological visual systems from models with seemingly similar performance.

Finally, we compared representations at the level of entire networks, to confirm whether

100 instances of the same architecture trained on the same dataset yielded similar internal rep-

resentations (‘virtual individual differences’). The results indeed reveal highly similar perfor-

mance, with slightly declining similarity along the network hierarchy (i.e., low level

representations are almost identical across networks, later stages differ more). We also com-

pared our model against other network architectures (pre)trained on other datasets, finding

that training the architecture studied here on the particular training set we used yields the clos-

est correspondence to human judgments.

Results

Human viscosity ratings

We first sought to establish whether neural networks trained to estimate the physical viscosity

parameter in computer simulations of liquids could predict human subjective viscosity judg-

ments in such movies. To do this, we first measured human performance in a viscosity rating

task, to establish the perceptual judgments against which the neural networks could be

compared.

Sixteen observers each rated the viscosity of 800 movies of liquids, spanning sixteen viscos-

ity steps across the ten scene classes. Within each scene class, five variations were simulated

with different random parameters such as emitter velocity, geometry size or varying illumina-

tion conditions (see Methods). Viscosity ratings were provided via a response slider below the
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stimulus, allowing the observer to report how runny or thick each liquid appeared. During

training, observers were shown four example trials that included the maximum and minimum

viscosities, to help them anchor their ratings.

Fig 2 shows the results of the human observers (blue lines). Throughout, reported values

are the means across the five variations of each scene. Some scenes (e.g., scene 1) yielded sig-

nificantly better performance than others (e.g., scene 4 and scene 6). Overall, physical viscosity

explained 68% of the variance in human ratings (R2 = 0.68, F(1,158) = 337, p< .001). Previous

studies have shown that humans can achieve much higher—indeed, almost perfect—accuracy

[13–16]. However, compared to these studies, we had a different goal, in that we wanted the

model to predict both errors and successes of the observers. Therefore, we used less detailed

simulations and 64 × 64 images, to make viscosity perception more challenging in order to

yield a higher proportion of perceptual errors. This also led to high inter-subject variance, with

an average of 1.99 RMSE from each individual observer with the mean observer, an error size

of 12% of the viscosity scale (Fig 3A). Yet, the overall pattern of responses across scenes spans

both very good viscosity perception (e.g., Scene 5) and rather poor viscosity perception (e.g.,

Scene 6)

Network predictions

Having established human performance across a range of conditions, we next trained neural

networks (see Methods: Network architecture) to estimate viscosity in a training set of movies

that did not include those shown to the participants. Our goal was to test whether such training

would lead to internal representations that mimicked the pattern of successes and failures in

the human judgments.

The predictions of one neural network is shown in Fig 2A (red lines). Overall the model

has roughly the same performance as human observers in explaining the physical viscosity

Fig 2. (A) Viscosity ratings for the 10 different scenes. The x-axis shows the physical viscosity steps (1–16). The y-axis shows the perceived/predicted viscosity averaged

across the five variations. The error ribbons show the standard error of the mean (SEM). Blue lines are human viscosity ratings and red lines are DNN viscosity

predictions. The dotted diagonal shows the physical truth. The DNN was not trained on any stimuli predicted here, and scene 10 (red) was completely left out of the

training set in order to test generalization to other scenes. (B) The x-axis shows the Root Mean Square Error for each of the 10 scenes on the y-axis. This is the error

between human observations and the network predictions. The red dotted line shows the mean error across scenes and the green dotted line the error of 1000 randomly

drawn observations.

https://doi.org/10.1371/journal.pcbi.1008018.g002
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(R2 = 0.73, F(1,158) = 437, p< .001). Importantly, the network is very good at predicting the

differences in viscosity perception across scenes. For example, like humans the network per-

forms well with Scene 5 and poorly with Scene 4. Thus, the model correctly predicts both suc-

cesses and failures of human perception. Indeed, the RMSE between the network’s predictions

and mean human judgments is only 1.50 viscosity units (on our 16-point scale), i.e., 9.39% of

the total viscosity scale (Fig 2B).

Importantly, as a key test of generalization, when we trained the networks, we excluded the

experimental stimulus set and all movies from Scene 10. Testing the generalization perfor-

mance to these stimuli, which were never presented during training, reveals that the network

does perform somewhat worse at predicting human perception for Scene 10 than for the other

scenes, with a 36% larger error than the mean across scenes (RMSE = 2.05, i.e. 12.79%). Never-

theless, even for this set of stimuli—on which the network was never trained—the prediction

error was still within the range of individual differences between observers.

To get a better sense of variability between networks we trained 100 instances of the same

network, where only the random initialization and the randomized order of the training sti-

muli were different. The representative neural network we report throughout the paper is the

network that best predicts the perceived viscosity in terms of error (network 78 of 100). How-

ever, overall, the different instances of the network yielded quite similar performance (Fig 3).

We discuss the differences between networks in more detail in Network Differences.

Comparing individual observers, or the predictions of the representative network, with the

human mean (Fig 3) reveals that the network performs better than all but one of the individual

observers at predicting mean human judgments across observers in terms of error. The differ-

ent instances of the network are closely clustered together and perform very similarly (Mean

RMSE = 1.70, i.e. 10.63%, SD = 0.10). The representative network correlates highly with the

human mean as well (rp (158) = .88, p< .001).

For comparison, we generated a bootstrap prediction based on 1000 random samples of rat-

ings (RMSE = 3.75, i.e. 23.4%, rp (158) = .00, p = .50). In Fig 3A all data points are in the bot-

tom half of the plot meaning that the error is larger to the physical truth than to the perceived

Fig 3. (A) Root Mean Square error of individual observers (blue), individually trained DNN networks where the final network has a black outline (red), and the green dot

shows a bootstrapped estimate of random performance based on 1000 random draws. If data points are in the bottom half of the plot the error is larger for the physical

truth than the human mean or perceived viscosity. (B) Same type of plot showing the Pearson correlation instead of RMSE. Partial correlations are performed with the

human mean where the physical truth was the controlling variable. If data points are in the bottom half of the plot the correlation is larger with the physical truth than the

human mean or perceived viscosity. (C) Same plot as B only with partial correlations where for the human mean the physical truth is a control variable and for the physical

truth the human mean is a control variable, showing the independent correlations.

https://doi.org/10.1371/journal.pcbi.1008018.g003
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viscosity. This demonstrates that the network predictions are more similar to perceived viscos-

ity than the physical viscosity. Fig 3B plots correlation instead of error, which reveals that net-

works are centred approximately evenly between the perceived and physical viscosity, similar

to the individual observers. Importantly, however, physical and perceived viscosity are of

course highly correlated. As a purer test of the extent to which the network predicts human

perception, Fig 3C shows the partial correlations of these factors, where for the human mean

the physical truth is the control variable and for the physical truth the human mean is the con-

trol variable. Here, we see that both individual observers and—to some lesser degree—the net-

works correlate with each other disregarding the variance explained by the physical truth. In

particular, it is interesting to note that individual human observers hardly correlate with the

physical viscosity, once the partial correlation with the human mean is factored out, while the

networks do capture a component of the ground truth, independently of the human ratings.

This is unsurprising as the networks were trained on ground truth, rather than human ratings.

Indeed, the fact that the networks correlate so well with human judgments despite not being

trained on them is somewhat surprising.

For these stimuli, viscosity estimation is challenging, as demonstrated by the low overall

performance and large inter-observer variance compared to previous studies. Despite this, the

neural networks seem to latch onto spatial and temporal image information that captures

some core characteristics of the human judgments. Interestingly, further training actually

reduces the network’s ability to predict human perceived viscosity (Fig 4). Around epoch 30 is

a pivotal moment after which overfitting starts to increase (i.e. blue curve separates from the

green curve). There is still some improvement in physical viscosity estimation for the valida-

tion set, but the perceived viscosity prediction worsens from this point onward. Also interest-

ing is the difference between the physical and perceived validation performance early in

training, when the perceived validation performance improves more quickly than the physical

validation.

Together, these findings show that we have developed an image computable model that pre-

dicts human perception in a challenging material perception task. In particular, we find that

one approach to developing such a model is to train the neural network to estimate ground

truth physical viscosity with tens of thousands of movies, while optimizing the network’s

hyperparameters via a Bayesian optimization to minimize the error in predicting the perceived

Fig 4. Mean training and validation error (y-axis) as training time increases (x-axis) across 26 individually trained

networks. The 100 networks used in this study are trained for only 30 epochs since the perceived viscosity prediction

error increases as training continues. The Validation Perceived shows larger errors than in the previous figures and

results because here we do not average across variations for a clean comparison with the training results.

https://doi.org/10.1371/journal.pcbi.1008018.g004
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viscosity of the 800 experiment stimuli. Furthermore, we found that by training for a relatively

short period of 30 epochs, training of the network is stopped at the optimal point for predict-

ing human perception, while further training decreases performance. This partially overcomes

the challenge of having sufficient labelled data to train directly on human judgments, and

allows us to test the role of specific learning objectives and training sets in human perfor-

mance. For further details see Methods: Network architecture.

Neural activity

Having established that the networks provide a reasonably good model of human perceptual

judgments, we next sought to investigate their inner workings. Specifically, to gain a better

understanding of the computations performed by the networks, we carried out Representa-

tional Similarity Analysis for unit-level and layer-level activations, and Centred Kernel Align-

ment to compare activations between networks (RSA [18,19], and CKA [20]).

The neural activations are gathered at each ReLU layer in the network (see Methods: Net-

work Architecture). In order to interpret the response patterns, we compare these neural acti-

vations with a set of predictors. These include ‘hand-engineered’ image metrics (describing

colour properties, optical flow, spatial structure, etc.) as well higher-level predictors such as the

physical viscosity or the scene class. To compare the responses of the network with each pre-

dictor, we used the experimental set of 800 stimuli.

Unit activations. To gain a detailed view of the network’s responses—analogous to sin-

gle-unit electrophysiology—we performed RSA at the level of individual units, mapping out

how each unit in the network represents relationships between all 800 experimental stimuli

and comparing these to image-based and high-level predictors (Fig 5A). Specifically, for each

of the 800 stimuli, we gather single-unit neural activation patterns from the network; image

feature values computed from each movie; and high-level features associated with each stimu-

lus (e.g., perceived viscosity, scene label; Fig 5B). For each of these quantities, the differences

between each of the 800 stimuli and all others are then computed and stored in a Representa-

tional Dissimilarity Matrix (RDM; Fig 5C). We then measure how well the RDM for each

image feature correlates with the RDM derived from a particular unit in the network. In Meth-

ods: Image Metrics we give a full overview of the eighteen predictors we applied. We catego-

rize our predictors in five classes, (1) motion, (2) spatial structures, (3) lightness and colour,

(4) multi-feature models and (5) high-level predictors. Example predictors include optical flow

gradients, local contrast, colour saturation, and GIST descriptors [21]. S1 Fig shows the corre-

lations between the predictors themselves. Excluding the high-level predictors (viscosity and

scene) we find that a RDM regression model of our image metrics only predict 2% of the per-

ceived viscosity similarities (R2 = 0.02, F(1,13) = 376, p< .001). Thus, such features are not suf-

ficient on their own to account for human perceptual judgments. This reinforces the fact that

viscosity perception is a nontrivial visual inference that cannot be achieved solely through

straightforward image cues. It is nevertheless interesting to ask to what the network represents

and builds on such features in order to estimate viscosity and emulate human judgments.

For each unit in the convolutional layers, we have a location in the eighteen-dimensional

predictor space. Fig 5D shows a subset of the eighteen predictors for four example units, and

their correlation between the RDMs of the predictors and the activation RDM of one unit. To

get a clearer impression of the unit-specific function we visualized the stimuli that minimally

and maximally activate the unit (Fig 5E and S2 Video).

Since we have the location of each neural unit in our 18-D predictor space we can visualize

the similarities between the different units in 2D, using tSNE (Fig 6). To classify units, we

applied a clustering analysis to the locations in the full 18-D space. Here we applied the
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Louvain clustering algorithm [22] which uses nearest neighbour weights to form communities,

which project more intuitively onto the tSNE space than other clustering algorithms. The num-

ber of clusters was defined by the k-nearest neighbours algorithm, where the number of neigh-

bours (k) in this case was 20, the square root of 420 units (256 in layer 1, 64 in layer 2, and 100

in layer 3). To interpret the functions of the different clusters, we manually assigned labels to

them based on the mean (S2 Fig) and cluster centre correlations for the eighteen predictors.

This analysis reveals how different units extract different kinds of information from the movie

sequences. Not all clusters are equally interpretable, but units in Cluster 3, for example—most

of which are found in Layer 1—seem to be strongly affected by image contrast, whereas units in

Cluster 2 respond predominantly to the magnitude and type of image motion.

There is one cluster (9 in Fig 6) which contains many Layer 3 units and which is harder to

identify. Cluster nine correlates poorly with all of the predictors (max rs = 0.17, min rs = -0.17),

Fig 5. (A) RSA workflow for unit-level analysis. (B) Two stimuli with examples of the resulting image metric output. The ghosting effect shows motion over time. The

multi-feature metrics such as Motion Energy and GIST lose the spatial structures. (C) Example RDMs of the same image metrics as B. Each row/column represents a

stimulus, and colours indicate the distances between each pair of stimuli in terms of the corresponding image metric. Each RDM is correlated with the activation RDM

of a single unit, in this case unit 237. (D) A selection of the RSA correlations for the units closest to the centres of four of the clusters shown in Fig 6. (E) The two stimuli

of the entire dataset that created the minimum and maximum activation responses for the units of D.

https://doi.org/10.1371/journal.pcbi.1008018.g005

Fig 6. tSNE plot showing all 420 units of the three convolution layers in eighteen-dimensional predictor space.

The units are colour coded showing nine Louvain clusters. We manually assigned labels to the clusters, that correlate

well with specific image features or predictors. The centre of each cluster, defined by the largest mean weight with the

units in the cluster, has a black outline.

https://doi.org/10.1371/journal.pcbi.1008018.g006
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including the high-level predictors (scene and viscosity), despite including many Layer 3 units.

This suggests that there are other potentially important predictors, beyond those that we

tested. To test the importance of cluster nine for the final viscosity prediction, we destroyed

the 83 units it contains (artificial lesion). Destroying this cluster affects the prediction error by

3.43 standard deviations more than destroying 83 randomly selected units (n = 1000). Clearly

cluster nine is crucial for good viscosity prediction and none of our predictors align with the

functions it performs, including viscosity itself. This suggests that deeper in both artificial and

biological visual processing streams lie units whose response characteristics are crucial for

high-level visual tasks, but which may be difficult to describe in terms of conventional analyses

or hypotheses about function.

Unit visualizations through activation maximization. As an alternative approach to

gaining insights into the factors that drive single unit activity, we applied activation maximiza-

tion to create visualizations of each unit’s response function (Fig 7, S3 Video). The parallel

pathways of the slow-fusion architecture allow temporally-specific features to be captured per

pathway. This freedom regarding how temporal and spatial information is encoded, together

with small kernel sizes, yields visualizations that tend to be abstract and difficult to interpret,

compared to those that emerge in networks for classifying objects in static images [23–25].

Layer 1 and 2 have different temporal lengths with partial access to the full image sequence

(i.e., L1 = 8 frames, L2 = 12 frames, L3 and L4 = full sequence of 20 frames).

Based on visual inspection, we find that the first layer mostly contains simple motion-

related features of different temporal frequencies and orientations. Colour plays some role and

varying degrees of lightness are also encoded. Layer 2 features seem to encode a range of tex-

tures with temporal and colour variations. These included both pulsing and flowing spatiotem-

poral textures with diverse directions. In layer 3, features consist of strongly contrasting

textures in different spatial and temporal positions. Yet the responses become increasingly

abstract and it is hard to imagine that such units are truly predictive of viscosity, suggesting

that representations are highly distributed (i.e., rely on population activities across many units,

rather than ‘grandmother cells’ for specific viscosities or flow patterns).

The visualisations from fully connected layer 4 mostly depict noisy patches with temporally

recurring colour patterns that are synchronized across units. This synchronicity also occurs

with varying seed images, suggesting that these colour sensitivities are similarly encoded across

units of layer 4. This raises the question of whether temporal colour sequences might be an

important cue for the network’s function, even though within a given stimulus, colour remains

Fig 7. Static snapshots of activation maximization results for each layer. Layer fully connected 4 (FC4) has 4096 units and we randomly picked 100 for this figure. We

recommend S3 Video for visualizations of the temporal effects.

https://doi.org/10.1371/journal.pcbi.1008018.g007
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broadly constant, and in humans viscosity perception is largely independent of colour [15].

However, we find that the prediction error of the network increases by only 7% when we use

grayscale stimuli. This suggests that the colour provides only limited information for viscosity

estimation. Thus, the synchronized temporal fluctuations in colour sensitivity across units in

layer 4 remain difficult to explain.

Despite some abstract representations in the deeper layers, earlier layers do depict proper-

ties that align with the unit-level RSA findings (Fig 6). Another interesting observation for

Layer 2 onwards was the frequent recurrence of a large, approximately central spatial window,

(presumably) related to the positions where most liquid-object interactions occurred, averaged

across the entire stimulus set.

Layer activations. Another level of analysis for characterising network function considers

the pooled activity of all units within each layer of the network. We next performed such popu-

lation-level analyses to address the following two questions: (1) how do representations change

along the network’s hierarchy, and (2) to what extent do the representations depend on the

network training set and objective function or on the network capacity (number of units).

Fig 8 shows the Spearman correlations for each metric with each ReLU layer in the network

(see Methods: Network Architecture). Here, the activations of all units in each layer are com-

bined to form a layer RDM. Each bar shows how much the RDMs between layer activation

patterns correlates with the RDM for each predictor. If analyses at the unit level can be thought

of as analogous to single-unit electrophysiology, analyses at the layer level are loosely analo-

gous to LFPs or even fMRI data in that they represent the responses of entire populations of

units that may have extremely diverse responses. Indeed, given the diversity of responses from

different units within a layer, it is unlikely for an entire layer to correlate highly with a given

predictor, even if the layer contains individual units that do respond more strongly to a given

feature. Despite this, there are a number of notable trends. First, despite the obvious impor-

tance of motion cues for viscosity perception [13] simple optical flow-based features predict

layer activations surprisingly poorly at all layer depths.

Second, there is a general tendency for lower-level features, such as saturation and local

contrast to correlate more strongly with the first and second layer than with deeper layers. In

contrast, high-level properties, like the viscosity, and more importantly the perceived viscosity,

correlate better with deeper layers than earlier layers. This is in line with our general under-

standing of the visual system, whereby more complex concepts or features are represented at

later stages of the visual processing.

Fig 8. The Spearman correlations for each layer and predictor. We included two final layers, one with the original

4096 units and one where the last layer was retrained to contain only 15 units (see second half Results: Layer

activations). Only the B-LAB predictor for layer ReLU 4–15 was not significant (p> 0.05).

https://doi.org/10.1371/journal.pcbi.1008018.g008
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Another observation is that despite this overall tendency, ReLU layer 4 (dark blue bars) still

encodes many different features, including lower-level ones. Even though the network is

trained to deliver viscosity estimates as output, many other properties, such as motion energy

and luminance can be decoded from the penultimate layer of the network at least as well, if not

better than the viscosity.

To verify these observations, we trained linear decoders at each layer to predict perceived

viscosity and find trends in line with the correlation of perceived viscosity shown by RSA.

Already by ReLU2, viscosity prediction error is reduced to RMSE of 2.57—a 12% larger error

than the full network (RMSE = 2.30). ReLU3 encodes enough information to perform at the

same level as ReLU4 in terms of prediction error. These findings further reinforce that viscos-

ity estimation is a nontrivial visual inference. The features in the early stages of the network

are insufficient to estimate viscosity to a level comparable to humans perception. It is only at

later stages that such features of sufficient complexity emerge.

Layer representations are strongly influenced by their capacity. The finding that factors

other than viscosity are encoded in ReLU 4 raises an intriguing question about the nature of

the representation in the final stages of the network. To what extent is the representation deter-

mined by the demands of the objective function, and to what extent is it due to network archi-

tecture? One possibility is that representing other physical factors is actually necessary for

succeeding at the objective. In other words, the network might need to explicitly represent the

scene or some of its properties to disentangle viscosity correctly. On the other hand, the ten-

dency to represent factors that are seemingly unimportant to the task might simply reflect

‘excess representational capacity’. In other words, although not crucial for succeeding at the

viscosity estimation objective, residual encoding of additional factors might come at no cost,

given the high number of units available relative to the task.

To pit these two hypotheses against one another, we compressed the 4096-unit fully con-

nected layer FC4 until the prediction performance started to decrease. To do this, we fixed the

weights of all layers before FC4 and retrained different instances of FC4 while gradually

decreasing the number of its units. We found that even with just 15 units in FC4 (i.e., a

273-fold decrease in the capacity of FC4) the prediction performance remained practically

unchanged (perceived viscosity FC4-4096 = 2.30 RMSE vs. FC4-15 = 2.26 RMSE, Fig 9). The

15-unit layer is plotted in Fig 8 in orange.

When we compare the correlations of the different features with the 4096-unit and 15-unit

versions of FC4, we see some clear differences. Where 4096 units have the capacity to encode

Fig 9. Perceived viscosity prediction errors for networks that are retrained with a specific unit size in fully

connected layer 4. We retrained ten networks for each unit size, where all weights of the layers before FC4 were fixed.

We finally selected the best performing 15-unit network as reference for our analysis. The 15-unit condition showed

with our ten samples the lowest mean and low variation. Here we do not average across variations.

https://doi.org/10.1371/journal.pcbi.1008018.g009
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many features, 15 units lack the capacity for these richer descriptions and are forced to focus

more on those stimulus characteristics that are strictly necessary to achieve accurate viscosity

estimation. This is clearly demonstrated by the physical and perceived viscosity predictors,

which are much more highly correlated with the 15-unit layer than the original 4096-unit

layer, while the final output of the two networks is practically identical. This tendency is fur-

ther exemplified by the scene predictor: the 4096-unit layer has sufficient capacity to encode

more scene specific features, while scene can be decoded much less well from the 15-unit layer,

which concentrates its representational resources on viscosity, as dictated by the objective

function.

To further understand the differences between the 4096-unit and 15-unit layer we looked

directly at the activation space of our 800 stimuli. Fig 10A shows the 2D tSNE plots of these

activations. Each point represents a different stimulus, and the distance between points

approximately indicates the similarity in network activation in layer ReLU4. With 4096 units,

viscosity is encoded in a non-linear arrangement, with viscous and runny liquids represented

in multiple groups. This means that the ReLU4 represents runny liquids as similar to one

another, while thick liquids are different from runny ones, but also, are highly different from

one another. In contrast, the 15-unit activation space shows a much more linear arrangement

of viscosity. In the 4096-unit representation, there also seem to be separate clusters within each

viscosity, whose origin becomes clearer when we colour code the same points by their scene

class. For example, Scene 5 (pink), which was the best predicted scene, occupies its own corner

in this space, with what appears to be its own local viscosity axis (Fig 10C). In contrast, the

15-unit activation space is much less sensitive to the scene.

Fig 10. (A) The tSNE plots of the activation space of the two final layers, one with 4096 units and one with 15 units.

This dimensionality reduction technique shows how the 800 stimuli are distributed in the final layers. Both predicted

viscosity and the different scenes are plotted in the same space. (B) The same directly comparable tSNE space where

instead of our 800 stimuli a reference set is used. This reference set only varies in viscosity, optical parameters are

constant across scenes and viscosities. (C) Sub-selection and scaled down plot of the 4096-unit version of A. Here only

scene 5 stimuli are fully visible.

https://doi.org/10.1371/journal.pcbi.1008018.g010
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To make these trends more clearly visible, we generated a new reference stimulus set of just

160 stimuli. All the random factors such as camera viewpoint, optical materials, and simulation

settings such as varying emitter velocities were held constant. Only the sixteen different viscos-

ity steps were simulated for each scene, yielding much more similar looking stimuli (S3 Fig).

When we look at the placement of these more controlled stimuli within the same activation

spaces (using the same tSNE space for direct comparison) we see clear scene-specific clusters

in the 4096-unit condition (Fig 10B). Even more impressive is that each scene, especially the

scenes that are predicted well, seem to have their own local viscosity scale. Generalization is

also visible with Scene 10—which the network was never trained on—yet still has its own

clearly defined cluster (dark purple), although viscosity is less linearly arranged than for some

other scenes. In comparison, the 15-unit representation again shows a nearly one-dimensional

viscosity trend.

It is important to emphasize again that the prediction performance of the 15-unit and

4096-unit versions of the network are practically identical, while we demonstrate here that the

internal representation can vary dramatically on the capacity (i.e., degrees of freedom), in layer

FC4. This demonstrates that when networks have capacity that exceeds the bare minimum

required for the task, they may encode (i.e., retain, or fail to exclude) aspects of the stimuli that

are not strictly necessary for task performance.

To test this, we measured the ability of the network to classify the different scene classes by

applying transfer learning on FC4-4096 and subsequent layers. As before, the layers before FC4

—including all convolutional layers—remained unchanged. S4 Fig shows that the retrained net-

work achieves an 88.62% classification accuracy across the 10 classes (AUC = 0.993) when only

the final layers were retrained for eight epochs. This is measured across the 800 experimental

stimuli in which many parameters vary (e.g. camera viewpoint, illumination, liquid velocity).

As expected, we find that the FC4-15 performs worse—although not terribly—for scene classifi-

cation (77.25% accuracy, AUC = 0.974). These findings demonstrate the power of the features

in the earlier layers which can be repurposed to perform different tasks.

Network differences. The final level of analysis we considered was at the level of entire

networks. One key question about the functioning of the networks is the extent to which they

converge on similar internal representations. How many different solutions are consistent

with human perceptual judgments? To investigate this question, we trained the same network

architecture 100 times with identical training sets but different initial weights and training

sequences to compare the resulting representations in the networks. We find that at the end of

training, all 100 networks performed very similarly to humans (both in terms of correlation

and prediction error; Fig 3, red dots).

To compare network representations in greater detail, we next applied Centred Kernel

Alignment (CKA, [20]), which has proven to be especially accurate for comparing neural activ-

ity between networks. Very similar to the Pearson correlations in RSA, CKA uses the dot prod-

uct between examples and additionally applies ‘cocktail blank normalization’ (i.e., subtracting

the overall mean across observations for each observation) [26,27]. We performed this com-

parison for each layer and find that the networks converge on very similar neural activity (Fig

11). Especially for the first layer the similarity is extremely high—only marginally below 1.0—

meaning that regardless of random initialization and the random shuffling of the training

batches, networks converge on similar representations. The deeper layers show gradually less

similarity with a similarity of 0.90 for the last layer. To investigate the differences between net-

works further we also performed the unit-level RSA (S5 Fig) across the four most dissimilar

networks. This indeed shows very similar structures of functionality on the unit-level as well.

Other network designs. All of the analyses presented so far have concentrated on one

particular network design (slow-fusion). Yet it is interesting to ask whether other networks
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might also perform well at predicting human viscosity perception. Research on video classifica-

tion or regression networks is not as mature as, for example, networks for object classification

in static images. The scarcity of labelled video datasets, computational costs associated with

training, and input differences of both spatial and temporal resolution make it harder to com-

pare networks directly. Nevertheless, to get an idea how our network measures against other

spatiotemporal network architectures, we selected two action classification networks for com-

parison [28,29]. A number of well-documented datasets exist for action classification, making

this the most developed video training task for which networks are currently being applied.

Fig 12 shows the viscosity prediction errors of the S3D-G [28] and D3D network [29]

which are evolved versions of the I3D model [30]. Both networks use inception modules with

3D convolutions that process spatial and temporal information separately. Applying action

classification directly to our liquids dataset tends to yield plausible responses (of those avail-

able), such as ‘making tea’ or ‘cleaning toilet’ (i.e., actions involving liquids). We next sought

to test how well the features learned by the action classification networks can be repurposed

for a viscosity estimation task, and to what extent they predict human viscosity perception. To

test this, we used transfer learning.

Specifically, as with our previous transfer learning analyses (see Layer Activations), we

trained a linear decoder to predict the physical viscosity using the neural activity of the final

layer before the prediction layers of these networks (i.e., mixed5c). The decoder contains

12288 weights and was trained for 30 epochs using gradient descent. We find that the action

classification networks perform and generalize quite well, both in terms of estimating physical

viscosity and in terms of predicting human perception. Nevertheless, the best performing D3D

K400 network has a 10% larger error than our own network for the validation set with per-

ceived viscosity labels. A similar trend with larger errors for the physical viscosity labels is

observed. These findings demonstrate that action recognition networks do learn features that

are somewhat useful for viscosity estimation as well, further reinforcing the notion that viscos-

ity perception can draw on general-purpose cues and measurements. At the same time, train-

ing on diverse and naturalistic stimuli is not necessary for successfully predicting human

perception. While our network has a single purpose design, and is trained exclusively on com-

puter graphics imagery, in comparison with other networks, it is competitive at estimating

physical viscosity and predicting human viscosity judgments.

Fig 11. The mean CKA similarity index across networks for the four ReLU layers. Error bars show the 1st and 99th

percentile.

https://doi.org/10.1371/journal.pcbi.1008018.g011
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Discussion

Visually estimating the viscosity of liquids is challenging, especially in short, low-resolution

animations depicting liquids undergoing a wide range of different behaviours. Until now there

was no image-computable model of human viscosity perception. The main contribution of

our work is the demonstration that neural networks trained to estimate physical viscosity—but

with hyper-parameters fine-tuned to match human performance—can quite accurately predict

both the successes and scene-specific pattern of errors in human viscosity perception in our

experiments. Thus, the relatively shallow feedforward networks tested here appear to capture

some important aspects of the way observers perform the task. We reasoned that such a model

is a useful experimental platform for investigating potential mechanisms of human perception.

Accordingly, we then probed the network in a series of analyses to reveal which features were

responsible for its performance.

Our networks were trained for only 30 epochs, which is a relatively short time. We found

that after epoch 30 the perceived viscosity predictions worsened and the networks increasingly

started to overfit (Fig 4). This is further demonstrated by the increasing difference between

training error with physical viscosity labels and validation error with physical viscosity labels

after epoch 30. It is interesting to speculate about the causes and implications of this finding of

a U-shaped approximation to human performance as a function of training. For example, it

could be an artefact of the training set. While humans learn to see from diverse and naturalistic

stimuli, the models considered here were trained exclusively on computer simulations of liq-

uids. It could be that with more varied, larger or natural training data, the approximation to

human performance would continue to improve with further training on the physical estima-

tion task (i.e., no U-shaped approximation to human performance would be observed).

Fig 12. Viscosity prediction error for two (D3D and S3D-G) video action video classification networks. These

networks were trained on two different datasets, the Kinetics 400 and Kinetics 600 datasets [31] where the numbers

represent the number of classes in the dataset. For S3D-G we used the pathway that uses RGB images as input, this

particular network has a pathway using optical flow input as well. As in Fig 4, we report training error using physical

viscosity labels (average of last ten batches), and the validation error for both physical and perceived viscosity labels.

https://doi.org/10.1371/journal.pcbi.1008018.g012
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However, another possibility is that the cues used by human observers are those that network

also tends to learn first. It could be these cues are the most discriminable or most robust [32–

34] cues of the dataset. As training continues, the network continues to improve at the physical

viscosity estimation objective, possibly by learning more subtle cues specific to the dataset

which the human visual system cannot discern at all or is less sensitive to. There is indeed

some support for this speculation. Other studies that look into the early phase of neural net-

work learning find critical learning periods similar to biological networks [35,36]. Evidence

suggests that neural connectivity is broadly settled in a memory formation phase early in train-

ing, after which neuroplasticity decreases and only much smaller changes occur by reorganiz-

ing or forgetting less predictive weights [37,38]. This makes the early phase (< Epoch 10) an

especially critical period where dominant qualities of the dataset are encoded. In our case this

period is defined by an especially large drop in perceived viscosity error. This is in line with

our speculation that the most discernible cues which are encoded in early training align partic-

ularly well with the perceived viscosity cues used by humans.

To probe the networks’ inner workings, we used RSA to compare neural activations with a

range of image metrics that are easier to interpret and understand than the raw features of the

trained network. We found nine clusters of units, each performing different classes of tasks

(e.g., colour detection, motion detection, edge detection). Importantly, one cluster—consisting

mainly of units in the deeper layers of the network—did not correlate with any of our predic-

tors, yet was particularly crucial for the functioning of the network. This finding is arguably

the second main contribution of our study. It suggests that there are one or more nontrivial

features—as yet unidentified—which play a key role in viscosity estimation. We speculate that

these features might be related to ‘mid-level’ shape and motion features (e.g. spread, splash, pil-

ing up), which we have found in previous psychophysical studies to explain a substantial pro-

portion of human performance [13–16]. A major challenge for future research is to develop

image-computable measurements that isolate and identify such mid-level features so that we

can test the extent to which they are represented by the network. An alternative approach

would be to ask human observers, or a separate network trained on human-labelled data, to

estimate the mid-level features from the same movies as are used for probing the viscosity esti-

mation network.

Other techniques such as deep dreaming [39] and activation maximization [24] provide

means to coerce units in the network to produce images that elicit strong or weak responses

from them, an approach that has yielded some insights into the features driving object classifi-

cation networks (e.g. nostrils of dogs, seams in baseballs). However, in many cases—including

in our analyses (Fig 7, S3 Video)—the crucial features may be spatiotemporally distributed

and abstract (e.g. specific motion textures, ‘clumpiness’) and the images regurgitated from the

network quickly become difficult to interpret. However, using such networks as a generative

tool to create stimuli that are adversarial for human perception (i.e., creating novel illusions)

might yield more useful insights.

Mapping and visualising relationships between stimuli in the network’s pattern of activa-

tions is another way to probe underlying representation in the network. Using this approach,

we found some clear and interpretable structures in the fully-connected layers at the final

stages of the network. In particular, in the full 4096-dimensional representation, we found sti-

muli to be clustered by the scene, each with clearly-defined but distinct local viscosity axes.

Scene 10—which was completely left out of the training set in order to test generalization per-

formance—also project to a clearly identifiable location within activity space, with its own

local viscosity axis.

The finding that factors other than viscosity were significantly represented in the final

stages, despite not being directly relevant to the training objective, prompted us to investigate
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the effects of network capacity on the internal representations. We hypothesised that this was a

consequence of ‘excess’ capacity in the network beyond the bare minimum required for the

viscosity regression objective. Would squeezing down the capacity (number of units) eliminate

this effect without changing overall performance, or were the representation of other scene fac-

tors crucial to the success of the network? We found that the nature of the networks’ final rep-

resentations can vary widely depending on the number of units, practically independently of

task performance. Surprisingly, the prediction performance is practically the same for FC lay-

ers with just 15 units, 4096 units, or anything in between. Yet, with only 15 units the FC layer

primarily encodes viscosity to the exclusion of other aspects of the stimulus such as colour,

lighting or scene. In contrast, increasing the capacity results in more local and nonlinear repre-

sentations of viscosity within the feature space, along with representations of additional stimu-

lus characteristics that are not strictly necessary for viscosity estimation.

Since representing these additional characteristics neither helps nor hinders task perfor-

mance, the sensitivity to seemingly redundant features is likely a by-product of having excess

representational capacity in the network. This suggests caution is necessary in drawing conclu-

sions about biological representations from neural network models, as quite different repre-

sentations at a given stage of the network can yield near identical decisions by the system as a

whole. These findings also demonstrate that early layer features not only contain powerful pro-

cessing capabilities for the given task, but as a by-product are descriptive enough to provide a

foundation for inferring a rich variety of other high-level scene factors. This is further corrobo-

rated by the good transfer learning performance in which only the final layers were retrained

for a different task. It supports the idea that earlier layers have the tendency to converge on

task-invariant image representations: a basic toolbox of filters that dissect visual information

for further processing in a wide range of visual tasks and are similar to the earlier processing

stages in our visual cortex [40–45]. While this requires further research, we speculate that this

is not a universal characteristic of DNNs, but an emergent property of complex models capable

of learning a challenging task on an ecologically plausible training set.

We also investigated multiple instances of networks performing the same task. This analysis

revealed strong correlations between the different instances of the network. The divergence

between networks steadily increased for the deeper layers, similar to findings of Kornblith et.

al. [20]. We did not find distinct clusters of networks that encode stimuli in an equally similar

or dissimilar way.

Artificial neural networks have changed how we model visual and neural processes. Feed-

forward neural networks—despite lacking top-down and lateral processing [46,47]—have

proven to be an insightful tool for vision science [48–56] and currently provide the most suc-

cessful computer vision models as well. Many processing aspects of the human visual system

are not properly simulated by feedforward designs and the sensory input methods and learn-

ing regimen leave much to be desired as well [57–62]. However, especially in controllable sin-

gle-purpose scenarios, feedforward designs allow us to confirm or alter our hypotheses

originating from psychophysical studies in insightful ways. For example, studies that compare

brain imaging data with artificial networks show remarkable similarities, especially in early

visual processing [63–66], suggesting some legitimacy in feedforward approaches.

In conclusion, we have developed the first image-computable model of human viscosity

perception, which predicts average perceptual judgments as well as individual observers do.

Our analyses reveal that the model uses a variety spatiotemporal features to encode the stimuli

in a high-dimensional space, in such a way that subsequent stages can ‘read out’ the viscosity

of the stimuli. The nature of the internal representation is complex, distributed and varies

depending on the capacity of the network. This requires further research and leads to the

intriguing speculation that cortical visual representations might be as much the result of the

PLOS COMPUTATIONAL BIOLOGY Visual perception of liquids: Insights from deep neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008018 August 19, 2020 19 / 29

https://doi.org/10.1371/journal.pcbi.1008018


number of cells in the different brain regions, as the specific task(s) the visual system learns.

While some elements of the model can be easily interpreted in terms of familiar features—like

contrast or motion energy—we also found that some of the components that are most impor-

tant for successful prediction of perception are not easily expressed in terms of such familiar

‘cues’. Indeed, like other studies of representations in neural networks, our research program

hints that it might be time for the field to move away from the concept of mappings between a

small number of clearly interpretable ‘visual cues’ and physical properties of the outside world.

Instead, visual perception might be better formulated as a process of progressive ‘disentangle-

ment’ in high-dimensional feature spaces [67–69], in which individual features are less impor-

tant than the combined effect of the sequence of non-linear transformations.

Methods

Stimuli

To generate a large training set, we used computer graphics simulations of liquids interacting

with ten different classes of scene. Each scene class exhibited specific liquid interactions (e.g.

dipping, rain, stirring, spraying over various geometries), with variable parameters (e.g., light-

ing, trajectories of moving objects). Each scene was simulated with sixteen different viscosities

values from a logarithmically spaced scale from 0.001 Pa�s to 10 Pa�s (roughly equivalent to a

range from water to molasses). For training labels, we referred to these on a linear scale from

one to sixteen. Each scene and viscosity were simulated several times to create the large quan-

tity of movies necessary for training a DNN. Parameters such as liquid emitter velocity, emitter

direction, initial liquid volumes and scene geometries that interact with the liquid were ran-

domized. This process was repeated 125 times for each scene, and for these 125 variations, five

different render variations were made, changing illumination maps, optical material properties

of both liquid and scene geometries, and camera position. Twenty sequential frames were ren-

dered providing moving stimuli of a 0.67 second duration (30 frames per second). This

resulted in a training set of 20.000 unique simulations and 2 million images (10 scenes × 16 vis-

cosities × 125 scene variations × 5 optical variations × 20 frames). A subset of this data was

used for experiments with human observers, 800 in total (10 scenes × 16 viscosities × 5 scene

variations).

Simulation. The stimuli were generated using RealFlow 2015 (V. 9.1.2.0193; NextLimit

Technologies, Madrid, Spain). Viscosity values were selected from a logarithmically spaced

scale of 16-steps between 0.001 Pa�s and 10 Pa�s. The "Hybrido" particle solver was used, which

simulates the dynamic viscosity of the liquids in real physical units (Pa�s). Hybrido is a FLIP

(Fluid-Implicit Particle) solver using a hybrid grid and particle technique to compute a numer-

ical solution to the Navier-Stokes equations describing viscous fluid flow. A meshing algorithm

uses the particles to calculate the fluid boundary and creates a mesh. The density of the liquids

was held constant at one kilogram per litre and gravity was the only simulated external force.

The simulated animations had a total duration of four seconds (120 frames at 30 fps). Only the

last twenty frames were used for the final stimuli. Each scene had specific parameters that were

randomly assigned for each simulation. The random values were drawn from predefined

ranges to limit the occurrence of artefacts. For example, in some scenes the liquid emitter

changed position during simulation, where the initial position, size, rotation, and trajectory of

the emitter were randomly assigned. The simulation space for each scene was one cubic meter.

The white container in the scenes was placed on the simulation border making this container

1m2 large. The height of the container changed depending on the scene.

Rendering. The render engine used to generate the final image frames was Maxwell (V.

3.0.1.3; NextLimit Technologies, Madrid, Spain). This render engine is built into Realflow
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2015. The images were rendered at a 64 × 64 resolution where the sampling rate was kept

lower than typically used to save time generating the 2 million images. Because of the lower

sampling rate some noise was visible, yet visual inspection reveals this had negligible effect on

perceived liquid properties. The illumination maps were randomly assigned from a set of 234

light probes, which were normalized and white balanced. The illumination maps came from

diverse sources, some from scientific databases [70,71]. There were two categories of optical

materials, solids (12, e.g. paints in various colours) and liquids (13, e.g. beer, chocolate milk,

wine), which were randomly assigned to the different objects in a scene. At least one liquid

object was present in every scene.

Observers

Sixteen observers participated in the experiment (twelve female, four male). Mean observer

age was 25.9 (SD = 3.6). All observers reported having normal or corrected-to-normal vision.

All observers gave written consent prior to the experiment and were paid for participating.

Experiments were conducted in accordance with the Declaration of Helsinki and prior

approval was obtained from the local ethics committee of Giessen University. Six observers

participated in an experiment with a static condition before performing the experiment with

moving stimuli. With enough time, observers could participate in two experiments, both the

static and the moving condition with stimuli of the same size. In this case the static condition

was always performed first since these stimuli were less informative of the depicted liquid.

Data from the static condition are not reported here.

Procedure

The experiment reported here was performed with 64 × 64 pixels 30 fps movies. The experi-

mental setup consisted of a Dell T3500 system running Matlab 2015a (v. 8.5.0.197613) and the

Psychtoolbox library (v. 3.0.12) [72,73]. The stimuli were displayed on an Eizo ColorEdge

CG277 27-inch monitor with a resolution of 2560 × 1440 and a gamma of 2.2. A training ses-

sion was performed to get the observers acquainted with the task and interface. The training

session consisted of four trials in which the maximum and minimum viscosity were included.

The task was to rate the viscosity of the liquid in each stimulus, by adjusting a horizontal rating

bar below the stimulus. The rating bar marker reacted to the x-position of the mouse. Once

the marker on the rating bar was at the desired position, the observer confirmed the response

by pressing ‘space’ on the keyboard, after which a new trial was loaded. In total 800 trials were

tested, 10 scenes × 16 viscosities × 5 variations. There was no time limit for the trials.

Network architecture

We applied a slow fusion model [17] implemented in Matlab 2017b (v. 9.3.0.713579) including

the deep learning toolbox. In a slow fusion architecture there are parallel pathways that slowly

fuse over time providing the higher layers with more global information in both spatial and

temporal domains (Fig 13). Each pathway has a specific part of the image sequence as input.

Between the pathways there is an overlap of input images; in our case, for the first convolu-

tional layer the temporal extent T = 8 with stride 4 and for the second convolutional layer

T = 12 and stride 4 of the original sequence. The third convolutional layer has access to the full

input range of 20 frames. This is followed by a fully connected layer with 4096 units, a dropout

layer with a dropout probability of 50%, and another fully connected layer with one unit for

the regression output. The learning rate was set to 1.110510 × 10−5, momentum to 0.43325,

and L2 regularization to 4 × 10−9.
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The 800 stimuli of the experiment and scene 10 were excluded from the training set and

were used for network validation. Bayesian optimization was used to determine the optimal

settings for the hyper parameters; in this case the learning rate, L2 regularization, momentum,

kernel sizes and filters for the three convolutional layers and the dropout probability of the

dropout layer. The Bayesian optimization was fitted to the human labels of the 800 stimuli.

This means that the hyper-parameters were set to achieve lowest error predicting human

labels, not the physical viscosity labels on which the network was trained. The Bayesian optimi-

zation ran for 52 iterations of 25 epochs after which the most optimal parameter settings were

provided. The optimal settings were close to the minima of the space we searched, the maxima

produced networks that performed 47% worse in terms of perceived viscosity predictions.

Representational similarity analysis (RSA)

We applied RSA on different scales of activation patterns. Here we provide specific details of

choices we made during these analyses.

Unit-level. On the smallest scale we compare activation patters of specific units in one of

the first three ReLU layers. For this analysis we concentrate only on units from the three con-

volutional layers. The 4096-unit fully connected layer was excluded from this analysis because

there were units that did not get activated at all by any of our 800 experiment stimuli. For this

analysis we used Euclidian distances instead for Pearson correlations since some units were

not activated by one or more of our 800 stimuli. For the image metrics, which are described in

detail in Image Metrics, we used the Euclidian distances as well. We calculate the Spearman

correlations between the Euclidian based RDMs. These Spearman correlations are used to

form an 18-D feature space that is shared by the 420 units in the network (Fig 6).

Layer-level. On the layer level activation patterns across an entire layer are used. Since an

entire layer always has some activation for each of our 800 stimuli we switched from Euclidean

distances to Pearson correlations to calculate the RDMs. Dissimilarity was calculated as

1-Pearson correlation. In this analysis, the fully connected layer was included. To make the

activation data more comparable between convolutional layers and the fully connected layer,

Fig 13. The slow-fusion network architecture. Input consists of a 20-frame animation of 64 × 64 × 3 images. There

are three sequential convolutional stages, although in practice multiple convolutional layers are placed in parallel at

each stage. All neural activations reported here are measured at the ReLU layers of which the responses are combined

for the parallel layers. The dropout layer randomly sets input elements to zero with a 50% probability during training.

https://doi.org/10.1371/journal.pcbi.1008018.g013
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we decided to measure the activations at the one common stage for both, in this case the ReLU

layers. In this case for our image metrics we used the Pearson correlations as well. The only

exceptions are the high-level metrics (e.g. perceived viscosity, scene) for which we used the

Euclidian distances again since these are single value representations. The RDMs are then cor-

related using Spearman correlations resulting in Fig 8.

Clustering

For the network similarity analysis, we applied a divisive hierarchical clustering algorithm

(cluster v 2.0.9. library for R) since this is often used for distance matrices. Elbow, silhouette,

and maximum likelihood estimation criterions showed no signs of significant clustering. In

the case of the unit-level analysis we used the Louvain clustering algorithm [22], as it corre-

sponded closely to the output of the tSNE analysis. This algorithm uses a predefined number

of nearest neighbours to form communities (igraph v1.2.4 library for R). We applied the clus-

tering in the full 18-D space and not the 2D tSNE space. The neighbours were identified using

a k-nearest neighbours algorithm, where k, the number of neighbours was set to 20, the square

root of 420 units.

Activation maximization

We applied activation maximization to visualize features that maximally activate units of the

network (Fig 7, S3 Video). A seed image is input into the network, and gradient ascent is used

iteratively to modify the pixel values in the seed image in such a way as to maximise the activa-

tion of the given unit. The parallel pathways of the slow-fusion network with varying temporal

dimensions and small kernel sizes made it particularly challenging to visualize interpretable

features. There are various methods to improve the interpretability of the activation maximiza-

tion results [24]. We achieved best results using the mean image of the entire dataset with

added Gaussian white noise as the seed images for activation maximization. The noise was

applied for each neural unit separately, varying the seed images. The activation maximization

(Matlab function deepDreamImage) ran for 2000 iterations with one pyramid level. This analy-

sis was performed using Matlab (2019b) and the Deep Learning Toolbox v13.0.

Image metrics

For the RSA, we selected a wide range of image metrics that correlate to various extents with

units and layers in the network. During pilot work, we also tested a larger range of image mea-

surements but found that not all were relevant for the computations performed by the network

or were too similar to other metrics. The final selection consists of eighteen metrics that

describe both image and motion features.

OF Speed: The optical flow was calculated using the iterated pyramidal Lucas-Kanade

method [74]. The flow vector length was used for the speed. Optical flow was calculated

between consecutive frames. The rendering parameters led to spatiotemporal noise in some

sequences to which the optical flow algorithm was sensitive. To counteract this, a mask was

applied on the original image to evaluate optical flow only for those pixels within the perimeter

of the box in the scene, where there was always liquid-based motion. The final stimulus repre-

sentation has a 32 × 32 × 19 size.

OF Gradient: The numerical gradient was calculated in both horizontal and vertical direc-

tions using the optical flow speed. The final stimulus representation has a 32 × 32 × 19 size.

OF Speed HIST: The histogram of the optical flow speed using 44 bins. The optimal num-

ber of bins was estimated using the Freedman-Diaconis rule [75]. Since each stimulus often
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results in an different optimal number of bins, we averaged the number of bins across all

experimental stimuli. The final stimulus representation has a 44 × 19 size.

OF Gradient HIST: Similar to the optical flow speed histograms only using the gradient

information (i.e., a measure of the distribution of accelerations in the stimulus). The final stim-

ulus representation has a 44 × 19 size.

Im Power Spectra: The power spectrum calculated per frame of the sequence. The power

spectrum is calculated using the grayscale stimulus and is rotationally averaged. The final stim-

ulus representation has a 33 × 20 size.

Im Contrast: The local contrast was calculated using the range value (i.e. maximum–mini-

mum value) of a 3-by-3 neighbourhood around the corresponding pixel of the grayscale input

image. The final stimulus representation has a 64 × 64 × 20 size.

Im Gradient: The numerical gradient was calculated in both horizontal and vertical directions

using a converted grayscale image. The final stimulus representation has a 64 × 64 × 20 size.

S-HSV: The saturation channel of the original stimulus converted to the HSV colour space.

The final stimulus representation has a 64 × 64 × 20 size.

L-LAB: The lightness channel of the original stimulus converted to the CIE 1976 L�a�b�

colour space. The final stimulus representation has a 64 × 64 × 20 size.

A-LAB: The A colour dimension of the original stimulus converted to the CIE 1976 L�a�b�

colour space. The final stimulus representation has a 64 × 64 × 20 size.

B-LAB: The B colour dimension of the original stimulus converted to the CIE 1976 L�a�b�

colour space. The final stimulus representation has a 64 × 64 × 20 size.

Motion Energy: The motion energy was calculated using the motion energy model sug-

gested by [76,77]. In our case 6555 wavelets were used in the model. We used a Matlab imple-

mentation of the model written by Shinji Nishimoto [78]. The final stimulus representation

has a 6555 × 20 size.

SIFT: Computer vision model that uses scale-invariant descriptors of an image for local fea-

ture detection and object recognition. A Matlab implementation written by Aditya Khosla was

used to calculate the descriptors [79]. The final stimulus representation has a 29440 × 20 size.

GIST: A global vision model that describes orientations, colours and intensities on different

spatial scales. A Matlab implementation written by Aditya Khosla was used to calculate the

descriptors [79]. The final stimulus representation has a 512 × 20 size.

Texture: The texture descriptors of the Portilla and Simoncelli colour texture synthesis

model [80]. The final stimulus representation has a 4455 × 20 size.

In the RSA, additional higher-level stimulus properties (i.e., not image computable, but

derived from ground truth knowledge of the physical scene) were added as predictors as well.

Viscosity: The physically simulated viscosity value of the stimulus (on the 16-step linear

scale, not the original logarithmic Pa�s scale).

Perceived: The perceived viscosity value of the stimulus (on the 16-step linear scale, derived

from observer responses).

Scene: A binary map of stimuli that are from the same scene class (from 1–10).

Supporting information

S1 Video. Stimuli of moving liquids of the ten different scenes from our dataset. The videos

depict viscosities 1, 8, and 16 of our 16-step, runny to thick, viscosity range.

(MP4)

S2 Video. The stimuli that minimally and maximally activate the centre units of each cluster.

(MP4)
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S3 Video. Unit visualizations using activation maximization. Visualization of Layer 1 (256

units), Layer 2 (64 units), Layer 3 (100 units), and Layer 4 (random 100 units out of 4096).

(MP4)

S1 Fig. Correlation matrix of the different image metrics applied in our RSA analysis. The

Spearman’s rank-order correlation (rs) was used.

(EPS)

S2 Fig. Mean cluster correlations of the RSA predictors. On the x-axis the eighteen predic-

tors and on the y-axis the Spearman’s rank-order correlation (rs).

(EPS)

S3 Fig. Showing the stimuli from the reference stimuli set. In this case all optical and physi-

cal parameters are held constant across stimuli except for the changes in viscosity making the

images much more similar.

(TIF)

S4 Fig. The scene classification probabilities for the scene transfer learning test, performed

with our standard 800 stimuli. X-axis show the classification matches and the y-axis show the

test classes.

(EPS)

S5 Fig. tSNE plots showing all 420 units of the three convolution layers in eighteen-dimen-

sional predictor space. The four most dissimilar networks from our standard network 78 (Fig

6) are shown. The units are colour coded showing the Louvain clusters. With the same work-

flow applied for each network the ideal amount of clusters can vary. We manually assigned

labels to the clusters, that correlate well with specific image features or predictors. The circles

are added for visual clarification. Across all networks we see similar functional clusters appear-

ing in our eighteen-dimensional space. The function of layer three units are often hard to iden-

tify within this space.

(EPS)

Acknowledgments

We thank Peter Battaglia for invaluable discussions and help getting started with deep learning

and Next Limit for providing support during the stimuli generation process.

Author Contributions

Conceptualization: Jan Jaap R. van Assen, Shin’ya Nishida, Roland W. Fleming.

Data curation: Jan Jaap R. van Assen.

Formal analysis: Jan Jaap R. van Assen.

Funding acquisition: Shin’ya Nishida, Roland W. Fleming.

Investigation: Jan Jaap R. van Assen, Shin’ya Nishida, Roland W. Fleming.

Methodology: Jan Jaap R. van Assen, Shin’ya Nishida, Roland W. Fleming.

Project administration: Shin’ya Nishida, Roland W. Fleming.

Resources: Jan Jaap R. van Assen, Shin’ya Nishida, Roland W. Fleming.

Software: Jan Jaap R. van Assen.

Supervision: Shin’ya Nishida, Roland W. Fleming.

PLOS COMPUTATIONAL BIOLOGY Visual perception of liquids: Insights from deep neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008018 August 19, 2020 25 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008018.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008018.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008018.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008018.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008018.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008018.s008
https://doi.org/10.1371/journal.pcbi.1008018


Validation: Jan Jaap R. van Assen, Shin’ya Nishida, Roland W. Fleming.

Visualization: Jan Jaap R. van Assen.

Writing – original draft: Jan Jaap R. van Assen, Shin’ya Nishida, Roland W. Fleming.

Writing – review & editing: Jan Jaap R. van Assen, Shin’ya Nishida, Roland W. Fleming.

References
1. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s

visual cortex. J Physiol. 1962; 160(1):106–154.

2. Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code

for natural images. Nature. 1996; 381(6583):607. https://doi.org/10.1038/381607a0 PMID: 8637596

3. Simoncelli EP, Olshausen BA. Natural image statistics and neural representation. Annu Rev Neurosci.

2001; 24(1):1193–1216.

4. Livingstone M, Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and

perception. Science. 1988; 240(4853):740–749. https://doi.org/10.1126/science.3283936 PMID:

3283936

5. Van Essen DC, Anderson CH, Felleman DJ. Information processing in the primate visual system: an

integrated systems perspective. Science. 1992; 255(5043):419–423. https://doi.org/10.1126/science.

1734518 PMID: 1734518

6. Peirce JW. Understanding mid-level representations in visual processing. J Vis. 2015; 15(7):5–5.

https://doi.org/10.1167/15.7.5 PMID: 26053241

7. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks.

In: Advances in neural information processing systems. 2012. p. 1097–1105.

8. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. ArXiv

Prepr ArXiv14091556. 2014;

9. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2016. p. 770–778.

10. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for com-

puter vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

p. 2818–2826.

11. Bates C, Battaglia P, Yildirim I, Tenenbaum JB. Humans predict liquid dynamics using probabilistic sim-

ulation. In: CogSci. 2015.

12. Bates CJ, Yildirim I, Tenenbaum JB, Battaglia P. Modeling human intuitions about liquid flow with parti-

cle-based simulation. PLoS Comput Biol. 2019; 15(7):e1007210. https://doi.org/10.1371/journal.pcbi.

1007210 PMID: 31329579

13. Kawabe T, Maruya K, Fleming RW, Nishida S. Seeing liquids from visual motion. Vision Res. 2015;

109:125–138. https://doi.org/10.1016/j.visres.2014.07.003 PMID: 25102388

14. Paulun VC, Kawabe T, Nishida S, Fleming RW. Seeing liquids from static snapshots. Vision Res. 2015;

115:163–174. https://doi.org/10.1016/j.visres.2015.01.023 PMID: 25676882

15. Van Assen JJR, Fleming RW. Influence of optical material properties on the perception of liquids. J Vis.

2016; 16(15):12–12. https://doi.org/10.1167/16.15.12 PMID: 27973644

16. Van Assen JJR, Barla P, Fleming RW. Visual features in the perception of liquids. Curr Biol. 2018; 28

(3):452–458. https://doi.org/10.1016/j.cub.2017.12.037 PMID: 29395924

17. Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L. Large-scale video classification

with convolutional neural networks. In: Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition. 2014. p. 1725–1732.

18. Kriegeskorte N, Mur M, Bandettini PA. Representational similarity analysis-connecting the branches of

systems neuroscience. Front Syst Neurosci. 2008; 2:4. https://doi.org/10.3389/neuro.06.004.2008

PMID: 19104670

19. Nili H, Wingfield C, Walther A, Su L, Marslen-Wilson W, Kriegeskorte N. A toolbox for representational

similarity analysis. PLoS Comput Biol. 2014; 10(4):e1003553. https://doi.org/10.1371/journal.pcbi.

1003553 PMID: 24743308

20. Kornblith S, Norouzi M, Lee H, Hinton G. Similarity of neural network representations revisited. ArXiv

Prepr ArXiv190500414. 2019;

PLOS COMPUTATIONAL BIOLOGY Visual perception of liquids: Insights from deep neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008018 August 19, 2020 26 / 29

https://doi.org/10.1038/381607a0
http://www.ncbi.nlm.nih.gov/pubmed/8637596
https://doi.org/10.1126/science.3283936
http://www.ncbi.nlm.nih.gov/pubmed/3283936
https://doi.org/10.1126/science.1734518
https://doi.org/10.1126/science.1734518
http://www.ncbi.nlm.nih.gov/pubmed/1734518
https://doi.org/10.1167/15.7.5
http://www.ncbi.nlm.nih.gov/pubmed/26053241
https://doi.org/10.1371/journal.pcbi.1007210
https://doi.org/10.1371/journal.pcbi.1007210
http://www.ncbi.nlm.nih.gov/pubmed/31329579
https://doi.org/10.1016/j.visres.2014.07.003
http://www.ncbi.nlm.nih.gov/pubmed/25102388
https://doi.org/10.1016/j.visres.2015.01.023
http://www.ncbi.nlm.nih.gov/pubmed/25676882
https://doi.org/10.1167/16.15.12
http://www.ncbi.nlm.nih.gov/pubmed/27973644
https://doi.org/10.1016/j.cub.2017.12.037
http://www.ncbi.nlm.nih.gov/pubmed/29395924
https://doi.org/10.3389/neuro.06.004.2008
http://www.ncbi.nlm.nih.gov/pubmed/19104670
https://doi.org/10.1371/journal.pcbi.1003553
https://doi.org/10.1371/journal.pcbi.1003553
http://www.ncbi.nlm.nih.gov/pubmed/24743308
https://doi.org/10.1371/journal.pcbi.1008018


21. Oliva A, Torralba A. Building the gist of a scene: The role of global image features in recognition. Prog

Brain Res. 2006; 155:23–36. https://doi.org/10.1016/S0079-6123(06)55002-2 PMID: 17027377

22. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J

Stat Mech Theory Exp. 2008; 2008(10):P10008.

23. Olah C, Satyanarayan A, Johnson I, Carter S, Schubert L, Ye K, et al. The Building Blocks of Interpret-

ability. Distill. 2018;

24. Nguyen A, Yosinski J, Clune J. Understanding Neural Networks via Feature Visualization: A survey.

ArXiv190408939 Cs Stat. 2019 Apr 18;

25. Olah C, Cammarata N, Schubert L, Goh G, Petrov M, Carter S. An Overview of Early Vision in Incep-

tionV1. Distill. 2020;

26. MacEvoy SP, Epstein RA. Decoding the representation of multiple simultaneous objects in human occi-

pitotemporal cortex. Curr Biol. 2009; 19(11):943–947. https://doi.org/10.1016/j.cub.2009.04.020 PMID:

19446454

27. Garrido L, Vaziri-Pashkam M, Nakayama K, Wilmer J. The consequences of subtracting the mean pat-

tern in fMRI multivariate correlation analyses. Front Neurosci. 2013; 7:174. https://doi.org/10.3389/

fnins.2013.00174 PMID: 24137107

28. Xie S, Sun C, Huang J, Tu Z, Murphy K. Rethinking spatiotemporal feature learning: Speed-accuracy

trade-offs in video classification. In: Proceedings of the European Conference on Computer Vision

(ECCV). 2018. p. 305–321.

29. Stroud J, Ross D, Sun C, Deng J, Sukthankar R. D3d: Distilled 3d networks for video action recognition.

In: The IEEE Winter Conference on Applications of Computer Vision. 2020. p. 625–634.

30. Carreira J, Zisserman A. Quo vadis, action recognition? a new model and the kinetics dataset. In: pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. p. 6299–6308.

31. Kay W, Carreira J, Simonyan K, Zhang B, Hillier C, Vijayanarasimhan S, et al. The kinetics human

action video dataset. ArXiv Prepr ArXiv170506950. 2017;

32. Engstrom L, Ilyas A, Santurkar S, Tsipras D, Tran B, Madry A. Adversarial Robustness as a Prior for

Learned Representations. ArXiv190600945 Cs Stat [Internet]. 2019 Sep 27 [cited 2020 May 29]; Avail-

able from: http://arxiv.org/abs/1906.00945

33. Ilyas A, Santurkar S, Tsipras D, Engstrom L, Tran B, Madry A. Adversarial examples are not bugs, they

are features. In: Advances in Neural Information Processing Systems. 2019. p. 125–136.

34. Yin D, Lopes RG, Shlens J, Cubuk ED, Gilmer J. A fourier perspective on model robustness in computer

vision. In: Advances in Neural Information Processing Systems. 2019. p. 13255–13265.

35. Achille A, Rovere M, Soatto S. Critical learning periods in deep neural networks. ArXiv Prepr

ArXiv171108856. 2017;

36. Parisi GI, Kemker R, Part JL, Kanan C, Wermter S. Continual lifelong learning with neural networks: A

review. Neural Netw. 2019 May 1; 113:54–71. https://doi.org/10.1016/j.neunet.2019.01.012 PMID:

30780045

37. Gur-Ari G, Roberts DA, Dyer E. Gradient descent happens in a tiny subspace. ArXiv Prepr

ArXiv181204754. 2018;

38. Frankle J, Schwab DJ, Morcos AS. The Early Phase of Neural Network Training. ArXiv200210365 Cs

Stat [Internet]. 2020 Feb 24 [cited 2020 Apr 17]; Available from: http://arxiv.org/abs/2002.10365

39. Mordvintsev A, Olah C, Tyka M. Inceptionism: Going deeper into neural networks. 2015;

40. Hochstein S, Ahissar M. View from the top: Hierarchies and reverse hierarchies in the visual system.

Neuron. 2002; 36(5):791–804. https://doi.org/10.1016/s0896-6273(02)01091-7 PMID: 12467584

41. Sharif Razavian A, Azizpour H, Sullivan J, Carlsson S. CNN features off-the-shelf: an astounding base-

line for recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition

workshops. 2014. p. 806–813.

42. Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? In:

Advances in neural information processing systems. 2014. p. 3320–3328.

43. Huh M, Agrawal P, Efros AA. What makes ImageNet good for transfer learning? ArXiv Prepr

ArXiv160808614. 2016;

44. Zhang R, Isola P, Efros AA, Shechtman E, Wang O. The unreasonable effectiveness of deep features

as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Rec-

ognition. 2018. p. 586–595.

45. Kornblith S, Shlens J, Le QV. Do better imagenet models transfer better? In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2019. p. 2661–2671.

PLOS COMPUTATIONAL BIOLOGY Visual perception of liquids: Insights from deep neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008018 August 19, 2020 27 / 29

https://doi.org/10.1016/S0079-6123%2806%2955002-2
http://www.ncbi.nlm.nih.gov/pubmed/17027377
https://doi.org/10.1016/j.cub.2009.04.020
http://www.ncbi.nlm.nih.gov/pubmed/19446454
https://doi.org/10.3389/fnins.2013.00174
https://doi.org/10.3389/fnins.2013.00174
http://www.ncbi.nlm.nih.gov/pubmed/24137107
http://arxiv.org/abs/1906.00945
https://doi.org/10.1016/j.neunet.2019.01.012
http://www.ncbi.nlm.nih.gov/pubmed/30780045
http://arxiv.org/abs/2002.10365
https://doi.org/10.1016/s0896-6273%2802%2901091-7
http://www.ncbi.nlm.nih.gov/pubmed/12467584
https://doi.org/10.1371/journal.pcbi.1008018


46. Kar K, Kubilius J, Schmidt K, Issa EB, DiCarlo JJ. Evidence that recurrent circuits are critical to the ven-

tral stream’s execution of core object recognition behavior. Nat Neurosci. 2019; 22(6):974–983. https://

doi.org/10.1038/s41593-019-0392-5 PMID: 31036945

47. van Bergen RS, Kriegeskorte N. Going in circles is the way forward: the role of recurrence in visual infer-

ence. ArXiv Prepr ArXiv200312128. 2020;

48. Dubey R, Peterson J, Khosla A, Yang M-H, Ghanem B. What Makes an Object Memorable? In: The

IEEE International Conference on Computer Vision (ICCV). 2015.

49. Kubilius J, Bracci S, de Beeck HPO. Deep neural networks as a computational model for human shape

sensitivity. PLoS Comput Biol. 2016; 12(4):e1004896. https://doi.org/10.1371/journal.pcbi.1004896

PMID: 27124699

50. Peterson JC, Abbott JT, Griffiths TL. Adapting deep network features to capture psychological repre-

sentations. ArXiv Prepr ArXiv160802164. 2016;

51. Kummerer M, Wallis TS, Gatys LA, Bethge M. Understanding low-and high-level contributions to fixa-

tion prediction. In: Proceedings of the IEEE International Conference on Computer Vision. 2017. p.

4789–4798.
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59. Geirhos R, Temme CR, Rauber J, Schütt HH, Bethge M, Wichmann FA. Generalisation in humans and

deep neural networks. In: Advances in Neural Information Processing Systems. 2018. p. 7538–7550.

60. Jacobs RA, Bates CJ. Comparing the visual representations and performance of humans and deep

neural networks. Curr Dir Psychol Sci. 2019; 28(1):34–39.

61. Fleming RW, Storrs KR. Learning to see stuff. Curr Opin Behav Sci. 2019 Dec 1; 30:100–8. https://doi.

org/10.1016/j.cobeha.2019.07.004 PMID: 31886321

62. Geirhos R, Jacobsen J-H, Michaelis C, Zemel R, Brendel W, Bethge M, et al. Shortcut Learning in Deep

Neural Networks. ArXiv Prepr ArXiv200407780. 2020;

63. Khaligh-Razavi S-M, Kriegeskorte N. Deep supervised, but not unsupervised, models may explain IT

cortical representation. PLoS Comput Biol. 2014; 10(11):e1003915. https://doi.org/10.1371/journal.

pcbi.1003915 PMID: 25375136
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