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Abstract

Objective To assess the accuracy of a 3D camera for body contour detection and patient positioning in CT compared to routine
manual positioning by radiographers.

Methods and materials Four hundred twenty-three patients that underwent CT of the head, thorax, and/or abdomen on a scanner
with manual table height selection and 254 patients on a scanner with table height suggestion by a 3D camera were retrospec-
tively included. Within the camera group, table height suggestion was based on infrared body contour detection and fitting of a
scalable patient model to the 3D data. Proper positioning was defined as the ideal table height at which the scanner isocenter
coincides with the patient’s isocenter. Patient isocenter was computed by automatic skin contour extraction in each axial image
and averaged over all images. Table heights suggested by the camera and selected by the radiographer were compared with the
ideal height.

Results Median (interquartile range) absolute table height deviation in millimeter was 12.0 (21.6) for abdomen, 12.2 (12.0) for
head, 13.4 (17.6) for thorax-abdomen, and 14.7 (17.3) for thorax CT scans positioned by radiographers. The deviation was
significantly less (p < 0.01) for the 3D camera at 6.3 (6.9) for abdomen, 9.5 (6.8) for head, 6.0 (6.1) for thorax-abdomen, and 5.4
(6.4) mm for thorax.

Conclusion A 3D camera for body contour detection allows for accurate patient positioning, thereby outperforming manual
positioning done by radiographers, resulting in significantly smaller deviations from the ideal table height. However,
radiographers remain indispensable when the system fails or in challenging cases.

Key Points

* A 3D camera for body contour detection allows for accurate patient positioning.

* A 3D camera outperformed radiographers in patient positioning in CT.

* Deviation from ideal table height was more extreme for patients positioned by radiographers for all body parts.

Keywords Tomography, x-ray computed - Health physics - Radiation dosage - Diagnostic imaging

Abbreviations FoV Field of view
AEC Automatic exposure control IQR Interquartile range
ATCM  Automated tube current modulation

AVP Automatic vertical positioning

CT Computed tomography Introduction
CTDI  Computed tomography dose index
DSCT  Dual-source computed tomography The applied dose in computed tomography (CT) should be as

low as reasonably achievable. This makes scan acquisition
protocol optimization important [1, 2]. Over the years, many

>4 Ronald Booij dose optimization techniques have been introduced, such as
r.booij @erasmusme.nl iterative reconstruction techniques, automated tube current
modulation (ATCM), and automated tube voltage selection

! Department of Radiology and Nuclear Medicine, Erasmus Medical [3, 4]. However, little attention has been paid to proper patient
Center, P.O. Box 2240, 3000 CA Rotterdam, The Netherlands positioning in the CT scanner. Proper patient positioning can
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be defined as choosing the ideal CT table height at which the
scanner isocenter coincides with the patient’s isocenter. This
may at first sight seem to be a minor action. However, it is not,
as patient positioning affects the patient’s shape and size on a
CT localizer radiograph, directly affecting ATCM behavior as
well as the efficacy of bowtie filters [5—8].

Although radiographers can use laser beams to visually
check the central positioning of the patient, this method is
user-dependent and therefore patient positioning at a non-
ideal table height is common [6, 7, 9, 10]. If the patient is
positioned away from the isocenter (i.e., table positioned too
high or too low), the localizer radiograph is either magnified
or reduced in width and the radiation dose applied by the
ATCM consequently increases or decreases, which might re-
sult in suboptimal image quality or an increase in dose [6-38,
10, 11]. In a study by Saltybaeva and Alkadhi, vertical off-
centering by 20 mm in chest CT resulted in 7% organ dose
differences, while off-centering of more than 40 mm was as-
sociated with significant dose differences of 20% and higher
[12]. Other studies using a phantom demonstrated a substan-
tial increase in radiation dose to the surface and periphery of
the phantom [13], and an increase in image noise, or a con-
siderable effect on eye lens and skin dose by off-centering [8].
This was partly due to suboptimal performance of the bowtie
filter with inappropriate beam attenuation because of off-cen-
tering. Habibzadeh et al found that patient positioning more
than 10 mm from the ideal table height occurred in over 75%
of patients in their sample [5]. Especially in challenging pa-
tients, it can be difficult for radiographers to estimate the ideal
table height.

Body contour detection using advanced sensors and a vir-
tual patient model [14, 15] may improve table height selec-
tion. Recently, a 3D camera for body contour detection based
on these techniques was introduced that allows for automatic
patient positioning in the CT gantry. The aim of our study was
to assess the performance and accuracy of this system for
patient positioning and compare it to routine manual position-
ing by the radiographer.

Materials and methods
Study design and patient selection

The study was conducted in accordance with the declaration
of Helsinki and international standards of Good Clinical
Practice. The medical ethics committee of Erasmus MC
waived the need for informed consent. Vertical patient posi-
tioning, i.e., CT table height selection, performance was
assessed on two dual-source CT (DSCT) scanners from
Siemens Healthineers: SOMATOM Drive (software version
Syngo CT VA62A) equipped with a 3D camera for body
contour detection (prototype; Siemens Healthineers), and a
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SOMATOM Force (software version Syngo CT VAS0A) with
vertical patient positioning done manually by radiographers.

All consecutive adult patients that underwent a CT exami-
nation of the head, thorax, and/or abdomen during routine
clinical care on the two DSCT scanners in our institution men-
tioned above during a 1-month period from February to
March 2017 were retrospectively included.

Patient positioning using a 3D camera for body
contour detection

The 3D camera was positioned above the patient, in front of
the CT gantry and equipped with an infrared light source and
sensor, as well as a visible light camera. The camera is con-
nected to the scanner and integrated into the patient position-
ing workflow.

Once the patient is positioned on the table and assumes the
target pose for the CT scan, the radiographer triggers a plan-
ning image by pressing a button on a touch display mounted at
the gantry. The image analysis starts after taking this image
and it happens independent from the target body region.

The 3D camera uses infrared light and the time-of-flight
(TOF) principle [14] to measure the distance of object surfaces
to the camera. The result is a scalar depth image, where the
magnitude of each pixel represents a distance with respect to
the camera in millimeters. Figure 1a shows a depth image
visualized as grayscale image where brighter colors denote
larger distances. Black means no measurements are available.
This may happen at edges, e.g., those of the table, where the
infrared light is not reflected back into the camera but
scattered. Aligning of the depth image to the color image,
which has a larger field of view, may lead to undefined areas
at the border of the depth image. The depth image taken with
the 3D camera is converted to a 3D point cloud (Fig. 1b) by
inverting the perspective projection of the camera.

The depth image/point cloud is the main source of input to
the algorithm which defines the patient isocenter. The algo-
rithm consists of three steps that are described below: (1)
detection of the pose of the patient and body regions, such
as the head, thorax, and abdomen; (2) fallback isocenter; and
(3) avatar fit [15].

Within step 1, based on the detected body regions and the
selected scan protocol, the system automatically defines the
horizontal range for the scan. If necessary, the user can man-
ually adjust the scan range on the touch panel to the preferred
length and region by dragging the boundary overlays on the
color image (Fig. 1¢). Within step 2, a fallback isocenter is
computed before step 3 because it is a fast method, and will be
used when the avatar fit in step 3 fails. The center between the
point cloud and the table top is a reasonable approximation to
the patient’s isocenter when the patient is lying flat on the
table. Since the camera is calibrated to the gantry coordinate
system of the CT scanner, the point cloud can be mapped into
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Fig. 1 a Measured depth values. b Depth surface after perspective
correction. ¢ User interface of touch panel on CT scanner: 1, table
position and table height; 2, selectable body region; 3, adjustable scan
range; 4, taking planning image; 5, automatic position of the patient on

gantry space by a rigid transformation. In gantry space, the
center is computed between the point cloud and the known
position of the table top along the length axis of the table. This
leads to a centerline curve. The curve is truncated to the target
body region to be scanned and then averaged to obtain the
isocenter of the patient. The deviation between this isocenter
and the known isocenter of the scanner can then be applied to
the table position at which the camera image was acquired in

base of selected scan range. d Virtual patient avatar. e Patient positioning
accuracy: Red horizontal line: average patient isocenter, blue horizontal
line: scanner isocenter, green horizontal line: average patient isocenter
estimated by camera

order to automatically align the body region to be scanned
with the isocenter of the scanner.

Within the last step, an avatar is fitted to the camera data.
The avatar is a statistical shape model (Fig. 1d) learnt from a
training database and used to obtain the isocenter curve of the
patient (Fig. le). During the fitting process, the avatar assumes
the pose and the body proportions of the patient as captured by
the depth data and within the limits of the model. The avatar
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currently does not model the arms, but the thorax shape still
accounts for arms behind the head or arms at the side of the
body. Since the 3D camera only sees the upward facing side of
the patient, the known position and shape of the table top are
used to constrain the backwards facing side of the patient. The
center of the avatar in the lateral direction is then computed for
the target body region in order to obtain a robust estimate of
the patient’s isocenter. The avatar model ensures a robust
isocenter estimate is obtained also in case positioning aids
such as head rests or knee rests are used or when the patient
is covered by blankets. If an avatar model cannot be fit, the
previously described fallback isocenter (step 2) will be used.
The isocenter is then estimated by averaging the depth data
and the known table top. Once the move button on the gantry
is pressed, the isocenter curve (either avatar or fallback) com-
puted for the whole patient will be truncated to the selected
target scan region.

All described steps occur in milliseconds and only manu-
ally adjusting the scan range will add more time (seconds) to
the procedure.

Manual patient positioning by radiographers

Patients were positioned on the scanner by the radiographer
using laser beam guidance as routinely available on the CT
scanner. For vertical positioning, the scanner is equipped with
laser beams that project a horizontal line through the isocenter
of the gantry on the lateral side of the patient. All scans were
acquired during routine clinical care by a team of dedicated
CT radiographers.

Calculation of patient positioning accuracy

For each patient, the positioning accuracy is expressed as a
single value in millimeter that represents the difference be-
tween the table height suggested by the camera or chosen by
the radiographer and the ideal table height. The latter was
defined as the height at which the scanner isocenter coincides
with the patient isocenter as calculated based on the axial
images as described below. The distribution of patients posi-
tioned higher or lower than the ideal table height was
expressed as negative or positive numbers, respectively.

In each axial slice of the acquired CT scan, the skin contour
(representing the perimeter of the patient at that specific axial
position) was extracted by thresholding. The vertical position
of'the patient isocenter in each slice was defined as the average
of the lowest and highest skin contour positions, i.e., the two
points on the extracted perimeter closest to the top and bottom
of'the axial image (Fig. 2a, b). Finally, the patient isocenter for
the total scan length was computed by averaging the vertical
isocenter positions for each individual image over all images.
The computations were performed with a mathematical com-
puting software code developed in-house (MATLAB R2008a,
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Axial cross section

Fig. 2 3D region growing to extract patient isocenter. a Axial view of
region growing to extract patient isocenter for each slice, defined as the
midpoint between the highest and lowest points (red dashed lines) of the
extracted patient skin contour. b Sagittal MIP is created to demonstrate
vertical height measurement of consecutive axial images and demonstrate
scanner isocenter does not coincide with patient isocenter (blue line:
scanner isocenter, dashed red line: patient isocenter)

The MathWorks Inc., Natick, MA, USA). Reconstructed slice
thickness was 3.0 mm, reconstruction increment was 3.0 mm,
and the reconstructed field of view (FoV) was chosen to in-
clude the entire skin surface by an additional reconstruction
with the maximum possible FoV.

Exclusion of scans

In case of obvious impossibility to position the patient at the
preferred table height, e.g., very bended knees or arms due to
physical constraints and that could not be completely extend-
ed above the head, patients were excluded from analysis. In
case of obvious patient movement after body contour detec-
tion by the 3D camera and before the CT scan, or in case of
large objects blocking the camera sight, patients were exclud-
ed from analysis as well.

Statistical analyses

To determine whether there were significant differences in
patient positioning between the radiographers and the 3D
camera for body contour detection, we performed an analysis
by means of normality and a nonparametric test. The absolute
table height deviation is a continuous unpaired variable
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reported as median (interquartile range (IQR)), calculated with
Microsoft Excel (Microsoft Office Professional Plus 2010).
Data distribution was tested with Shapiro-Wilk test. The
non-normally distributed data of the absolute table height de-
viation for the different body regions within and between the
camera and radiographer groups were compared with the
Mann-Whitney U test. A two-sided p value of <0.05 was
considered statistically significant. Statistical analyses were
performed using SPSS (version 22, IBM Corp, Armonk,
NY, USA). Continuous measures of isocenter deviation
(mm) were calculated and evaluated with Microsoft Excel
(Microsoft Office Professional Plus 2010).

Results

Patient positioning accuracy of 3D camera for body
contour detection

Two hundred seventy-two scans were available for analysis.
Eighteen (6.6%) scans were excluded from analysis due to
obvious patient movement after body contour detection by
the 3D camera or large objects blocking the camera sight.
Consequently, a total of 254 patients were included in the
analysis: 58 (22.8%) abdomen, 45 (17.7%) head, 70 (27.6%)
thorax-abdomen, and 81 (31.9%) thorax CT scans. Median
(IQR) absolute table height deviation was 6.3 (6.9) for abdo-
men, 9.5 (6.8) for head, 6.0 (6.1) for thorax-abdomen, and 5.4
(6.4) mm for thorax CT scans. Median table height deviation
was highest for head CT (Fig. 3a and Table 1). A fallback was
applied in three cases since no avatar could be fitted.

A total of 201 (79.1%) of patients were positioned higher
than the scanner isocenter. Fifty-three (20.9%) of the patients
were positioned lower than the scanner isocenter (Fig. 4a).
Subanalyses of the different body parts demonstrated the same
tendency, but the tendency was less distinct in head CT
(Table 1).

Patient positioning accuracy of radiographers

Four hundred twenty-six scans were available for analysis. In
three cases, it was not possible to position the patient at the
preferred table height and these patients were therefore ex-
cluded from analysis. The total study population of 423 pa-
tients comprised 115 (27.2%) abdomen, 73 (17.3%) head, 72
(17.0%) thorax-abdomen, and 163 (38.5%) thorax CT scans.

Median (interquartile range (IQR)) absolute table height
deviation was 12.0 (21.6) for abdomen, 12.2 (12.0) for head,
13.4 (17.6) for thorax-abdomen, and 14.7 (17.3) mm for tho-
rax CT scans done by radiographers. Median table height de-
viation was highest for the thorax (Fig. 3a and Table 1).

A total of 133 (31.4%) patients were positioned higher than
the scanner isocenter. Two hundred ninety (68.6%) of the

patients were positioned lower than the scanner isocenter
(Fig. 4b). Subanalyses of the different body parts demonstrat-
ed the same tendency, but the tendency was less distinct in
head CT (Table 1).

Comparison between radiographer and 3D camera

Figure 3a, b and Table 1 present the performance of
radiographers and the 3D camera. Median table height devia-
tion, for all body parts combined, was 13.2 mm (IQR, 17.0)
for patients positioned by radiographers and 6.1 mm (IQR,
7.0) for patients from the CT scanner equipped with a 3D
camera. Overall p value for difference in positioning was
p<0.0005.

For each of the four body part areas that were scanned, the
maximum absolute deviation from the ideal table height was
highest for patients positioned by radiographers. Patient posi-
tioning accuracy for the 3D camera system and the
radiographers differed significantly for all four body parts:
abdomen (p <0.0005), head (p =0.039), thorax-abdomen
(p <0.0005), and thorax (p < 0.0005) scans.

Discussion

We assessed the possible improvement of patient positioning
in the CT gantry when using a 3D camera system with auto-
mated patient body contour detection over conventional man-
ual positioning by radiographers with the aid of laser beams.
We found that the 3D camera allowed for more accurate pa-
tient positioning than radiographers, resulting in significantly
smaller median deviations from the ideal table height.

There have been previous initial attempts at automatic ver-
tical position (AVP) such as described by Li et al [16]. They
assessed the effect of AVP software on radiation dose in CT,
based on matching the patient’s mean center of mass, calcu-
lated from the lateral localizer radiograph. They showed ver-
tical positioning by radiographers differed from automatic ver-
tical positioning with an average of 33.2 mm (range 5.1—
97 mm) [16]. Although their values were much higher than
our results and no 3D camera was used, their AVP software
also outperformed the radiographers. However, a major draw-
back of their approach was the inability to immediately use the
recommendations given by the AVP software which hampers
routine clinical use. The 3D camera system in our study is
fully integrated into the scanner system workflow.

Although less extreme than in patients positioned by
radiographers, a deviation from the ideal isocenter was seen
in patients positioned by the camera. Possible causes for this
are inaccurate 3D depth data from the camera or inaccurate
fitting of the avatar model to this depth data. Apart from the
visualizations like the one in Fig. 1d, we did not have access to
the avatar data and thus were not able to investigate the latter
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| Fig. 3 a Box-and-whisker plots of patient positioning performance of all
different body parts separately for the radiographers and the 3D camera. b
Box-and-whisker plots of patient positioning performance of all different
body parts combined for the radiographers and the 3D camera. The me-
dian (horizontal line within box), interquartile range (box), and nonoutlier
range (whiskers). The largest deviations from the scanner isocenter are
plotted as open dots and represent values outside the nonoutlier range of
the IQR; the latter computed as 1.5 times interquartile range (i.e., 25—

For the vast majority of patients, different positioning was
not a problem for the camera to perform adequately. For 16
patients, the body contour appeared to be challenging includ-
ing ten cases where folds in clothing, electronic wires, and
blankets gave rise to false interpretation of body shape which
would account for large deviations.

In two cases, the positioning of the head varied as some
parts of the head were not captured in depth measurements, or
a bright white surface on the head such as a bandage led to
erroneous protrusion of the forehead. This might explain the
median absolute table height deviation for the camera being
highest for the patient’s head. In four cases, the patient was
partly positioned in the gantry and the body parts were not in
the full field of view of the camera. For these cases, it was
possible to apply a fallback to the depth data and perform the
analysis. In this way, the depth surface as seen by the camera
and the curvature of the CT table are used, instead of the
avatar. With respect to the false interpretation of body shape
and applied fallback, we considered the data valid for analysis.

The difference in tendency of positioning of the head CT
(lower or higher than the isocenter) for radiographers and the
3D camera can probably be explained the same as for the
challenges of the 3D camera: interpretation of the head was
in some cases challenging. In addition, head CT positioning
can be performed in different ways: soft cushion, carbon head
holder, soft cushion head support, or even no head holder at
all, making isocentration complicated. For both radiographer
and camera, it could be difficult to estimate the back of the
head and to interpret the ideal table height with varying head
supports. However, the overall deviation from the ideal table

75%)

possible cause any further. Nevertheless, we believe that the
avatar model and its registration algorithm can be improved
by training and learning from clinical data. Although we did
not assess this in the current study, we believe that automatic
positioning might be an asset to help the radiographers speed
up their routine tasks. In clinical practice, we observed a more
accurate positioning with the aid of the fast analysis of the 3D
camera, and in our opinion, the radiographers are supported in
patient positioning with the aid of the camera, rather than
visually checking only. Thereby, they might be faster in deter-
mining of the ideal table height. Nevertheless, we believe it is
rather the symbiosis of the human and the smart technology
which is making the difference: After the suggestion for the
scan range and table height position done by the camera, the
radiographer can easily check and adjust the proposals, while
the main focus is on the patient itself.

However, radiographers play an important role and remain
indispensable in minimizing patient dose through optimized
patient positioning [5], especially in challenging patients.
Therefore, patient positioning deserves increased attention in
clinical practice [10] and in education.

Table1 Patient positioning performance in numbers (%), median, and interquartile range [IQR] for radiographers and the 3D camera and all four body

parts individually and combine. Patient positioning data for absolute table height deviation and higher/lower than the isocenter

Body part Abdomen Head Thorax-abdomen Thorax Total body parts

Radiographers
Patients, n (%) 115 27%) 73 (17%) 72 (17%) 163 39%) 423 (100%)
Median of absolute table height deviation (mm) 12.0 [21.6] 12.2 [12.0] 13.4[17.6] 14.7 [17.3] 13.2[17.0]
Patients positioned higher than isocenter, n (%) 39 (34%) 34 (47%) 15 21%) 45 (28%) 133 (31.4%)
Patients positioned lower than isocenter, n (%) 76 (66%) 39 (53%) 57 (79%) 118 (72%) 290 (68.6%)
Median of table height deviation (mm) 10.08 1.95 10.44 10.23 9.47
Total 115 (100%) 73 (100%) 72 (100%) 163 (72%) 423 (100%)

3D camera
Patients, n (%) 58 (23%) 45 (18%) 70 (27%) 81 (32%) 254 (100%)
Median of absolute table height deviation (mm) 6.3 [6.9] 9.5[6.8] 6.0 [6.1] 541[64] 6.1[7.0]
Patients positioned higher than isocenter, n (%) 49 (84%) 28 (62%) 61 (87%) 63 (78%) 201 (79.1%)
Patients positioned lower than isocenter, n (%) 9 (16%) 17 (38%) 9 (13%) 18 (22%) 53 (20.9%)
Median of table height deviation (mm) -5.97 -3.99 -5.86 -4.27 -5.35
Total 58 (100%) 45 (100%) 70 (100%) 81 (100%) 254 (100%)

p value median absolute table height deviation <0.0005 0.039 <0.0005 <0.0005 0.0005

Data are numbers (%) and median [interquartile range]
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height was much less extreme with the 3D camera. This im-  quality can be obtained with the use of the 3D camera system,
plies that most likely better dose management and image  compared to manual patient positioning by radiographers.
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Positioning of the patient higher or lower than the scanner
isocenter has a different effect on the distortion of the localizer
radiograph. We did not evaluate the specific dose and image
quality changes in the current study as they may be related to
other factors as well. To evaluate the effect on dose and image
quality of the distortion of the localizer radiograph, ideally,
each patient would be positioned and scanned twice: once
with table height selection by the radiographer and once with
selection by the camera. However, this would expose the pa-
tient to double the radiation dose. Saltybaeva and Alkadhi [12]
reported in their phantom study no significant impact of oft-
centering on dose and image quality. However, off-centering
with more than 20% resulted in increased radiation dose.
Taking the median absolute table height deviation into ac-
count in our study, the more accurate positioning of the 3D
camera has potential advantages in optimization of radiation
dose and image quality.

Recently, Saltybaeva et al [17] also demonstrated more
accurate patient positioning with the aid of a 3D camera sys-
tem similar to the one described here. They also found a sig-
nificant improvement in patient centering when using auto-
matic positioning with the 3D camera compared to manual
positioning by radiographers. However, their study was limit-
ed to abdominal and thoracic CT scans. Our data included
thorax-abdominal and head CT scans as well. Moreover, the
number of patients included was higher in our study: 423
patients versus 52 patients positioned by radiographers, and
254 patients versus 68 patients with the camera. Also, we
evaluated the number of patients positioned either lower or
higher than the scanner isocenter for both radiographers and
the camera.

The definition of the ideal table height was based on the
idea to center the patient around the scanner’s isocenter for
optimal performance of the automatic exposure control
(AEC). However, it might be preferable to place the examined
organ, e.g., the spine or heart in the isocenter, because the
scanner’s image quality and temporal resolution are best near
the isocenter. We think that the information obtained from the
fitted avatar model allows for such organ-based table height
selection and could be a topic of further investigation. The
AEC algorithm should take this off-center positioning into
account, for example, as described by McMillan et al [18].

There are limitations to this study that require consider-
ation. Because of the retrospective nature of the study, multi-
ple radiographers performed the CT scans on the two different
DSCT scanners. However, the scanners, patient groups, and
radiographers were comparable. In addition, the study took
place within the same hospital department. All radiographers
had been trained to use the equipment and were experienced in
performing CT scans and positioning of patients. This reflects
daily clinical practice at our department.

For purpose of the analysis, we used all longitudinal
positions of the scanned range to calculate the algorithm

isocenter. This differs from routine operation of the
camera system, whereby two-dimensional visible light
information was used for automatic planning of the scan
range and was manually adjustable to preferences of
length and region before performing a localizer radio-
graph. The radiographer can adjust the scan length after
performing the localizer radiograph. Consequently, the
suggested table height by the, automatic or manually,
planned scan range may differ. We did no further anal-
yses on these differences but updating of table height
suggestion after performing of a localizer radiograph
would be of interest.

In conclusion, the 3D camera for body contour de-
tection made patient positioning in CT at the ideal table
height more accurate with less extreme deviations com-
pared to manual positioning by radiographers.
Radiographers will continue to play an important role
and remain indispensable for optimization of radiation
dose and image quality through optimized patient posi-
tioning, especially in challenging patients.
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