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Abstract

Sensory responses of the brain are known to be highly variable, but the origin and functional relevance of this variability
have long remained enigmatic. Using the variable foreperiod of a visual discrimination task to assess variability in the
primate cerebral cortex, we report that visual evoked response variability is not only tied to variability in ongoing cortical
activity, but also predicts mean response time. We used cortical local field potentials, simultaneously recorded from
widespread cortical areas, to gauge both ongoing and visually evoked activity. Trial-to-trial variability of sensory evoked
responses was strongly modulated by foreperiod duration and correlated both with the cortical variability before stimulus
onset as well as with response times. In a separate set of experiments we probed the relation between small saccadic eye
movements, foreperiod duration and manual response times. The rate of eye movements was modulated by foreperiod
duration and eye position variability was positively correlated with response times. Our results indicate that when the time
of a sensory stimulus is predictable, reduction in cortical variability before the stimulus can improve normal behavioral
function that depends on the stimulus.

Citation: Ledberg A, Montagnini A, Coppola R, Bressler SL (2012) Reduced Variability of Ongoing and Evoked Cortical Activity Leads to Improved Behavioral
Performance. PLoS ONE 7(8): e43166. doi:10.1371/journal.pone.0043166

Editor: Olaf Sporns, Indiana University, United States of America

Received March 24, 2012; Accepted July 18, 2012; Published August 24, 2012

Copyright: � 2012 Ledberg et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant
agreement no. 269921 (BrainScaleS). AL is supported by the Ramon y Cajal program from the Spanish government. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: anders.ledberg@gmail.com

Introduction

In sensory areas of the brain, neuronal responses to the same

stimulus may vary considerably from one trial to the next [1–4]

and this variability is weakly correlated between neighboring

neurons [5,6]. Since neuronal trial-to-trial variability could

potentially interfere with the organism’s ability to utilize sensory

information to guide behavior, it is essential to know whether it is

reduced in normal behavior and how this reduction comes about.

Recent studies show that neuronal trial-to-trial variability and

covariability in widespread cortical areas are reduced by the onset

of a sensory stimulus [7] and that behaviorally relevant stimuli

may cause further variability reduction [8–10]. The stimulus-

induced reduction in variability is partly independent of the state

of the subjects since the effect can be observed both in anesthetized

and awake animals [7]. On the other hand, others have

interpreted the variability reduction as a correlate of visual

selective attention [8–10].

Neuronal response variability may have several causes, and in

the case of visual stimuli, subtle between trial differences in eye

movements are a prominent such cause [11]. Since both macro-

and micro saccades influence the firing of single neurons [12–14]

as well as the amplitude of local field potentials [15,16] one

possible way to reduce trial-to-trial variability of the cortical

response is to reduce the rate of saccadic eye movements. Recent

evidence obtained in both human- [17] and nonhuman primates

[18], indicates that microsaccades in close temporal relation to the

imperative stimulus lead to impaired behavioral performance, an

observation suggesting that cortical response variability, induced

by eye movements, interferes with normal behavior.

How can neuronal activity induced by, or at least time-locked

to, saccadic eye movements affect the variability of the cortical

response to a sensory stimulus? Sensory evoked cortical responses

depend on the state of ongoing cortical activity at the time of

stimulus presentation [19–21]. The brain may therefore reduce

sensory response variability by reducing the variability of ongoing

cortical activity. Part of the cortical (co-)variability reduction

previously reported in visual area V4 has in fact been attributed to

a reduction of background cortical activity [9]. A long-standing

hypothesis in systems neuroscience holds that cortical state is

controlled by ascending neuromodulator systems [22,23] and it

has recently been shown that activating ascending systems

improves the coding of sensory stimuli, partly through a reduction

in trial-to-trial variability [24]. When the time-point of the

imperative stimulus is to some extent predictable it is therefore

possible that the organism reduces cortical variability by decreas-

ing the rate of saccadic eye movements or by activating an

ascending system, or both. Likely these mechanisms are not

independent.

Here we investigate the hypothesis that reduced variability in

ongoing cortical activity leads to reduced variability in the sensory

evoked response, which in turn leads to improved behavioral
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performance. We furthermore provide evidence that suggests that

the reduced variability is partly but not completely a consequence

of a reduction in the rate of small eye movements. A visual

discrimination task was used in which subjects had to make a swift

motor response to a briefly presented visual stimulus. The task

design allowed cortical activity and mean response time to be

evaluated in relation to foreperiod (time between trial onset and

stimulus onset) [25–27]. Cortical activity was assessed by local field

potentials (LFPs), which reflect local synaptic activity [28,29] and

thus provide a sensitive measure of ongoing cortical activity. The

strong correlation known to exist between the initial LFP response

to a visual stimulus (visual evoked potential; VEP) and the

corresponding multi-unit spiking response [30,31] implies that

VEP variability is related to the (co-)variability of single-neuron

activity. We show that VEP variability in widespread cortical

regions is strongly modulated by foreperiod duration, that VEP

variability depends on ongoing cortical activity at the time of

stimulus onset, and that foreperiod-dependent reduction of mean

response times can be explained by the reduction in VEP

variability. Small eye movement were not monitored in the LFP

experiments so we adopted the same behavioral task for human

subjects and run an experiment in which eye movements were

measured with high spatio-temporal precision. We show that the

rate of small saccades decreases as a function of foreperiod

duration and that the rate of saccades is correlated with reaction

time. Taken together our results support a model in which subjects

actively control neuronal variability, partly by reducing eye

movements, in order to optimize performance.

Results

To characterize the variability of stimulus evoked cortical

activity, we analyzed LFPs simultaneously recorded from multiple

cortical areas in two monkeys performing a visual discrimination

task (Figure 1A,B and Material & Methods). A critical aspect of the

task design was that the foreperiod varied randomly from trial to

trial (rectangular distribution with 60 equally sized bins between

100 and 1100 ms).

VEP variability is modulated by foreperiod duration
Previously we showed that LFPs recorded from widespread

cortical areas have a short-latency (50–100 ms) VEP response,

time-locked to the onset of the visual stimulus [32]. Figure 1 shows

that early VEP amplitude variability strongly depended on

foreperiod duration: single-trial LFPs from primary visual cortex

had larger trial-to-trial variability after short (Figure 1C) than long

(Figure 1D) foreperiods. The variance across trials, computed at

each time point, was substantially lower after long than short

foreperiods (Figure 1E). To investigate the generality of this

finding, we divided the trials into 20 non-overlapping groups based

on foreperiod duration. In each group we computed the variance

over trials in a 50 ms time window covering the early VEP (the

window is indicated by the gray rectangle in Figure 1E). The

average within-window variability decreased markedly as fore-

period duration increased, as illustrated by three example sites in

Figure 1F. At a large number of sites in the two monkeys, trial-to-

trial variability of the evoked response significantly declined with

increasing foreperiod duration, as measured by rank correlation

(Figure 1G). The effect was strongest in occipital and temporal

regions (‘visual areas’) but was also observed at frontal sites.

We next tested whether co-variability in the evoked response

between different sites (so-called noise correlations [33]) was also

modulated by foreperiod duration. The left panel in Figure 1H

shows a scatter plot of the average early VEP amplitude at two

sites in primary visual cortex for groups of trials with short (black)

and long (gray) foreperiod durations. The linear relationship

between the early VEP amplitudes at these two sites is much

stronger for short foreperiods, indicating that noise correlation

decreases with increasing foreperiod duration. The right panel in

Figure 1H shows that the correlation decreases monotonically as a

function of foreperiod duration. Of all the 73 site pairs that had a

significant decrease in variance at both sites, six had a significant

decline in noise correlation as a function of foreperiod duration.

Ongoing cortical activity is modulated by foreperiod
duration

Is the reduction in VEP variability related to changes in the

ongoing cortical activity? This is suggested by Figure 1C–E where

it can be seen that the variability before stimulus onset also

depends on foreperiod duration. To investigate this issue further

we first analyzed the LFPs in a 100 ms time window extending

from 90 ms before to 10 ms after the onset of the visual stimulus

(the prestimulus epoch, before the stimulus evoked activity reached

the cortical level) and found that trial-to-trial variability of ongoing

cortical activity was strongly modulated by foreperiod duration at

many sites (Figure 2A,B). Of all the sites with a significant change

in VEP variability (as seen in Figure 1G) all except one also had a

significant change in prestimulus trial-to-trial variability (compare

Figure 1G with Figure 2B). Three sites from monkey T had

prestimulus variability that increased with foreperiod duration

(blue dots in Figure 2B). None of these sites had VEP variability

that depended on foreperiod duration. A spectral analysis of the

prestimulus epoch showed that the foreperiod duration dependent

changes in variability occurred mainly at frequencies below 25 Hz

(Figure 2C,D).

Ongoing cortical activity predicts VEP variability
Next we tested whether evoked response variability did in fact

depend on the variability of ongoing cortical activity by comparing

VEP and prestimulus variability on a trial-by-trial basis. Figure 3A

shows that these variables can indeed be significantly correlated

(pv10{8, linear regression analysis), indicating that the degree of

variability in the prestimulus period is indicative of the level of

evoked response variability. To control for the possibility that

changes in evoked (Figure 1) and prestimulus (Figure 2) variability

were independently caused by foreperiod duration, we computed

the correlation between the variabilities in prestimulus and evoked

epochs with the effect of foreperiod ‘partialed out’. Figure 3B

shows that at most sites these partial correlation coefficients were

significantly greater than zero (pv0:05, corrected for multiple

comparisons). The correlations were non-significant at only two of

the 17 sites where the VEP variability was modulated by

foreperiod duration. This is a strong indication that VEP

variability is causally related to the variability of the ongoing

cortical activity.

VEP variability predicts mean response times
Mean response times decreased as a function of foreperiod

duration (Figure 4A), replicating earlier studies [26,27]. This

decrease was not due to a speed-accuracy trade-off since the

percent correct responses (average *98% and *94% for the two

subjects) did not decline with increasing foreperiod duration (not

shown). The mean response time decrease was highly significant

(pv0:005 and pv0:001 for the two subjects respectively), and the

shape of the decrease resembled that of the variability modulation

(cf. Figure 1F). To test for a relation between response time and

cortical variability we examined the covariation of these two

Cortical Response Variability and Behavior
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variables at the single-trial level. Single-trial response times tended

to shorten as cortical variability at many sites declined (shown for

an extrastriate recording site in Figure 3B). Since both cortical

variability and response time were influenced by foreperiod

duration we computed the partial correlation between those two

variables, thus removing the variability induced by foreperiod

duration. Of the 17 sites with significantly modulated variability,

four had a significant partial correlation between cortical

variability and response time (pv0:05, corrected for 17 multiple

comparisons). The locations of these four sites are shown in the

cortical map of Figure 4B.

The role of eye movements
Small eye movements were not monitored in the monkey

experiments. However, the task is demanding and the stimulus was

presented for 100 ms which is probably too short time for saccadic

eye movements to be beneficial in solving the task. To further

investigate the relation between eye movements and response

behavior in our task we ran behavioral experiments in two human

subjects using exactly the same task while monitoring eye

movements. Figure 5A shows that the effect of foreperiod duration

on mean response times is present also in the human subjects. The

effect was statistically significant in both subjects (pv0:001, linear

Figure 1. Foreperiod duration modulates trial-to-trial variability of the evoked response. (A) Outline of main components of the
behavioral task. (B) Brain maps showing the approximate location of the recording sites for the two subjects. (C) 30 single-trial LFPs from one
recording site (E in subject T) with foreperiod durations v450 ms, LFP units arbitrary. (D) same as C but with foreperiods between 450 and 850 ms.
(E) Sample variance (over trials) of the LFPs for the data shown in C and D. (F) LFP variability as a function of foreperiod duration for three example
sites from subject T. The mean sample variance in a time-window indicated by the shaded box in E was calculated in 20 groups of trials sorted by
foreperiod duration. The values are normalized to a maximum value of 1 for comparison between sites. Colored disks indicate the locations of the
sites. (G) Rank correlations between VEP variability and foreperiod durations for all sites. Sites with significant correlations (pv0:05 corrected for
multiple comparisons) are shown in dark red both in the histogram and on the cortical map. (H) Noise correlations decrease with increasing
foreperiod duration. Left panel shows how the VEP at one site (green color in panel F) depends on that of another site (blue color in panel F) for two
groups of trials with different foreperiod duration (black dots: foreperiods v250 ms; gray dots foreperiods w950). Right panel shows how the noise
correlations decrease as a function of foreperiod duration (calculations based on the same 20 groups of trials used in F and G).
doi:10.1371/journal.pone.0043166.g001
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regression analysis). Next we investigated if the saccadic eye

movements were influenced by the foreperiod duration. Since the

saccade rate might be affected by the visual stimulus we analyzed

the saccades made in a 200 ms window immediately preceding

stimulus onset. We further restricted the analysis to trials where

subjects were not moving their eyes more than two degrees of

visual angle (these trials comprise more than 98 percent of all

trials). Figure 5B shows that the rate of these small eye movements

was strongly modulated by foreperiod duration. The effect was

statistically significant in both subjects (pv0:001). We next asked if

eye movements alone could account for the reduction in response

times. This was assessed by computing the correlation between

foreperiod duration and response time, after eye movements had

been partialed out (partial correlation analysis). This analysis

showed that there was still a strong effect of foreperiod duration on

response times in one subject (pv0:001) and a trend in the other

(pv0:1). To substantiate these result further, we restricted the

analysis to trials where the subjects did not make any noticeable

saccadic eye movements within the 200 ms window immediately

preceding stimulus onset. The effect of foreperiod on mean

response time was still statistically significant.

These results demonstrate two things. First that the probability

of making small eye movements decreases as a function of

foreperiod duration; and second that the effect of foreperiod

duration on mean response times is not only a consequence of

these eye movements.

How does increased VEP variability lead to increased
mean RT?

We found a correlation between variability of sensory evoked

responses and response times (Figure 4B) and in this section we

describe a phenomenological model accounting for this finding.

To link VEP variability to response times we use a standard model

of sensory decision making (below). However, this model is not

formulated at the level of neural data and we therefore first need to

consider how to connect VEP variability to variables that appear

in the model. We use information theory to establish this

connection.

Information theory is a standard tool used to describe how

sensory information is coded in neural activity [34]. In particular,

the mutual information is often used to quantify the amount of

information that neural activity carries about sensory stimuli.

Intuitively, the mutual information between a stimulus S and a

response R (denoted I(S; R)) is a measure of the amount of

overlap in the response distributions corresponding to different

stimuli. If the trial-to-trial variability is conceptualized as noise

added to the ‘true’ neural response, the mutual information

between stimuli and responses will decrease with increasing

variability. Indeed, if we let R denote the neural response, S the

stimulus, and N the random trial-to-trial variability (noise), the so-

called data processing inequality [35] implies that

I(S; RzN)ƒI(S; R). In words, as trial-to-trial variability increas-

es the mutual information between stimuli and responses

decreases. The relation between variance and mutual information

is schematically illustrated in Figure 6A which shows a simple

example with just two possible stimuli and a one-dimensional

response distribution.

To connect changes in mutual information to behavior

(response time and percent correct responses) we need to consider

models of how perceptual decisions are formed. Many such

models have been suggested and most postulate a decision variable

that changes with time until it reaches a threshold [36]. In such

models the behavioral response time is the time between stimulus

onset and time of hitting the threshold (see Figure 6B). Such

models can often account for the behavioral data, they can be

rigorously related to biophysically realistic models of neuronal

circuits [37], and moreover, evidence has recently been found for

such decision variables in the activity of the cerebral cortex

[38,39]. Two of the most influential models of this type postulate

that the mean rate of change of the decision variable is a

monotonic function of the mutual information between the

stimulus and the ‘sensory response’ [40,41]. According to these

models then, a decrease in the mutual information will lead to a

decrease in the mean slope of the decision variable, which will lead

to longer mean response times (see Figure 6B). Due to its

simplicity, and since the stimuli in our experiment were brief and

supra-threshold, we used one of these models, called LATER, e.g.

[41],to generate response times from our data.

To fit this model to our data we first converted the measured

variability to mutual information. This was done by constructing a

simple signal-detection-theory model of our experiment and

adjusting the parameters so that the measured VEP variability

resulted in approximately the measured percent correct responses

(see Material and Methods). This model gave the correspondence

between VEP variability and mutual information. Next we fitted a

linear function of the estimated mutual information to the inverse

of the response time distribution and the resulting fit is shown in

Figure 6C.

It is clear that this model can account for most of the variability

in the mean response time data (Figure 6C). This supports our

interpretation that variability in visual evoked responses interferes

with sensory perception and behavioral performance.

Discussion

Cortical neuronal spiking variability is known to be reduced by

stimulus onset [7] and can be further reduced if the stimulus is

behaviorally relevant [8–10]. The latter effect is characteristically

delayed with respect to stimulus onset and has been interpreted as

a potential correlate of visual selective attention [8–10]. Our

results indicate that neural response variability in behaving non-

human primates can be controlled in advance of stimulus

presentation, and the concomitant reduction in mean response

times indicate that subjects ‘tune’ their cortical responses to

optimize performance. We found that VEP variability reduction

was evident in widespread cortical areas but the effect tended to be

strongest in visual areas, suggesting that there may be regional

specificity in the underlying mechanism. Moreover, our work

suggests that reduction in inter-neuronal noise correlations is

possible between neuronal populations at distant cortical sites as

well as between nearby neurons. A substantial part of this

variability and co-variability reduction can be explained by a

concomitant reduction in small saccadic eye movements. Indeed,

we showed that when human subjects perform the same task the

rate of small eye movements decreases as a function of foreperiod

duration, and moreover that manual response times are correlated

with eye position variability.

Our use of cortical field potentials to quantify neural variability

has the advantage of measuring neuronal population activity and

hence being sensitive to subtle shifts in neuronal responses across

the population. To the extent that the LFP dynamics are a

reflection of the membrane potential dynamics of single neurons

(e.g. [42]) our findings likely imply a decrease in the spike-count

variability of single neurons with increasing foreperiod duration

(see Information S1). A reduction in spike-count variability

through a reduction in the amplitude of ongoing activity has

previously been suggested as a possible mechanism of selective

Cortical Response Variability and Behavior
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attention [9]. Our results indicate that it could also be used to

control stimulus-evoked cortical variability.

We note that pressing the lever to start the trial (which marks

the beginning of the foreperiod) is likely to have neural correlates

in the cerebral cortex. Since the shortest foreperiod is 100 ms it is

possible that neural activity related to lever pressing contributes to

the variability of the LFPs that we have described (i.e. on trials

with short foreperiods there might be signals related to lever

pressing in the data, whereas in trials with longer foreperiods these

signals might have ‘died out’). Although we can not completely

exclude this explanation given the data we have, there are a

number of reasons to believe that neural activity related to lever

pressing cannot account for all the findings we report. First, the

effects we see are strongest in visual areas, including striate cortex

(V1). Pressing a lever, unrelated to visual input, is unlikely to be

correlated with a substantial neural response in visual areas.

Indeed, in a previous study looking at differences in the average

LFPs between GO and NOGO trials in the same data set, we

found only minor differences related to lever pressing in early

visual areas [32]. Moreover, although variability induced by

neural activity related to lever pressing should have led to strong

effects in LFPs recorded from somatosensory and motor areas, of

four sites located in the vicinity of the central sulcus we found a

significant effect of foreperiod duration at only one site (Figure 1).

Second, in the experiment where we quantified small eye

movements we found that there was a clear effect of foreperiod

duration on saccade rates (Figure 5). Since eye movements are

known to influence variability in early visual areas we believe that

Figure 2. Variability of prestimulus activity depends on foreperiod duration. (A) Normalized variance of the prestimulus data as a function
of foreperiod duration for the same three sites shown in Figure 1F. Same color code as in that figure. (B) Histogram showing correlation coefficients
between prestimulus variance and foreperiod duration. Data from both monkeys. Sites with a significant (pv0:05 corrected for multiple
comparisons) negative correlation in dark red. Sites with a significant positive correlation in blue. Pink color signifies non-significant cases. The brain
map to the right shows the corresponding locations. (C) Amplitude spectra as a function of foreperiod duration for three representative sites from
monkey T. The different foreperiod groups are indicated by the color of the spectra according to the color bar in the mid-panel. The locations of the
sites are shown by the three brain maps. (D) Scatter plots of the log average amplitudes for two groups of foreperiods (short *100{300 ms; long
*900{1100 ms). Each point of a particular color corresponds to a recording site. The different colors corresponds to frequencies according to the
color bar shown. The area of a dot is proportional to the variability of the corresponding data. The black dotted line (the diagonal) shows the points
where the amplitudes are the same for short and long foreperiods. That is, the further a point is from this line the larger is the dependence on
foreperiod duration. In monkey T (to the left) three sites had amplitudes that increased as a function of foreperiod duration (see B). These sites
corresponds to the points above the diagonal.
doi:10.1371/journal.pone.0043166.g002
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the LFP effects we report are more related to eye movements than

to lever pressing. Third, from the literature it is known that

foreperiod duration has an effect on mean response times very

similar to what we report [27,43]. In particular, very short

foreperiods do not seem to prolong response times compared to

trials either without warning cues [43], or with very long

foreperiods [27]. That is, it appears that a cue indicating when

the stimulus will appear is helpful, and our results can be taken to

indicate that this is also the case when the cue is self-initiated (i.e.

lever press). Fourth, our interpretation is supported by more recent

work in human subjects showing that power in the alpha band of

the EEG predicts whether a visual stimulus will be detected or not

[44], and is modulated by covert shifts of visual attention [45]. So

even if we cannot entirely exclude the possibility that neural

activity directly related to lever pressing might be responsible for

some of the effects we see (e.g. in frontal regions), it is very unlikely

that this is the sole explanation of the very strong effects we found

in the visual areas.

We have focused on the variability of the LFP amplitudes. For

the visually evoked potential it is possible that the mean activity

level also change as a function of foreperiod duration. We found

that foreperiod modulations of the average VEP amplitudes did

occasionally occur but were much less consistent over stimulus

types, recording sites and subjects and are therefore not reported

here.

The LFP results we have reported were based on analyzes of

preprocessed data (see Material & Methods). If foreperiod

duration would systematically influence either the prestimulus

mean level or slow (linear) trends in the data it is possible that the

preprocessing could bias the results. In Information S1 we

therefore apply two alternative measures of variability, measures

that can be applied without first preprocessing the data. This

analysis showed that the foreperiod-dependent variability reduc-

tion was evident also in the ‘raw’ data, demonstrating that the

results reported here are not artifacts of the preprocessing.

In our data, VEP variability is drastically reduced during the

first 300–400 ms after trial start and reaches a minimum level after

some 700–800 ms (Figure 1F). The reduction in mean response

time follows a similar time-course (Figure 4A). We have moreover

shown that VEP variability depends on variability in ongoing

cortical activity, suggesting that control over visual cortical

response variability is implemented through control over ongoing

cortical activity. Stimulating the nucleus basalis in anesthetized

rats leads to reduction of variability in ongoing cortical activity

with similar, but slightly slower, time-course [24], suggesting a

possible involvement of ascending modulatory systems in our case

as well. Indeed, existing evidence suggests that activation of

ascending systems improves performance in visual discrimination

tasks [46]. An important contribution of the present work is to

show that reduced cortical variability does in fact contribute to

improvement in behavioral performance.

Visual cortical response variability depends on small fixational

eye movements [11,47], a fact that suggests an alternative, but not

mutually exclusive, route to reduced cortical variability, namely

reduced rate of fixational eye movements. In fact, it has been

shown that the rate of microsaccades can be reduced by a warning

cue in attention tasks [48] and the time course of this reduction fits

with that of the variability reduction we report. Since fine eye

movements were not recorded in the monkey LFP experiments,

we investigated the eye movement patterns in this task in two

human subjects. The results from this experiment show that the

frequency of small saccades decreases as a function of foreperiod

duration and that eye movement frequency is correlated with

response times on a trial-by-trial level. It thus seems likely that, at

least part of, the variability reduction seen in the LFP data is due

to a reduction in the propensity to make eye movements. The

relation between eye movements and activation of ascending

modulatory systems is not well understood but it seems likely that

cortical variability reduction may occur both directly due to

cortical innervation by ascending systems and indirectly through

reduced fixational eye movements.

It is not known how neural response variability could interfere

with behavioral performance. We combined the VEP variability in

our data with a standard model of perceptual decision making and

showed that this could account for how the mean response times

depend on foreperiod duration (Figure 6). This model supports the

notion that neural variability limits the fidelity of cortical

representations of sensory stimuli. Presumably neural variability

will prove to have equally detrimental effects on other cortical

‘computations’ and is therefore a critical variable to monitor and

control.

Materials and Methods

We analyzed data from two young adult rhesus macaque

monkeys (Macaca mulatta) performing a visual GO/NOGO task

(subjects T and L). These data are part of a larger data set

acquired at the Laboratory for Neuropsychology at the NIMH

during 1984–1988. Animal care was in accordance with institu-

tional guidelines at the time. The experimental procedures have

been previously described [32,49] and only a concise description is

given here.

Figure 3. Variability in the evoked response is correlated with prestimulus variability. (A) Single-trial variability of the prestimulus LFP
versus single-trial variability of the evoked response. The points correspond to single-trial data from one site (E) in subject T. The solid line shows the
best linear fit. The linear correlation highly significant (pv10{8). (B) The histogram shows the distribution of mean partial correlation coefficients
between prestimulus and evoked variability for all the sites in the two subjects having significantly modulated evoked variability. The dotted line
marks the level at which the mean partial correlation coefficients are significantly different from zero (pv0:05 corrected for multiple comparisons).
The cortical map shows the site locations in tones (black or gray) corresponding to those in the histogram.
doi:10.1371/journal.pone.0043166.g003
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Behavioral task
Subjects initiated a trial by pressing a lever with their preferred

hand. At a variable time thereafter a visual stimulus appeared

briefly (100 ms) on a screen facing the subject. There were a total

of four different stimuli that could be presented and the stimulus-

response contingencies were changed within sessions. In a

particular stimulus-response contingency, two of the stimuli were

associated with the ‘GO’ response and the subjects received a

small amount of water if they released the lever within a time

window of 500 ms after stimulus onset. The other two stimuli were

associated with the ‘NOGO’ response which implied that subjects

had to keep the lever pressed. (Correct NOGO trials were not

rewarded). The critical variable for the work presented here is the

time interval between the (self initiated) lever press and the onset of

the visual stimulus. This interval varied randomly between 100

and 1100 ms according to a rectangular distribution over 60

equally sized bins. We will refer to this time interval as the

‘foreperiod’ in analogy to usage in the reaction time literature.

Figure 1A shows a schematic illustration of the main events in the

task.

Electrode placement and data acquisition
Each monkey had up to 35 bipolar electrodes chronically

implanted transcortically in the hemisphere contralateral to the

preferred hand. In each session a subset of 16 the implanted

electrodes were connected to Grass P511 amplifiers. The data

were band-pass filtered from 1 to 100 Hz ({6 dB at 1 and 100 Hz

and 6 dB per octave falloff) and digitized at 200 Hz. Data from

each electrode were screened by eye and electrodes with large

artifacts were excluded from the analysis. This resulted in data

simultaneously recorded from 15 and 14 electrodes in subject T

and L respectively. Figure 1B illustrates the approximate location

of the electrodes used in this study. On each trial, data acquisition

started approximately 120 ms before stimulus onset irrespective of

foreperiod and lasted for 900 ms. Brain activity during inter-trial

intervals were not recorded.

Data analysis
We analyzed data from 7 and 5 sessions for subject T and L,

corresponding to a total of 3847 and 2814 trials respectively. The

data sets analyzed are the same as those analyzed in a previous

publication [32]. All analyzes were made for each subject

separately.

The trials were divided into 20 non-overlapping groups on the

basis of foreperiod duration. Trials were further grouped on the

basis of stimulus type leading to four groups of trials per foreperiod

group (one per stimulus type). To avoid biases in later analyzes we

used the same number of trials in all groups. This led to 46 and 34

trials per stimulus type and foreperiod group for subject T and L

respectively. In cases where there were more trials for a particular

stimulus type and foreperiod group, the adequate number of trials

was selected randomly. Since the experiment was balanced with

respect to stimulus types and the foreperiod had a rectangular

distribution, this restriction on the number of trials per group led

only to a ‘loss’ of a small fraction of trials.

LFP data. Local field potential data were (semi-automatically)

screened for artifacts and outliers. Trials with either were

removed. The temporal average during the (100 ms) pre-stimulus

interval was subtracted from each trial and linear trends were

Figure 4. Response time is is correlated with foreperiod (fp) duration and VEP variability. (A) Mean response times for the two subjects
as a function of fp duration (solid lines). Error bars show the standard errors. (B) Single-trial response times versus VEP variability estimate for one
recording site in subject T. Solid line shows best linear fit. Inset show the sites that had a significant correlation between VEP variability and response
time (pv0:05, corrected for multiple comparisons). The black dot in the cortical map indicates the site corresponding to the scatter plot.
doi:10.1371/journal.pone.0043166.g004

Figure 5. Rate of small eye movements is modulated by
foreperiod duration. (A) Mean response times as a function of
foreperiod duration. Error bars show standard errors. (B) Rate of small
saccades in a 200 ms window immediately preceding stimulus onset.
Error bars show standard errors.
doi:10.1371/journal.pone.0043166.g005
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removed by fitting a line to the mean corrected LFP data from

each trial (900 ms) and subsequently subtracting this line from the

data. Sixty Hz power-line contaminations were removed using a

notch filter.

For the analysis of across-trial variance we first calculated the

sample variance for each time point for each group of trials and

each of the stimulus types separately. This gave for each of the 20

foreperiod groups four time series of variance values (one for each

stimulus type). For the analysis underlying Figure 1, C–H we

computed the average of these variances in a 50 ms time window

covering the early part of the stimulus evoked response, i.e. the

VEP (60–110 ms for monkey T and 75–125 ms for monkey L).

Next we computed the Spearman rank correlation between these

averages and mean foreperiod duration for the same groups of

trials. This step was done for each stimulus type separately. Finally

we computed the average of these rank correlations over stimulus

types (results presented in Figure 1G). To assess the statistical

significance of these correlations we repeated the same steps 10000

times on surrogate data for which we randomly permuted the

foreperiod durations between the 20 groups. We then compared

the empirical value of the average correlation coefficient to the

appropriate values in the tails of the permutation distribution. We

corrected for multiple comparisons (number of recording sites) by

dividing the desired p-value (pv0:05, two-sided test) by the

corresponding number of sites (29).

For the analysis of noise correlations (Figure 1F) we followed the

same approach but with the variance within recording sites

replaced by the rank correlation between sites. We restricted the

analysis to those site pairs having a significant modulation of the

variance. Statistical significance was again assessed by a permu-

tation procedure and the p-values were corrected for the number

of pairs (10:9=2 for monkey T and 8:7=2 for monkey L).

The analysis of the prestimulus across-trials variability (Figure 2)

was performed analogously but using LFP data from a 100 ms

time-window extending from 90 ms before stimulus onset to 10 ms

after. The spectral analysis shown in Figure 2 was performed on

the same data. The amplitude spectra were estimated from single

trials and subsequently averaged. Due to the short duration of the

Figure 6. Phenomenological model links variability in sensory responses to response time. (A) Example showing that an increase in
variability leads to a decrease in mutual information. Two stimuli (S1,S2) are presented with equal probability. This generates ‘sensory evidence’ (u)
which is used to make the decision (here u taken as a continuous one-dimensional variable). The variability in the ‘sensory evidence’ is illustrated by
plotting the likelihood functions (black for S1, gray for S2). These functions are taken as normal distributions with a standard deviation of 0.5 (solid
lines) or 1 (dotted lines). The inset shows how the mutual information depends on the standard deviation of the likelihood functions. (B) Illustration
of a qualitative model of how mean response time depends on mutual information. At stimulus onset a decision variable starts moving towards a
decision threshold (dashed line). The response time is the time between stimulus onset and reaching threshold. The mean rate of rise (slope) of the
decision variable is a monotonously increasing function of the mutual information. The different slopes for ‘sensory evidence’ with low variance (solid
line) compared to that with higher variance (dotted line) leads to different mean response times. (C) Variability at an extrastriate site in monkey T
(black dot in in Figure 4B) can account for how mean response times depend on foreperiod duration. Variability of the VEP was converted to mutual
information (see Material and Methods) and subsequently used to fit the mean response times.
doi:10.1371/journal.pone.0043166.g006
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data window (100 ms) we could not resolve frequencies below

10 Hz and the contribution of slower frequencies to the estimated

amplitudes at 10{15 Hz may have been substantial.

For analysis of the dependence between variance in the

prestimulus period and the post stimulus period (Figure 3) single

trial estimates of variability were required. For the data from the

prestimulus time window we used the sample variance computed

over time points. To have a single trial estimate of the variability of

the stimulus evoked response we first computed the average

response for each group of trials. Then for each trial in a particular

group we computed the squared deviation from this average for

each time point. We then computed the average over the time

window of interest (same as above) and took the square root. This

gave the mean deviation from the average evoked response and

was hence an appropriate measure of single trial variability. The

correlation between prestimulus and evoked variability was

computed after the effect of foreperiod duration was partialed

out (partial correlation analysis). The statistical significance was

again assessed by a procedure where the trial labels were randomly

permuted. The p-values were corrected for the number of

comparisons made.

The correlation between variability of the evoked response and

response times (Figure 3B) was done analogously.

The test of the statistical significance of the response time

modulation (Figure 4A) was made by comparing the rank

correlation between mean response time and mean foreperiod

with that obtained by randomly permuting the foreperiod groups.

Eye movement data
The same task performed by the monkey subjects was

implemented for humans in Matlab using the Psychophysics

Toolbox [50,51] with the space key of a standard keyboard serving

as response lever. Since we were primarily interested in how

response times were modulated by eye movements and foreperiod

durations, the timing precision offered by a standard keyboard was

deemed sufficient.

Eye movements were recorded with the Eyelink 1000 (SR

Research, Canada), an up-to-date camera-based eye tracker, used

in a monocular tower-mount configuration. Horizontal and

vertical positions of the right eye were recorded at a sampling

rate of 1KHz and with a spatial accuracy better than 0.1 degrees

of visual angle. The eyetracker was interfaced with the Eye-

linkToolbox [52], provided with the PsychToolbox3 [50,51],

under Matlab. Saccades were detected by thresholding the eye-

velocity traces at 20 degrees per second. Eye velocity was

estimated by computing the numerical derivative of the smoothed

eye position traces using a second order method. The number of

trials in the two subjects were 600 and 800 respectively. To test if

eye movements were influenced by foreperiod duration we used

the standard deviation of the position trace (within a 200 ms time

window) as a proxy for eye movements. This measure correlated

highly with saccade rate, but since the latter is a quantity

computed over trials we used the former to enable a trial-by-trial

analysis.

Model of the relation between VEP variability and mean
response times

To account for one of our main findings, that VEP variability is

correlated with response times, we constructed a simple model that

allowed us to use measured VEP variability to predict response

times. We used a standard model (LATER) of how sensory stimuli

controls response times [41,53]. This model is not formulated in

terms of neural activity (or the variance of neural activity) and in

order to apply the model in our setting we first needed to connect

VEP variability to a variable in the model. The key variable that

determines the mean response times in the LATER model is the

slope (rate of rise) of the decision variable. This slope is connected

to the mutual information between stimuli and responses and we

therefore devised a way to connect VEP variability to mutual

information.

To connect variability to mutual information we first designed a

signal detection theory model for our experiment where it is

assumed that each stimulus gives rise to a 2-dimensional decision

variable described by a symmetric Gaussian distribution. We then

modulated the variances of these 2D Gaussians using the

variability measured in the data. The remaining parameter in

the model, the location of the four distributions, was changed until

the model could reproduce the performance (in terms of percent

correct ‘responses’) of the animals. For a given level of variance of

the Gaussian distributions we calculated the mutual information

using Monte Carlo methods.

For the fit shown in Figure 6C the four Gaussian profiles were

centered on the corners of a square with edges having a length of

7:8 (a.u.). The distributions had a nominal variance of 0:5. The

variance of the stimulus evoked response from an extrastriate

channel (black dot in Figure 4B) was normalized to have

maximum of 1 and subsequently used to scale the four

distributions. We then found the best (in least squares sense)

linear relation between the estimated values of mutual information

and mean response time and this is what is shown in Figure 6C.

The signal detection model we have used to connect VEP

variability to mutual information is somewhat arbitrary in the

sense that other models would have given a similar relationship

between the two variables. This model is not intended as a faithful

description of how the stimuli are represented in the brain. Rather

it is a convenient way to convert variability to mutual information.

It should be emphasized that a fit equally good to that shown in

Figure 6C can be obtained by modeling response time directly as a

function of VEP variability.
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