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Abstract: Background: Onychomycosis numbers among the most common fungal infections in
humans affecting finger- or toenails. Histology remains a frequently applied screening technique to
diagnose onychomycosis. Screening slides for fungal elements can be time-consuming for patholo-
gists, and sensitivity in cases with low amounts of fungi remains a concern. Convolutional neural
networks (CNNs) have revolutionized image classification in recent years. The goal of our project
was to evaluate if a U-NET-based segmentation approach as a subcategory of CNNs can be applied
to detect fungal elements on digitized histologic sections of human nail specimens and to compare it
with the performance of 11 board-certified dermatopathologists. Methods: In total, 664 corresponding
H&E- and PAS-stained histologic whole-slide images (WSIs) of human nail plates from four different
laboratories were digitized. Histologic structures were manually annotated. A U-NET image seg-
mentation model was trained for binary segmentation on the dataset generated by annotated slides.
Results: The U-NET algorithm detected 90.5% of WSIs with fungi, demonstrating a comparable
sensitivity with that of the 11 board-certified dermatopathologists (sensitivity of 89.2%). Conclusions:
Our results demonstrate that machine-learning-based algorithms applied to real-world clinical cases
can produce comparable sensitivities to human pathologists. Our established U-NET may be used as
a supportive diagnostic tool to preselect possible slides with fungal elements. Slides where fungal
elements are indicated by our U-NET should be reevaluated by the pathologist to confirm or refute
the diagnosis of onychomycosis.
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1. Introduction

Onychomycosis numbers among the most common fungal infections in humans with
a prevalence of 10% per year in the general population worldwide. The incidence strongly
increases in older patients or patients suffering from vascular diseases or an impaired
immune system [1]. Localized yellowish discoloration of the finger- or toenail is one of the
most common initial clinical symptoms; however, the presentation varies depending on
the strain of fungus. Prolonged infection often leads to a clinically visible thickening and
dystrophia of the nails [2]. Surveys on therapeutic approaches show that many physicians
initiate treatment solely based on the clinical appearance of the nails [3,4].

According to different international guidelines, confirmation of diagnosis is still
mandatory before starting systemic antimycotic therapy for refractory or severe clini-
cal courses. Reliable diagnosis of fungus is necessary to exclude inflammatory, hereditary,
or metabolic disorders and neoplasms [5,6], which are difficult to exclude solely based
on clinical examination. Currently, there is no acknowledged standard diagnostic assay,
but five methods are widely used: direct microscopy using potassium hydroxide (KOH)
staining, fluorescence optical preparation, culture assays, PCR, and histologic analysis
using PAS stains. Direct microscopy including KOH preparation is a low-cost and rapid
diagnostic approach but may suffer from low sensitivity compared with culture and histol-
ogy [7,8]. Fluorescence whiteners (Blancophor or Calcofluor preparation) bind to chitin
and cellulose, and fluoresce when exposed to UV light. This approach shows higher sen-
sitivity compared with KOH preparation but is still dependent on the experience of the
examiner [9]. Culture assays provide information on fungal species but can take 4 weeks or
longer to obtain results. Cultural growth requires a minimum number of fungal elements
to grow in an appropriate medium, and lack of sensitivity remains a concern [10] as well
as contamination by saprophyte fungi. Molecular approaches such as polymerase chain
reaction (PCR) can be used to rapidly identify the presence and strain of fungal elements
with high sensitivity. Nevertheless, these approaches are expensive, and local availabil-
ity varies [11]. Histologic analysis of periodic-acid-Schiff (PAS) stained nail material has
demonstrated higher sensitivity for identifying fungal elements compared with KOH and
culture [12–16]. However, screening slides for individual fungi to diagnose onychomycosis
can be time-consuming for pathologists, and sensitivity remains a concern. There certainly
remains room to further improve the diagnosis of fungal nail infections.

Artificial intelligence (AI) and especially machine learning has had a significant im-
pact on the scientific and medical landscape [17,18]. In particular, the subfield of machine
learning called deep learning has contributed to significant advances and shown great
promise for becoming an integral routine tool in various fields, including medical diagnos-
tics. The idea behind deep learning is to learn complex decisions from the presentation of
exemplary data while incorporating minimal human domain knowledge into the learn-
ing process. Prior to deep learning, establishing working pattern-recognition algorithms
required significant manual feature engineering based on expert knowledge [19].

The application of convolutional neural networks (CNNs), a deep-learning method,
for object detection and segmentation has progressed across varied medical domains [20],
including radiology, dermatology, and pathology [21–23]. Neural networks are composed
of layers of processing units called neurons performing mathematical calculations. The
parameters (“weights”) of each neuron are adjusted as the network is “trained” on examples
of images and their ground truth. Several studies have shown promising results, suggesting
that CNNs may aid pathologists in accurately diagnosing skin cancer [24]. A limitation
of CNN approaches is the required large amount of data for training, which is not always
readily available, especially in the medical field. However, improvement of accuracy and
applicability are required before they can be routinely used as a diagnostic assistance tool
in clinical routine [25].

U-NET-based segmentation networks (U-NETs) are a subcategory of CNNs specialized
in image segmentation. A U-NET returns a segmentation mask where each pixel of the
original image has a predicted label, as opposed to the entire image having a single
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predicted label. U-NETs have been successfully applied in digital histopathology for
analyzing whole-slide images (WSIs) of the human tissue [26–29].

Last year, a study was published examining the potential of a deep-learning algo-
rithm in recognizing tinea in nail clippings of a single institution study, applying a single
staining protocol, with four dermatopathologists [30]. We herein present a similar ap-
proach applying a U-NET segmentation-based classification approach for the identification
of individual fungal elements on the WSI of PAS-stained human nail plates. The slides
included came from four different laboratories with different staining protocols and dig-
itized with three different slide scanners. Additionally, the performance of the U-NET
was tested in comparison with that of 11 board-certified dermatohistopathologists from
different institutions.

2. Materials and Methods
2.1. Ethics Approval

The study was performed with the approval of the ethics committee of the University
of Duisburg-Essen (IRB-number 20–9196-BO).

2.2. Image Data Collection

This study used data from multiple centers, and the data were split on a case-by-case
basis into a development set for training the machine-learning models and a validation
set. The validation set was split into one validation set for evaluating the model and a
second validation set for determining the interrater agreement between pathologists and
for comparing the model performance with pathologists.

For the development and validation sets for model training and validation, 664 histo-
logic whole-slide images (WSIs) from four different laboratories (MVZ Dermatopathologie
Duisburg Essen GmbH, Essen, Germany (n = 26); Hautklinik der Universität Duisburg-
Essen (n = 26); Dermatopathologie bei Mainz, Niederolm, Germany (n = 431); and Labor für
Pathologie, Salzburg, Österreich (n = 181)) were digitized by three different slide scanners
(Leica® Aperio AT2, 3dhisttech® Pannoramic 1000, and Hamamatsu® Nanozoomer S360).
Slides were selected based on the clinical routine diagnosis. For clinical routine diagnostics,
human nail tissue was formalin-fixed, paraffin-embedded, and cut with a thickness of 3 µm
to 4 µm. PAS staining was performed on all slides.

2.3. Machine-Learning Model and Training

A machine-learning model was developed for predicting the presence of fungus for
each pixel in a WSI. The approach consisted of presenting image patches from WSIs to the
model and adjusting the parameters according to the guidance from pathologist annotations
that outline fungus and other structures (e.g., erythrocytes and artifacts; see Section 2.4 and
Table 1).

Table 1. Class distribution of training set after resampling.

Class Pixel Count (Millions) Share of Dataset

Cornified nail 166.15 44.27%
Artifact 80.51 21.46%

Air bubble 48.46 12.91%
Out of focus 39.33 10.48%

Serum 15.67 4.18%
Tinea (fungal elements) 9.38 2.50%

Parakeratosis 7.82 2.08%
Tissue border 3.63 0.97%

Squamous epithelium 2.13 0.57%
Erythrocytes 1.02 0.27%

Bacteria 0.99 0.26%
Neutrophiles 0.15 0.04%

Not pathological 0.02 0.01%
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A U-NET architecture [31] designed for image segmentation with precise localization
was used as a basic neural network architecture. Resnet50 [32] represents the backbone of
the network, which means that the layer structure of our network matches the convolutional
part of the Resnet50 network.

The model was trained for binary segmentation. It classifies each pixel as “Tinea” or
“Other” in a prediction map of the same size as the input image. We trained our model using
a combination of cross-entropy and dice loss in proportions of 90% and 10%, respectively,
and gradually decreased our learning rate in later training epochs using a cosine scheduler.
The final model was selected based on the performance on an early stopping set, which was
split off the training set. The input size of our model was 224 × 224 pixels, and each patch
was augmented by translation, rotation, and color transformations in order to prevent the
model from learning spurious correlations. The overall area containing tinea in the dataset
and on the slides was very small. To counter class imbalance problems during training, we
upsampled patches that contained tinea until 2.5% of all annotated pixels. Similarly, we
downsampled the three largest classes (cornified nail, artifact, and air bubble). We did not
apply this resampling to the early stopping or test set.

To create a prediction map on the whole slide, we split the WSI into patches. The
U-NET creates predictions on each patch of the same size as the input. Finally, all predicted
patches are stitched together into a unified prediction map, which can be overlaid on the
WSI to aid pathologists.

2.4. Annotation Data Collection

A key element for training of AI models is the annotation that guides the learning
phase. After digitization, all WSIs were annotated by three board-certified dermatopathol-
ogists. Different histologic structures were manually outlined by drawing ground-truth
polygons in a proprietary annotation platform. The dermatopathologists were allowed
to (sparsely) annotate any region in a slide. After training an initial model, an overlay
showing the predictions was made available, and the dermatopathologists were asked to
specifically annotate regions where the model’s prediction was incorrect.

The annotations assigned histologic structures to 13 different pathological categories
(air bubble, artifact, bacteria, cornified nail, erythrocytes, neutrophils, not pathological, out
of focus, parakeratosis, serum, squamous epithelium, tinea (fungal elements), and tissue
border). Diagnosis of onychomycosis was confirmed if fungal elements were identified.
Fungi could be identified on 36.1% of all WSIs.

We processed the annotations by cropping their image regions into 340 × 340 pixel
patches at 0.2743 mpp (micrometers per pixel). Areas outside of the annotation polygons
were encoded as “unknown”. This area was excluded from the calculation of the loss of
the model, and therefore, the model was allowed to predict anything in the “unknown”
area [33]. Overall, the dermatopathologists created 19,278 individual annotation polygons,
which were processed into 68,526 patches over 664 WSIs.

We stratified the WSI into three different sets: our patients across training, develop-
ment, and test sets, while keeping a similar class and laboratory distribution. Our training
set consisted of 407 WSIs, resulting in 44,494 patches. Our early stopping development
set consisted of 96 WSIs, resulting in 10,926 patches. Our test set consisted of 161 WSIs,
resulting in 13,106 patches.

2.5. Case-Level Prediction

Pathologists score the presence of tinea per patient, and ideally, a support algorithm
will score in the same fashion. For this, we generalized the trained pixel-wise segmentation
model to classify individual WSIs by determining if the area segmented as tinea on a
slide was larger than a threshold. The threshold set as 0.25% of the tissue on the WSI was
predicted as tinea.

This threshold was selected based on evaluating the algorithm’s performance on
78 slides for which an experienced dermatopathologist performed a binary ground-truth



J. Fungi 2022, 8, 912 5 of 13

scoring. The slides used to select the threshold were an independent set, neither applied
for training nor part of the final validation (consensus) set.

2.6. Study Evaluation

For the validation of the performance of both the pathologists and algorithm, we
selected 74 WSIs with unknown presence of tinea, which were used neither for training
nor for identifying the area threshold. The set of 74 slides contained representative shares
across the three laboratories and scanners. Eleven board-certified dermatopathologists
from 10 different institutions gave a binary decision on the presence or absence of tinea.
The selection of “nonclassifiable” was also possible for the dermatopathologists. Screening
was carried out using a digital WSI viewer. Similarly, the algorithm scored the 74 slides
making binary calls.

Both individual pathologists and the algorithm were compared against the consensus
of the 11 pathologists. The consensus was formed by taking the median of the individual
pathologist decisions.

3. Results
3.1. Segmentation Performance

The developed model segmented every tissue pixel in a WSI into tinea (fungal ele-
ments) or other tissue applying the described U-NET architecture (Figure 1). This model
was evaluated on a holdout validation set where it reached an F1-score of 0.9623. In more
detail, the model achieves a high negative predictive value of 99% as well as a high recall
of above 95% for negative classes. For the positive class tinea, the predictive value was 85%
and the recall was 78.6%. The full pixel-wise performance is shown in Table 2. Examples of
correctly classified tinea events are shown in Figure 2, and examples of falsely classified
cases, where artifacts or other structures were detected, are shown in Figure 3. Out-of-focus
areas frequently impeded correct identification of tinea. Tissue fragmentation and staining
artifacts as well as detection of bacteria or serum as tinea were major causes of the algorithm
incorrectly making a tinea call (Figure 3).

Table 2. Per pixel evaluation. Exact number of predicted pixels can be seen in the two columns. In
bold, we highlight correct predictions.

Tinea Other Total Recall

Air bubble 0 31,381 31,381 100%
Erythrocytes 0 101,001 101,001 100%

Not pathological 0 1509 1509 100%
Out of focus 0 10,454,027 10,454,027 100%

Squamous epithelium 0 38,153 38,153 100%
Serum 3279 3,694,931 3,698,210 99.9%

Cornified nail 224,223 220,575,318 220,799,541 99.9%
Artifact 75,452 23,382,523 23,457,975 99.7%

Parakeratosis 19,056 1,315,798 1,334,854 98.6%
Tissue border 71,738 4,458,402 4,530,140 98.4%

Bacteria 38,060 726,020 764,080 95.0%
Tinea (fungal elements) 2,456,456 669,049 3,125,505 78.6%

Total 2,888,264 265,448,112 268,336,376
Precision 85.0% 99.7%
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model for analysis, we split a WSI into patches and serve each patch to the model to get a prediction. 
In this process, the model weights are fixed because it is not learning anymore. This also means that 
the model will give the same prediction for the same input patch. The predicted patches are stitched 
back together into an image of the same size as the original WSI, so they can be overlaid and used 
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Figure 1. Scheme of the U-NET deep-learning architecture. Demonstrated is the workflow of training
our model and using it for analysis. To train our model, we start with WSIs with sparse polygon
annotations created by dermatopathologists. The annotations are processed into image and target
examples of constant size. These examples are used to train our U-NET segmentation model, which
learns to predict either ‘Tinea" or "Not Tinea" for every pixel in the input patch. During this process,
the weights of the model are adjusted to improve predictions on training data. To use our model for
analysis, we split a WSI into patches and serve each patch to the model to get a prediction. In this
process, the model weights are fixed because it is not learning anymore. This also means that the
model will give the same prediction for the same input patch. The predicted patches are stitched
back together into an image of the same size as the original WSI, so they can be overlaid and used by
pathologists to aid them in their diagnosis.
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Figure 2. Detection of tinea on whole-slide images. Demonstrated are examples of correctly detected
tinea on whole-slide images. Left: an overview of the entire nail section processed; right: zoomed-in
examples showing the PAS-stained tinea elements and calls by the algorithm detecting tinea elements,
with red pixels representing Tinea. Blurry area on the top image shows areas of the slide where the
nail material was not in focus.



J. Fungi 2022, 8, 912 7 of 13
J. Fungi 2022, 8, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 3. Examples of false-positive tinea calls. Examples where the algorithm made a call of tinea 
but was not verified by the majority of dermatopathologists are shown. The left column represents 
PAS-stained slides; the right picture with a heatmap overlay of the U-NET algorithm. The high 
amount of staining artifacts, common for difficult-to-process nail material, is apparent, which poses 
a diagnostic difficulty for pathologists and the algorithm alike. 

3.2. Case-Level Performance 
The segmentation model was generalized to an algorithm that scores cases into 

positive or negative for tinea (fungal elements). The algorithm’s performance was 
evaluated against the consensus of 11 board-certified dermatopathologists on a validation 
set of 74 slides. The algorithm achieved a positive predictive value of 88% and a negative 
predictive value of 87%. The sensitivity of the model was 94% and the specificity was 77% 
(Table 3). 

  

Figure 3. Examples of false-positive tinea calls. Examples where the algorithm made a call of tinea
but was not verified by the majority of dermatopathologists are shown. The left column represents
PAS-stained slides; the right picture with a heatmap overlay of the U-NET algorithm. The high
amount of staining artifacts, common for difficult-to-process nail material, is apparent, which poses a
diagnostic difficulty for pathologists and the algorithm alike.
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3.2. Case-Level Performance

The segmentation model was generalized to an algorithm that scores cases into positive
or negative for tinea (fungal elements). The algorithm’s performance was evaluated against
the consensus of 11 board-certified dermatopathologists on a validation set of 74 slides.
The algorithm achieved a positive predictive value of 88% and a negative predictive value
of 87%. The sensitivity of the model was 94% and the specificity was 77% (Table 3).

Table 3. Results of the performance per case.

Positive Negative Recall

True label
Positive 45 3 0.94

Negative 6 20 0.77

Precision 0.88 0.87

3.3. Inter-Dermatopathologist Performance

The individual results of the 11 dermatopathologists in accurately detecting fungus on
WSIs are depicted in Figure 4 with a median accuracy of 87.84% of all cases. The developed
algorithm has an accuracy of 86.49%, demonstrating a comparable performance as the
pathologists with four pathologists performing worse and seven pathologists performing
on par or better. A ROC curve is shown where the performance of the pathologists is
compared with that of the U-NET results (Figure 5). In this representation, the individual
calls of not classifiable by dermatopathologists were excluded when calculating the der-
matopathologists' performance. We additionally calculated the diagnostic odd ratio (DOR)
for each pathologist and for the model (Supplemental Figure S1).
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Figure 5. ROC curve comparing 11 dermatopathologists with U-NET algorithm. Demonstrated are
individual dermatopathologists as well as U-NET algorithm in terms of sensitivity (true positive rate,
recall) and 1-specificity (false positive rate). In the presented plot, cases where pathologists made a
"maybe" call were not considered for their performance.

4. Discussion

In this study, we established a deep-learning segmentation-based classification model
to detect the presence of tinea on routine PAS-stained slides. After selecting the best
model parameters achieved on WSIs for detecting tinea, the deep-learning model demon-
strated a comparable consensus performance level to the median of the participating
11 dermatopathologists.

Histologic detection of tinea on PAS-stained slides remains a widely applied approach
to detect onychomycosis. Low costs, high specificity, and speed of diagnosis are the
advantages [12,14]. If the nail has a high tinea load, diagnosis is simple and quickly made.
In cases where there are a few occasions of tinea or no tinea, the identification of tinea
becomes very laborious. As “no tinea” is a diagnosis of exclusion, the histopathologist has
to carefully assess all the material on the slide at high magnification to make sure that there
is not a single hypha present. Even with careful inspection, there is the risk of missing a
tinea element and misdiagnosis.

Histologically diagnosing onychomycosis is only reliably possible if PAS staining is
performed. PAS staining enhances the contrast to identify fungi, while H&E staining is the
routinely performed staining to evaluate other diagnoses such as inflammatory, hereditary,
or metabolic disorders and neoplasms [5,6]. Sensitivity for detecting fungi is mainly
dependent on the amount of fungi present on the slide, technical preparation, diligence in
specimen collection, and practitioners’ experience [14,34,35]. Histologic evaluation can be
very time-consuming at an early stage of infection with single or few fungi on the slide. The
delay in detecting fungi may enhance costs in repeating analysis with preparation steps and
human evaluation [16]. More importantly, missing the identification of fungi at an early
stage of disease allows further spread of onychomycosis. An extensive fungal infestation
requires systemic antimycotic therapies having a number of potentially serious side effects,
including interactions with other medications and severe liver damage. In summary, early
reliable detection of nail tinea can substantially reduce costs and patient morbidity.
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Tinea detection is a good candidate for an application for which we believe histopathol-
ogists will be grateful for the aid from artificial-intelligence-based algorithms. Whereas a
diagnosis solely by computer-based algorithms will probably remain problematic (not only
from a legal standpoint) [36,37], the proposed model can make a call that the pathologist
incorporates into his or her decision. In a positive tinea case, the pathologist can validate
the finding and clear the diagnosis. The current process of identifying where the tissue is
on the slide and screening for tinea will be eliminated. In particular, for cases with a low
number of tinea, this can save the pathologist a considerable amount of time. We believe
that in cases where the algorithm does not identify tinea, the pathologist will be required to
diligently go through the entire slide to confirm this diagnosis. However, if the computer
presents the regions most resembling tinea, and the pathologist identifies tinea, a further
detailed assessment of the remaining material is no longer necessary.

We assumed that a simple binary question (tinea or no tinea) would be ideal for
establishing a simple yet helpful computer-based diagnostic aid. Unfortunately, a few
challenges arose that were not originally expected. Nail material is, by nature, hard
material and difficult to process, leading to a relatively high number of artifacts and thicker
uneven sectioned slides. Accordingly, almost all digitized scans had areas that were out of
focus. Being able to adjust the focus can be instrumental to correctly distinguish tinea and
make a correct diagnosis. This was brought up by almost all of the dermatopathologists
participating in the study. Applying a “one focus scan” of the slides most certainly impaired
the diagnostic capability both for the human pathologists and the deep-learning model.
Solutions such as scanning slides more than once at different focus levels might considerably
improve the performance and may be worth evaluating.

The results we obtained are promising, especially considering that the case number
being well under 1000 is small for training deep-learning machine-learning approaches.
The balance between sensitivity (recall) and specificity, as well as precision, depends on the
threshold selected for the algorithm. In the current algorithm, we put more emphasis on
recall (sensitivity) believing it more important to not miss positive (disease) cases and have
the pathologist screen more false positives (lower precision) than the other way around.
However, altering the threshold can still be considered. Decreasing the threshold will
further increase sensitivity while lowering specificity; on the other hand, increasing the
threshold will increase precision and specificity at the cost of sensitivity (recall). As can
be expected, our algorithm detected areas as positive in slides classified as not tinea by
dermatopathologists. A study assessing if dermatopathologists find reviewing these areas
helpful and will on occasion change lead to a change of diagnosis can prove interesting.

Our approach shows a sensitivity value of 93% and a specificity value of 77%. Al-
though specificity is important to accurately confirm the diagnosis of onychomycosis,
sensitivity is essential to not miss a fungus and neglect the diagnosis of onychomycosis. In
the literature, the sensitivity of identifying fungus with histologic examination has been
reported between 80% and 85% [13,14]. The recently published study by Decroos et al. [30]
that also assessed tinea detection by AI reported a much higher sensitivity and specificity
with an AUC of 0.981. There are some substantial differences in the study design. In partic-
ular, all the slides were stained in an automated process with one machine. Additionally,
the pathologists in the Decroos et al. study made diagnosis on the analog slides under
a microscope, enabling the focus to be readjusted. This eliminated out-of-focus regions
commonly observed on our digitized slides, resulting from the focal plane varying due to
the thick nail material. Additionally, the pathologists evaluated slides stained in the way
they were accustomed to (in their own lab). In our study, the pathologists also were forced
to make diagnosis on slides stained with protocols they had not seen before.

We believe that our findings are probably closer to a real-world setting, where deep-
learning approaches will need to handle slides stained by different protocols in different
labs. On average, the 11 board-certified dermatopathologists in our study achieved a
median accuracy of 87.84%, which was comparable with the accuracy of 86.49% of WSIs
with fungi detected by the U-NET. We are convinced that the pathologist sensitivity would
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be higher if they had been allowed to make diagnoses on the analog slides and staining
protocols they were accustomed to. The UNET would also likely have performed better if
applied to a uniform staining procedure. However, as mentioned, that is not the setting
diagnostic algorithms will realistically be faced with.

A limitation of our study is that the deep-learning algorithm was directly compared
with diagnosis by pathologists without additional confirmation by other techniques (i.e.,
PCR or culture). Considering that there is no generally accepted gold standard approach
for diagnosing nail fungal infections, comparisons with multiple diagnostic assays might
need to be considered in future studies.

Similar to the previous study by Decroos et al. [30], our model had difficulties dis-
tinguishing serum and bacteria from tinea. Serum and bacteria were annotated in our
training set, though much less frequently as it was less prevalent and not the focus of our
study. We are certain that performing additional focused training can greatly improve the
algorithms' capability to distinguish tinea from bacteria and serum. With considerably
more slides, also events such as nail trauma and hemorrhage (erythrocytes in the nail),
bacterial infection (considerable numbers of bacteria), and neoplasms, including potentially
the most clinically relevant, acral melanoma, can be picked up by the algorithm. While we
are certain that the system can still be greatly improved and expanded to include other
diagnoses, we believe that it remains absolutely critical that a human pathologist checks
and validates all diagnostic suggestions made.

5. Conclusions

Based on the comparable results considering sensitivity in detecting fungus, our estab-
lished U-NET can already be applied as a supportive diagnostic tool to preselect possible
slides with fungi. Those selected slides where a fungus is indicated by the U-NET should
be reevaluated by the pathologist to confirm or refute the diagnosis of onychomycosis.
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