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Retinal cell transplantation in retinitis 
pigmentosa
Tongalp H. Tezel*, Adam Ruff

Abstract
Retinitis pigmentosa is the most common hereditary retinal disease. Dietary supplements, 
neuroprotective agents, cytokines, and lately, prosthetic devices, gene therapy, and optogenetics have 
been employed to slow down the retinal degeneration or improve light perception. Completing retinal 
circuitry by transplanting photoreceptors has always been an appealing idea in retinitis pigmentosa. 
Recent developments in stem cell technology, retinal imaging techniques, tissue engineering, and 
transplantation techniques have brought us closer to accomplish this goal. The eye is an ideal organ 
for cell transplantation due to a low number of cells required to restore vision, availability of safe 
surgical and imaging techniques to transplant and track the cells in vivo, and partial immune privilege 
provided by the subretinal space. Human embryonic stem cells, induced pluripotential stem cells, and 
especially retinal organoids provide an adequate number of cells at a desired developmental stage 
which may maximize integration of the graft to host retina. However, stem cells must be manufactured 
under strict good manufacturing practice protocols due to known tumorigenicity as well as possible 
genetic and epigenetic stabilities that may pose a danger to the recipient. Immune compatibility of 
stem cells still stands as a problem for their widespread use for retinitis pigmentosa. Transplantation 
of stem cells from different sources revealed that some of the transplanted cells may not integrate 
the host retina but slow down the retinal degeneration through paracrine mechanisms. Discovery of 
a similar paracrine mechanism has recently opened a new therapeutic path for reversing the cone 
dormancy and restoring the sight in retinitis pigmentosa.
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Introduction

Retinitis pigmentosa is a diverse group 
of inherited degenerations caused by 

more than 3000 mutations in 80 genes which 
finally lead to progressive degeneration 
of the rod and cone photoreceptors. It 
affects 1 in 4000 people worldwide and is 
accepted as the most common hereditary 
retinal disease.[1] Causative mutations can 
disrupt phototransduction, rhodopsin 
cycling, and cell trafficking pathways and 
lead to the classical clinical appearance of 
bone spicule formation, attenuated retinal 
vasculature, and optic nerve head pallor. In 
the early stages of the disease, degeneration 
of rods manifests itself with nyctalopia and 

peripheral visual field loss, but, later on, 
loss of cones results in severe visual loss and 
loss of color discrimination.[2] Depending on 
the inheritance pattern, retinitis pigmentosa 
group of retinal degenerations can be 
classified as autosomal‑dominant, autosomal 
recessive, X‑linked, and mitochondrial 
retinitis pigmentosa. 5%–15% of the cases 
display X‑linked inheritance pattern which 
has a worse prognosis compared to patients 
with autosomal recessive (50%–60%) and 
autosomal‑dominant (30%–40%) forms of 
the disease.[2] Several systemic disorders 
may also accompany ocular findings in 
20%–30% of the cases due to the expression 
of the mutant protein in other organs. Thirty 
such clinical syndromes have been described 
which are termed as the syndromic form of 
retinitis pigmentosa.[3]
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Several treatments have been employed to alter the 
course of retinal degeneration. Attempts to slow down 
the retinal degeneration using dietary supplements, 
such as Vitamin A,[4] docosahexaenoic acid,[5] or lutein,[6] 
did not reveal a clear benefit except in a subgroup 
of patients with high cone amplitude at baseline.[7] 
Several neuroprotective agents, such as human ciliary 
neurotrophic factor,[8] valproic acid,[9] topical unoprostone 
isopropyl,[10] and transcorneal electrical stimulation[11] 
have also been tried to slow the retinal degeneration 
but yield no substantial success. Oral or topical carbonic 
anhydrase inhibitors,[12] steroids,[13] and anti‑vascular 
endothelial growth factor agents[14] have been used to 
treat cystoid macular edema which develops in 20% of 
the patients.[15] Epiretinal, subretinal, and suprachoroidal 
retinal prosthetic devices have been developed providing 
visual perception to patients with light perception or 
no light perception vision due to advanced retinitis 
pigmentosa. Two of these prosthetic devices such as 
Alpha IMS, developed by Germany‑based Retina Implant 
AG and Argus II developed by U. S.‑based Second Sight 
Medical Products, CA, USA, have received approval 
from regulatory agencies. Although these devices are 
associated with serious perioperative complications,[16] 
the visual improvement they provide improves the 
quality of life in this subset of patients with advanced 
retinitis pigmentosa.[17]

Identification of rhodopsin mutation as a cause of 
autosomal‑dominant retinitis pigmentosa 1990[18] paved 
the path for the development of gene therapy to modify 
or manipulate the expression of mutated genes with 
several gene treatment techniques. These efforts recently 
led to the approval of an AAV vector‑based RPE‑65 
gene delivery treatment (Voretigene neparvovec‑rzyl; 
Luxturna™, Spark Therapeutics, PA, USA) aimed to 
correct the biallelic mutations of the RPE65 gene causing 
Leber’s congenital amaurosis and some forms of retinitis 
pigmentosa.[19] A number of studies are in the pipeline 
for delivering the correct copy of the mutant genes or to 
perform gene editing using the CRISPR/Cas system to 
inactivate mutant genes.[20] Unfortunately, heterogeneity 
of the causative genes stands as a major obstacle for the 
development of an universal gene treatment that may be 
used for all forms of retinitis pigmentosa. Treatments that 
can be applied to all forms of retinitis pigmentosa are also 
underway, such as rewiring of the retinal circuity using 
optogenetics[21] or reactivation of the dormant cones by 
restoring glucose transport.[22]

The Rationale for Retinal Cell 
Transplantation

The idea of retinal cell transplantation for retinitis 
pigmentosa stems from the early histopathology 
reports which revealed relative preservation of the 

inner retina even in late stages of retinitis pigmentosa.[23] 
Lack of synaptic input and trophic factors inevitably 
causes transneuronal degeneration of the inner retinal 
neurons as photoreceptors die; however even in severe 
retinitis pigmentosa, 30% of the ganglion cells and 
approximately 80% of the inner nuclear layer neurons 
remain intact.[23] This fact gave rise to the idea to complete 
the retinal circuitry by transplanting photoreceptors 
into the subretinal space with the hope that grafted 
photoreceptor cells will integrate into the host retina by 
establishing synapses with the host’s bipolar cells. The 
eye is considered an ideal organ for cell transplantation 
due to the low number of cells required to restore 
visual function.[24] Similar to the anterior chamber,[25] 
it also provides a partial immune privilege which 
may limit the rejection of the graft by downregulating 
delayed‑type hypersensitivity response observed after 
transplantation of tissues to conventional sites.[26,27] 
Availability of established safe surgical and imaging 
techniques facilitates the transplantation and in vivo 
tracking of the cells.

Initial Attempts

Initial attempts of full‑thickness retinal transplantation 
date to 1946 when differentiation of grafted embryonic 
retina was observed in the brain of the rats.[28] This was 
followed by transplantation and survival of the fetal rat 
retina in the anterior chamber.[29,30] First, transplantation 
of neonatal rat retina into the subretinal space was done 
in 1986 through a transscleral incision. Graft survival 
seemed to be better by younger donors. These promising 
results led to initial human full retina transplantation 
attempts.[31] Two patients with autosomal retinitis 
pigmentosa received whole sheets of fetal human 
retina into the subretinal space. Although no immune 
rejection was observed, only a transient multifocal 
electroretinography response was obtained in one 
patient. Subsequent attempts included transplantation of 
intact fetal human neuroretinal sheets into the subretinal 
space of 5 patients with retinitis pigmentosa in a Phase I 
study[32] followed by a Phase II study with 6 patients with 
retinitis pigmentosa.[33] None of the five patients enrolled 
in Phase I study show any visual benefit. Three patients 
who received the fetal retinal grafts in the Phase II trial 
gained mediocre visual improvements, but two patients 
experienced worsening of their vision after surgery. 
A detailed histopathology of fetal full‑thickness grafts 
transplanted into the subretinal space of transgenic pig 
carrying the mutation Pro347 Leu demonstrated that 
the grafted cells do not form connections with the host 
neurons.[34] This makes it difficult to interpret the results 
which may also be attributed to trophic effects of the 
graft or simply to the impact of transplantation surgery 
on the remaining retinal neurons.[35]
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Transplantation of photoreceptors into the subretinal 
space was first done in 1991.[36] A suspension of newborn 
rat photoreceptors labeled with tritiated thymidine was 
injected into the subretinal space of RCS rats. Some of 
the transplanted photoreceptor cell bodies were found 
in clusters in the outer nuclear layer region for as long as 
3 months after transplantation. However, transplanted 
photoreceptors slowly degenerated over time and 
failed to develop outer segments. Subsequent studies 
indicated higher rates of grafted photoreceptor survival 
and relatively better development of outer segments 
if aggregates of neonatal photoreceptors were used 
rather than dissociated neonatal photoreceptors.[37] One 
major limitation for the use of retinal aggregates was 
identified as photoreceptor rosette formation in the 
host’s subretinal space.[38,39] In parallel with this in vitro 
work, injection of human fetal retinal cell suspension 
into the subretinal space of 14 patients did not yield any 
functional benefit.[40]

Limitations of photoreceptor transplantation as cell 
suspensions or aggregates led to the techniques of 
transplanting intact photoreceptor sheets. Initial 
isolation of photoreceptor sheets with a vibratome 
proved to be highly traumatic to the retina and results in 
abnormal morphology.[41,42] Vibratome was replaced with 
excimer laser for atraumatic harvest of photoreceptor 
sheets[41] [Figure 1]. Pure adult human photoreceptor 
sheets harvested with excimer laser were shown to 
preserve >86.5% viability for 72 h in vitro. These cells 
interacted with the host retinal pigment epithelium 
after transplantation into rhesus monkeys as evidenced 
by phagocytosis of shed photoreceptor outer segments 
by the retinal pigment epithelium [Figure 2]. Adult 
human photoreceptor sheets harvested with excimer 
laser were then used in the first human photoreceptor 

sheet transplantation study.[43,44] Eight patients with 
advanced retinitis pigmentosa received 3.0 mm × 1.0 mm 
trapezoidal adult human photoreceptor sheets and 
followed for 12 months. No functional improvement 
was observed. Although patients were not put on any 
immunosuppressive regimen, no homograft reaction 
was observed.[44]

Requirements for Successful 
Transplantation

In animal models of retinitis pigmentosa, only a few 
transplanted cells establish synapses with the host 
bipolar cells. These cells produce outer segments and 
bear a resemblance to rods morphologically.[45] The main 
reason for the lack of functional success in photoreceptor 
transplantation in retinitis pigmentosa is the failure of 
the grafted cells to integrate the host retina and establish 
functional synaptic circuitry. Histopathology of the eyes 
with retinitis pigmentosa provides clues why grafted 
photoreceptors do not integrate to host retina. In eyes with 
advanced retinitis pigmentosa, extensive remodeling of 
the retina occurs with dramatic rod neurite sprouting, 
especially at or near the areas of photoreceptor death.[46] 
Rather than establishing synapses with bipolar cells, rods 
extend these neurites along activated Muller cells as far 
as to the inner limiting membrane. Neurite sprouting is 
also observed in amacrine and horizontal cells.[47] Rod 
sprouting and Muller cell activation is the result of the 
altered retinal homeostasis due to degenerating retina in 
retinitis pigmentosa. This microenvironmental shift can 
also affect the behavior of the grafted cells resulting in 
a similar neurite sprouting and bypassing the targeted 
bipolar cells. Rod spouting does not occur in rodent 
models of retinitis pigmentosa which may be the reason 
for the discrepancy between the relatively successful 

Figure 1: Adult human photoreceptor sheet harvested with excimer laser. Inner retinal 
neurons were removed using excimer laser. A depth guidance method allows the 
operator to ablate tissues down to outer plexiform layer precisely. These grafts were 
subsequently used for the first human photoreceptor sheet transplantation

Figure 2: Transmission electron microphotograph after transplantation of adult 
photoreceptor sheet into rhesus monkey subretinal space. Host retinal pigment 
epithelial cells engulf outer segments of the (tOS) of the transplanted adult human 
photoreceptor cells. Patent choriocapillaris is seen below the retinal pigment epithelium



Taiwan J Ophthalmol - Volume 11, Issue 4, October-December 2021 339

results of retinal cell transplantation in rodents compared 
to human trials.[46] However, experiments with animal 
models of outer retinal degeneration have given us 
some important clues about the prerequisites of synapse 
formation with the host retina:
1. Use of immature nonretinal neurons or other neural 

progenitor cells may not yield high numbers of 
differentiation of these cells into photoreceptors and 
integration to the host retina. Results indicate that 
most of these cells do not differentiate into mature 
retinal neurons[48,49]

2. Survival and integration of the transplanted 
photoreceptor cells is dependent on the developmental 
stage of the transplanted photoreceptor cells. Eloquent 
experiments conducted by transplanting Green 
Fluorescent Protein (GFP)‑expressing photoreceptors 
under the control of the rod‑specific postmitotic 
transcription factor Nrl, into Gnat1−/− murine model 
of stationary night blindness, indicate that highest 
integration could be obtained with transplantation 
of immature postmitotic photoreceptor precursor 
cells destined to differentiate into rod photoreceptors. 
Integration of the cells to host retina is poorer if 
progenitor cells or mature photoreceptors are used.[50] 
Decreased synapse formation and poorer viability 
of the mature photoreceptors[51] have caused a shift 
toward using cells at earlier development stages

3. The stage of the outer retinal degeneration is a 
key factor in determining the integration of the 
transplanted cells to host retina. Experiments 
conducted with six murine models of inherited 
photoreceptor degeneration indicated that integration 
to host retina is mainly determined on the stage of 
glial scarring and the integrity of the outer limiting 
membrane during disease progression.[52] A good 
example can be given by looking at the results 
from three different models of retinal degeneration. 
Integration gradually decreases in Gnat1−/−; 
Rho−/− model of where the outer limiting membrane 
remains intact and gliosis becomes more prominent 
as the disease progress. In contrast, an increase in 
host integration with progression of the outer retinal 
degeneration was observed in Prph 2+/Δ307 model 
where gliosis decreases in time and outer limiting 
membrane integrity is not preserved. Integration 
rate does not change with disease progression 
in PDE6βrd1/rd1 mutation where the outer limiting 
membrane is disrupted, but gliosis progresses with 
disease progression

4. Outer retinal degeneration creates an environment 
that prevents the ability of the cells to migrate 
and form synapses with the recipient’s cells. Like 
central nervous system injury or degenerations, 
outer retinal cell death in retinitis pigmentosa 
evokes a gliotic scar formation. During this process, 
chondroitin sulfate proteoglycans production is 

dramatically upregulated by glial cells which form 
a glial scar. Chondroitin sulfate proteoglycans are 
known to limit cell migration, axonal plasticity, and 
regeneration.[53] Inhibition of the retinal gliosis,[54] 
targeted disruption of the outer limiting membrane,[55] 
or enzymatic digestion of the chondroitin sulfate 
proteoglycans[56] are shown to increase the integration 
of the transplanted photoreceptor cells into the host 
retina

5. Fluorescent markers used to identify the grafted 
cells may be misleading due to cytoplasmic 
material transfer between the grafted cells and host 
retina. Thus, previous reports relying on reporter 
expression to conclude about integration of the 
grafted cells to the host retina and even functional 
benefits after photoreceptor transplantation must be 
reinterpreted cautiously since both findings might 
simply be the result of reporter material or functional 
proteins transfer from donor cells to remaining host 
photoreceptors.[57]

Animal experiments indicated that highest synapse 
formation can be obtained using postmitotic rod 
precursor cells.[50] In human development, a comparable 
stage occurs during the early phases of the second 
trimester. Limited availability of fetal tissue and 
several ethical as well as legislature considerations 
have aroused interest in the potential to generate new 
photoreceptor precursors from various stem cell sources. 
A good source for generating photoreceptors has been 
the pluripotent embryonic stem cells. These cells are 
derived from the inner cell mass of the blastocysts 
and can be directed to retinal fate under conditioned 
media.[58,59] Human embryonic stem cells have been 
transplanted into the subretinal space of rodent[60] and 
primate[61] models of retinal degeneration. Grafted 
cells can differentiate into a range of retinal cell types, 
including rod and cone photoreceptors. Embryonic 
stem cell‑derived photoreceptor transplantation studies 
confirmed the previous observations that photoreceptor 
precursors at earlier developmental stages integrate 
with the host better.[62] Transplantation of the retinal 
cultures earlier than 20 days of culture produced 
large tumors and prolonged retinal culture resulted in 
mature photoreceptors but no integration to the host 
retina.[63] The use of embryonic stem cells to generate 
photoreceptors also suffers from ethical and legal 
restrictions. Furthermore, immune‑mediated rejection 
of embryonic stem cell‑derived grafts is a concern since 
these cells are allogeneic to the recipient patients.[64] These 
difficulties were thwarted with the discovery that forced 
expression of four transcription factors (Oct4, Sox 2, 
c‑Myc, and Klf4) the nuclei of differentiated somatic 
cells can be reprogrammed toward a pluripotent state.[65] 
Pluripotential stem cells generated with this method bear 
multipotentiality and self‑renewal characteristics such as 
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embryonic stem cells. They are not subject to immune 
rejection and can be expanded in vitro and differentiate 
to all retinal cells,[66] including photoreceptors.[67] 
Moreover, these cells can form three‑dimensional retinal 
organoids that can allow production of vast number 
of photoreceptors for transplantation and genetic 
engineering.[68,69] This vast source of photoreceptors 
can allow selection and transplantation of cones that 
are essential for visual acuity, color, and foveal vision. 
Pluripotential stem cell‑derived photoreceptor cells 
have been purified from the rest of the cells using 
fluorescence‑activated cell sorting and transplanted 
into the subretinal space of rodents. Integration of these 
cells to host retina has been reported[69] along with 
several studies revealing improved visual function after 
transplantation in various rodent models of retinitis 
pigmentosa;[63,70] however, these observations should be 
reinterpreted considering the possibility of cytoplasmic 
material transfer between the grafted photoreceptors 
and to recipient’s retinal cells. The ability of human 
photoreceptor progenitors derived from both human 
embryonic and induced pluripotent stem cells in 
integrating the retina and improving the visual function 
was also tested in PDEβrd[1]/rd[1] mouse which exhibits 
end‑stage retinal degeneration.[71] This model allows a 
better understanding of the fate of the grafted cells in 
patients with retinitis pigmentosa due to the resemblance 
of the stage of outer retinal degeneration. Human 
photoreceptor progenitors transplanted into PDEβrd[1]/rd[1] 
mouse differentiated into mature photoreceptors and 
established connections with host retinal neurons. 
Behavioral tests showed improved visual function after 
transplantation.

Trophic Effects of the Transplanted Cells

Cell transplanted into the subretinal space may exert a 
positive effect on the survival of the remaining retinal 
neurons regardless of their types and independent 
of their ability to synapse with the host retina. This 
paracrine effect was eloquently demonstrated in an 
outer retinal degeneration model of RhoP[23] H/+ mice.[72] 
An intriguing hypothesis was put forward using the 
pig model of autosomal‑dominant retinitis pigmentosa 
to explain this paracrine effect.[22] Cone photoreceptors 
which last longer than rods along the course of retinitis 
pigmentosa depend on glucose delivery from the retinal 
pigment epithelial cells to maintain their high metabolism 
and regeneration of their outer segments. In the setting 
of retinitis pigmentosa, glucose is not delivered to the 
subretinal space by retinal pigment epithelial cells 
resulting in starvation of the cones and subsequent loss 
of their outer segment and mitochondria‑rich inner 
segments. Transplantation of rod precursors or even 
subretinal injection of glucose restores cone metabolism 
and outer segment synthesis.

Another stem cell type that can exert trophic effects is 
the umbilical stem cells. Umbilical stem cells can be a 
mixed population of hematopoietic and mesenchymal 
stem cells that can be harvested from the cord blood or 
cord tissue. Cells generated from umbilical stem cells 
exert a protective effect in animal models of retinal 
degeneration[73,74] and laser injury.[75] This trophic 
effect was found to be related to restoration of retinal 
pigment epithelium phagocytosis in Royal College 
of Surgeons (RCS) rats by secreting several humoral 
factors and bridge molecules that enhance the binding 
of photoreceptor outer segments to retinal pigment 
epithelium.[74]

Bone marrow stem cells have the potential to 
differentiate into various lineage cells including neural 
cells. Although there have been reports indicating 
that these cells may incorporate into host retina and 
express some retinal cell markers,[76,77] it is believed that 
most of their beneficial effect occur through paracrine 
mechanisms.[78,79] Another stem cell that can be harvested 
from the bone marrow is the CD34+ hematopoietic stem 
cell which is shown to exert a neuroprotective effect 
in eyes with retinal degeneration.[80] After intravitreal 
injection, these cells gather around retinal vasculature 
rather than the degenerating retina suggesting a 
paracrine effect.[78]

Intravitreal injection of bone marrow‑derived 
mesenchymal stem cells has also been used in 
14 patients with retinitis pigmentosa.[81] A short‑term 
improvement of visual acuity returned to preoperative 
levels. Several adverse effects were reported, including 
posterior synechia, choroidal detachment, intraocular 
ossification, tractional retinal detachment, vitreous 
hemorrhage, and intraocular lens subluxation. Bone 
marrow‑derived mesenchymal stem cells exert 
their effect mainly through the paracrine route. 
Previous studies revealed that mesenchymal stem cell 
secretomes possess neuroprotective properties and 
delay photoreceptor cell loss due to their paracrine 
effects.[82,83]

Adipose tissue‑derived mesenchymal stem cells 
were also transplanted into the subretinal space of 
11 patients with advanced retinitis pigmentosa.[84] 
Apart from one patient, no major visual benefit was 
observed. In contrast, one patient developed choroidal 
neovascularization and five patients required repeat 
vitrectomy and silicone oil tamponade due to epiretinal 
membrane formation.

Another cell type that exerts its effect through paracrine 
mechanisms is the neural stem cell. Once transplanted 
into the subretinal space of the rd1 mice, these cells delay 
retinal degeneration by suppressing microglia activation.[85]
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Human Trials

Human trials of retinal cell transplantation for retinitis 
pigmentosa are listed in Table 1. Currently, 8 of these 
19 trials are still active and 6 of them are recruiting 
patients. Cells planned to be transplanted into patients 
with retinitis pigmentosa include autologous CD34+ stem 
cells harvested from bone marrow, human umbilical 
cord‑derived mesenchymal stem cells, human embryonic 
stem cell‑derived retinal pigment epithelial cells, 
bone marrow‑derived stem cells, and human retinal 
progenitor cells.

Safety Issues

Generation of human embryonic or pluripotential stem 
cells requires strict control during the manufacturing 
process to ensure cellular stability, production 
consistency, eliminate the possibility of tumorigenicity, 
toxicity, and immunogenicity. For this purpose, “good 
manufacturing practice protocols have been put forward 
by Food and Drug Administration. These guidelines 
describe the required technological and manufacturing 
standards for creating and maintaining human stem cell 
lines for regenerative medicine use. Sight‑threatening 
complications seen after the uncontrolled use of stem 
cell therapy in ophthalmology[86‑88] have proved the 
importance of such regulatory legislature.[89,90]

Unlimited self‑renewal and high differentiation 
potential of both human embryonic stem cells and 
induced pluripotential stem cells pose a danger to 
develop teratomas.[91] Embryonic stem cell‑derived 
neural precursor transplants into the subretinal space 
of rhodopsin‑knockout mice yielded teratomas in half 
of the donor animals 8 weeks after engraftment.[92] This 
necessitates the employment of screening tests to detect 
malignant transformation and complex morphogenesis 
or even organogenesis that may not occur in vitro. 
Another major safety concern is the integration 
of the viral gene fragments and the use of genetic 
transcription factors during the production of induced 
pluripotential stem cells. These may induce endogenous 
genetic and epigenetic alterations, such as insertional 
mutagenic lesions leading to tumor formation after 
transplantation.[93] Several alternative reprogramming 
techniques have been developed to overcome this 
possibility, such as nongenetic transcription factors, 
and nonintegrating delivery systems, such as Sendai 
virus.[94] Genetic and epigenetic stability should also 
be strictly controlled during the propagation of human 
stem cells since reprogramming of somatic cells can 
alter the integrity of the parental cell genome or conceal 
chromosomal instabilities.[95] Several reports revealed 
chromosomal aberrations and mitochondrial genome 
mutations after the reprogramming process.[96,97] Such 

alterations occasionally can result in rapid telomere 
shortening, increased apoptosis, severely limited growth 
and expansion capability, and early senescence.[98] 
Deletion of three genes and mutations in another three, 
including an oncogene, in a cell line halted a human 
trial of induced pluripotential stem cell‑derived retinal 
pigment epithelium transplantation recently.

Although immune response may not be a problem with 
the use of induced pluripotent stem cell, a vast number 
of studies indicate that human embryonic stem cells can 
still evoke an immune response.[64] Several strategies have 
been developed to avoid an immune‑mediated rejection 
of the human embryonic stem cell derived cells, including 
encapsulation of the cells,[99] application of somatic cell 
nuclear transfer to reprogram patient’s somatic cells 
into pluripotent embryonic stem cells,[100] gene editing 
to abrogate the HLA surface expression,[101] and bone 
marrow or hematopoietic stem‑cell transplantation 
to create hematopoietic chimerism.[102] Currently, 
HLA‑matchmaker algorithms are employed to predict 
the most compatible immunogenic donor HLA types to 
decrease the host’s immune response and increase graft 
survival.[103] Studies with solid organ transplantation have 
shown that matching in HLA‑A, HLA‑B, and HLA‑DR 
groups is still required for long‑term graft survival 
despite the employment of an immunosuppressive 
regimen.[104] HLA matching also shortens the duration of 
the immunosuppressive regimen.[105] Unfortunately, this 
method requires the development of large HLA‑matched 
embryonic stem cell banks.[106] Apart from ethical and legal 
obstacles, establishing haplobank of human embryonic 
stem cells will create a challenge itself considering that 
HLA system is the most polymorphic locus consisting 
of nearly 10,000 HLA‑I and‑II alleles.[107] This challenge 
will be enormous in countries with diverse ethnic 
backgrounds, such as Brazil,[108] compared to ethnically 
more homogenous countries such as Japan[109,110] and the 
United Kingdom.[111]

Bioengineering Semi‑Organic Constructs

Thermosensitive gelatin encasing was used in early 
adult human photoreceptor sheet transplantation 
which eased the handling and delivery of the graft 
into the subretinal space.[41] Use of artificial matrices 
to improve cell growth and synapse formation was 
first introduced in 2004.[112] The suggested construct 
was made up of Mylar membranes with an array of 
perforations of 3–40 µm in diameter. Retinal cells 
seeded in the microperforations were first cultured 
and then transplanted into the subretinal space of 
adult RCS rats. Histopathology revealed retinal 
tissue growth through these perforations. These 
early studies were followed by the development of 
microcylinder scaffolds which allow the vertical growth 



342 Taiwan J Ophthalmol - Volume 11, Issue 4, October-December 2021

Contd...

Table 1: Human Trials of Retinal Cell Transplantation for Retinitis Pigmentosa
NCT number Title Status Intervention Phase Sponsor Study center
NCT04925687 Pilot study of intravitreal 

autologous CD34+ stem 
cell therapy for retinitis 
pigmentosa

Recruiting Intravitreal 
autologous 
CD34+ cells

Phase 1 University of California, 
Davis
Cures within reach

University of California 
Davis, Sacramento, CA, 
USA

NCT04763369 Investigation of 
therapeutic efficacy and 
safety of UMSCs for the 
management of RP

Recruiting Injection of 
stem cells in 
suprachoroidal 
space of eye

Phase 2 Jinnah Burn and 
Reconstructive Surgery 
Centre, Lahore
The Layton Rahmatullah 
Benevolent Trust Free 
Eye Hospital, Township, 
Lahore
CEMB, University of the 
Punjab, Lahore

Stem Cell laboratory, 
Jinnah Burn & 
Reconstructive Surgery 
Centre, Lahore, Punjab, 
Pakistan

NCT03963154 Interventional study 
of implantation of 
hESC‐derived RPE in 
patients with RP due to 
monogenic mutation

Recruiting Human 
embryonic stem 
cell‐derived 
retinal pigment 
epithelium

Phase 1, 
Phase 2

Centre d’Etude des 
Cellules Souches

Centre Hospitalier 
National d’ Ophtalmologie 
(CHNO) des Quinze‐
Vingts, Paris, France

NCT03944239 Safety and efficacy 
of subretinal 
transplantation 
of clinical human 
embryonic stem cell‐
derived retinal pigment 
epithelium in treatment 
of retinitis pigmentosa

Recruiting Retinal pigment 
epithelium 
transplantation

Phase 1, 
Phase 2

Beijing Tongren Hospital
Chinese Academy of 
Sciences

Beijing Tongren Hospital, 
Capital Medical University, 
Beijing, Beijing, China

NCT03011541 Stem cell ophthalmology 
treatment Study II

Recruiting Retrobulbar, 
subtenon, 
intravitreal, 
intraocular, 
subretinal and 
intravenous 
injection of bone 
marrow-derived 
stem cells

N/A MD stem cells MD Stem Cells, Westport, 
CT, USA
MD Stem Cells, Coral 
Springs, FL, USA
Medcare Orthopaedics 
& Spine Hospital, Dubai, 
UAE
Retinal Research Institute, 
Phoenix, AZ, USA
Massachusetts Eye and 
Ear Infirmary, Boston, MA, 
USA

NCT02464436 Safety and tolerability 
of hRPC in retinitis 
pigmentosa

Recruiting Subretinal 
injection of 
human retinal 
progenitor cells

Phase 1, 
Phase 2

ReNeuron limited Oregon Health and 
Science
University, Portland, OR, 
USA
Institut de la Màcula, 
Barcelona, Spain
Oxford Eye Hospital, 
Oxford, UK

NCT02709876 Autologous bone 
marrow‐derived CD34+, 
CD133+, and CD271+ 
stem cell transplantation 
for retinitis pigmentosa

Active, not 
recruiting

Intravitreal 
injection of 
autologous bone 
marrow‐derived 
stem cells

Phase 1, 
Phase 2

Stem Cells Arabia Stem Cells Arabia, 
Amman, Jordan

NCT04604899 Safety of repeat 
intravitreal injection of 
human retinal progenitor 
cells (jCell) in adult 
subjects with retinitis 
pigmentosa

Active, not 
recruiting

Intravitreal 
injection of 
human retinal 
progenitor cells

Phase 2 jCyte, Inc
CIRM

Gavin Herbert Eye Inst, 
University of California 
Irvine, CA, USA
Retina‐Vitreous 
Associates, Los Angeles, 
CA, USA
Ophthalmic Consultants of 
Boston, Boston,
MA, USA
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Table 1: Contd...
NCT number Title Status Intervention Phase Sponsor Study center
NCT01920867 Stem cell ophthalmology 

treatment study
Enrolling 
by
invitation

Retrobulbar, 
subtenon, 
intravitreal, 
intraocular, 
subretinal and 
intravenous 
injection of 
bone marrow 
derived stem 
cells

N/A MD stem cells MD Stem Cells, Westport, 
CT, USA

NCT01736059 Clinical trial of 
autologous
Intravitreal bone‐marrow 
CD34+ stem cells for 
retinopathy

Enrolling 
by 
invitation

Intravitreal 
injection of 
autologous bone 
marrow stem 
cells

Phase 1 University of California 
Davis,
Sacramento, CA, USA

University of California 
Davis, Sacramento, CA, 
USA

NCT01560715 Autologous bone 
marrow‐derived stem 
cells transplantation for 
retinitis pigmentosa

Completed Intravitreal 
injection of 
autologous bone 
marrow stem 
cells

Phase 2 University of Sao
Paulo, Brazil

Centro de Pesquisa 
Rubens Siqueira, Sao 
Jose do Rio Preto, SP, 
Brazil

NCT01531348 Intravitreal injection 
of MSCs in retinitis 
pigmentosa

Completed Intravitreal 
injection of 
mesenchymal 
stem cells of 
autologous bone 
marrow stem 
cells

Phase 1 Mahidol University
Ministry of Health, 
Thailand

Siriraj Hospital Mahidol 
University, Bangkoknoi, 
Bangkok, Thailand

NCT01068561 Autologous bone 
marrow‐derived stem 
cells transplantation for 
retinitis pigmentosa

Completed Intravitreal 
injection of 
autologous bone 
marrow stem 
cells

Phase 1 University of Sao
Paulo, Brazil

Centro de Pesquisa 
Rubens Siqueira, Sao 
Jose do Rio Preto, SP, 
Brazil

NCT00345917 Safety study in retinal 
transplantation for 
retinitis pigmentosa

Completed Subretinal 
transplantation 
of ing human 
fetal retina and 
retinal pigment 
epithelium

Phase 2 Radtke, Norman, M.D
Foundation Fighting 
Blindness

Retina Vitreous Resource 
Center, Louisville, KY, 
USA

NCT02320812 Safety of a single, 
intravitreal injection of 
human retinal progenitor 
cells (jcell) in retinitis 
pigmentosa

Completed Intravitreal 
injection of 
human retinal 
progenitor cells

Phase 1, 
Phase 2

jCyte, Inc
CIRM

Gavin Herbert Eye Inst, 
University of California 
Irvine, CA, USA
Retina‐Vitreous 
Associates, Los Angeles, 
CA, USA
Ophthalmic Consultants of 
Boston, Boston, MA, USA

NCT02280135 Clinical Trial of 
Intravitreal Injection 
of Autologous Bone 
Marrow Stem Cells in 
Patients With Retinitis 
Pigmentosa

Completed Intravitreal 
injection of 
autologous bone 
marrow stem 
cells

Phase 1 Red de Terapia Celular
Spanish National Health 
System
Hospital Universitario 
Virgen de la Arrixaca
Fundacion para la 
Formacion e Investigacion 
Sanitarias de
la Region de Murcia
Public Health Service, 
Murcia
Instituto Murciano de 
Investigación Biosanitaria 
Virgen de la Arrixaca

Clinical Universitary 
Hospital Virgen de la 
Arrixaca, El Palmar, 
Murcia, Spain

Contd...
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of the cells and protect them from shear forces that 
may occur during the transplantation procedure.[113] 
Since then, several hydrogel polymer scaffolds for 
culture and transplantation of retinal progenitor 
cells have been described.[114,115] Poly (L‑lactic acid)/
poly (lactic‑co‑glycolide acid) (PLLA/PLGA), poly 
(methyl methacrylate) (PMMA) and poly(ε‑caprolactone) 
(PCL) has been tried as a polymer scaffold for retinal 
progenitor transplantations. Ten‑fold improved cell 
survival was observed with PLLA/PLGA, but associated 
fibrosis and inflammation have limited its use.[116] 
Nondegradable characteristics and surface modification 
requirements are PMMA’s disadvantages.[117] PCL 
also carries disadvantages such as inhibition of retinal 
progenitor cell proliferation and differentiation toward 
photoreceptors.[118] Surface coating of PCL membranes 
with vitronectin‑mimicking oligopeptides was reported 
to increase cell adhesion and differentiation.[118] 
Bioengineering methods were also employed to correctly 
apposition photoreceptor cells with host retina 
using ultrathin and biocompatible elastomer films 
composed of nonbiodegradable polydimethylsiloxane 
and biodegradable poly (glycerol‑sebacate). These 
“wine glass” scaffold design serves to position 
the photoreceptors cells in a correctly polarized 
configuration.[119]

Conclusion

Retinal cell transplantation has covered a long way since 
its first introduction in 1946. This fact can be exemplified 
by looking at the fact that 44% (1,673/3,815/) of the 
scientific publications in this field have been produced 
within the last 10 years. Recent developments in stem 
cell technology, ophthalmic imaging systems, tissue 
engineering methods as well as our understanding of 

synapse formation and pathophysiology of retinitis 
pigmentosa provide a unique opportunity to restore the 
vision of patients with retinitis pigmentosa.
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