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MicroRNAs (miRNAs) are small, noncoding regulatory molecules. They are involved in many essential biological processes
and act by suppressing gene expression. The present work reports an integrative analysis of miRNA-mRNA and miRNA-
miRNA interactions and their regulatory patterns using high-throughput miRNA and mRNA datasets. Aberrantly expressed
miRNA and mRNA profiles were obtained based on fold change analysis, and qRT-PCR was used for further validation of
deregulated miRNAs. miRNAs and target mRNAs were found to show various expression patterns. miRNA-miRNA interactions
and clustered/homologous miRNAs were also found to contribute to the flexible and selective regulatory network. Interacting
miRNAs (e.g., miRNA-103a and miR-103b) showed more pronounced differences in expression, which suggests the potential
“restricted interaction” in themiRNAworld. miRNAs from the same gene clusters (e.g., miR-23b gene cluster) or gene families (e.g.,
miR-10 gene family) always showed the same types of deregulation patterns, although they sometimes differed in expression levels.
These clustered and homologous miRNAs may have close functional relationships, which may indicate collaborative interactions
between miRNAs. The integrative analysis of miRNA-mRNA based on biological characteristics of miRNA will further enrich
miRNA study.

1. Introduction

MicroRNAs (miRNAs) are small (∼22 nts) endogenous non-
coding RNAs (ncRNAs).They havemany biological roles and
act by negatively regulating mRNA expression at the post-
transcriptional level [1–3]. They suppress gene expression via
interaction with their target messenger RNAs (mRNAs) and
either block the translation process or initiate cleavage.These
small regulators have important roles in multiple essential
biological processes, including cell differentiation and apop-
tosis [4]. They are also involved in pathological processes
and contribute to occurrence and the development of some
cancers [5–7]. Abnormal expression of the small ncRNAsmay
lead to cell death or abnormal cell phenotypes via miRNA-
mRNA interactions [8]. Specifically, abnormally expressed
miRNAs have been shown to be crucial contributors andmay
serve as biomarkers in many human diseases.

Bioinformatics analysis indicates that a specific miRNA
can regulate expression of up to thousand mRNAs through

miRNA-mRNA association, and a specific mRNA can be
regulated by multiple miRNAs. miRNAs may also be regu-
lated as potential targets in vivo [9]. The flexible regulatory
pattern should exist between the two coding (mRNA) and
noncoding (miRNA) RNA molecules. Numerous reports
have shown that miRNA-mRNA interaction is more complex
than we had believed, and a series of studies have been
performed to predict miRNA-mRNA modules and correla-
tion networks using miRNA and mRNA expression profiles
[10–13]. miRNA-miRNA interactions can also be observed
between natural sense and antisense miRNAs [14–18]. These
miRNAs alwaysmore pronounced divergences in expression,
because they may complementarily bind and restrict each
other. ManymiRNAs are not randomly distributed but rather
clustered on chromosomes and cotranscribed as a single
polycistronic transcript [19, 20]. Some of these clustered
miRNAs can be considered homologous miRNAs (members
of the same miRNA gene family). Their sequences are more
similar to each other than those of other miRNAs. This is
especially true of miRNAs with conserved seed sequences
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(nucleotides 2–8) [21]. These miRNA gene clusters and gene
families always have close functional relationships and coreg-
ulate or coordinately regulate multiple biological processes
[22–24].

Integrative analyses that are based on miRNA-mRNA
interactions always aim to develop algorithms or tools [25,
26]. Few studies have addressed the biological characteristics
of miRNA in miRNA-mRNA interactions. For example,
miRNAs are prone to cluster on the chromosomes, some
miRNAs show more sequence similarity than others, and
a single miRNA locus can yield a cluster of isomiRs with
various 5󸀠 and 3󸀠 ends and length distributions [23, 27, 28]. In
the present study, an integrative analysis of miRNA-mRNA
was performed based on miRNA and mRNA expression
profiles in human HepG2 and L02 cells by applying high-
throughput techniques. HepG2 cells are human hepatoma
cell lines, and they are a suitablemodel to study occurrence of
development of humanhepatocellular carcinoma in vitro. L02
is the normal human liver cell line, which is always used as
control cell lines ofHepG2 cells.Thepurpose of this studywas
to improve understanding of miRNA-mRNA interactions in
regulatory networks. The patterns of expression of potential
miRNA-miRNA pairs were also analyzed comprehensively,
and the patterns of expression of miRNAs with potential
functional relationships, including members of the same
miRNA gene clusters and gene families, were surveyed.

2. Materials and Methods

2.1. miRNA andmRNAProfiling Using High-Throughput Tech-
niques. HepG2 and L02 cells were obtained from the
American Type Tissue Collection. miRNA expression
profiles were generated from Illumina Genome Analyzer IIx,
and then analyzed using Novoalign software (http://www
.novocraft.com/, v2.07011) based on the latest known
human pre-miRNAs in the miRBase database (Release 19.0,
http://www.mirbase.org/) [29]. To further understand
expression patterns of target mRNAs of miRNAs, mRNA
expression profiles were assessed using microarray hybri-
dization. Hybridization was performed in Agilent’s SureHyb
Hybridization Chambers (Human LncRNA Array v2.0,
8 × 60K, Arraystar).

2.2. Data Analysis. Aberrantly expressed miRNAs and
mRNAs in HepG2 cells were surveyed and identified via fold
change analysis. To filter out rare species with lower levels
of relative expression, fold change values were estimated
by adding additional units (10 units). A detailed flow chart
showing the integrative analysis of miRNA-mRNA is given in
Figure 1. The main steps were as follows: (1) Abnormal miR-
NAs and mRNAs were first surveyed through bioinformatics
analysis. miRNA expression analysis was also performed at
the isomiR level, including the different selections of isomiRs
(the most abundant isomiR, sum of all isomiRs, and the
canonical miRNA sequence) [28]. (2) Several deregulated
miRNAs were further experimentally validated using qRT-
PCR. (3) The potential expression and functional relation-
ships among miRNAs were evaluated through analysis of the
patterns of expression of clustered and homologous miRNAs

based on miRNA gene clusters and families. miRNA-miRNA
pairs with potential interactions were also screened and
analyzed. (4) GO/pathway terms were enriched based on
deregulated mRNAs and the target mRNAs of miRNAs, and
miRNA-mRNA regulatory patterns were predicted based on
expression profiles.

The experimentally validated target mRNAs of those
abnormal miRNAs were obtained from the miRTarBase
and Tarbase databases [30]. Common target mRNAs were
subjected to functional enrichment analysis using Capi-
talBio Molecule Annotation System V4.0 and compared
to abnormally expressed mRNA profiles from microarray
datasets (MAS, http://bioinfo.capitalbio.com/mas3/). GOand
pathway analyses were used to determine the biological
roles of deregulated miRNA and mRNA species. Poten-
tial miRNA-mRNA and miRNA-miRNA interactions and
miRNA/mRNA expression profiles were used to construct
functional interaction networks using Cytoscape v2.8.2 Plat-
form [31].

2.3. qRT-PCR Validation. Abnormal miRNAs were further
validated using quantitative real-time reverse transcription
PCR (qRT-PCR) using SYBR premix Ex Taq (Takara, Japan).
Samples were amplified using the Mastercycler ep realplex2
system (Eppendorf, Hamburg, Germany). qPCR was per-
formed using specifically designed primers and used to
detect hsa-miR-15b/103a/106b (Bulge-Loop miRNA qRT-
PCRPrimer Set, RiboBio, Guangzhou, China), andU6 served
as an internal control. The relative amount of each miRNA
was measured using the 2(−ΔΔCT) method [32]. All qRT-
PCR reactions were carried out in triplicate, and data were
presented as the mean ± standard deviation. The two-tailed
Student’s 𝑡 test was used to compare the expression difference
between tumor and normal cells.

3. Results

3.1. Overview of miRNA/mRNA Expression Profiles and Fur-
ther Experimental Validation. Upregulated and downregu-
lated miRNAs/mRNAs were identified using the fold change
values (log 2) based on the control sample. Many miRNAs
and mRNAs were found to be differentially expressed (see
Figure S1 in the Supplementary Material available online
at http://dx.doi.org/10.1155/2014/907420). miRNA expression
patterns were further analyzed at the isomiR level. Fold
change values were found to diverge based on the dif-
ferent selections of isomiRs (the most abundant isomiR,
sum of all isomiRs, and the canonical miRNA sequence)
(Figure 2(a)). Differences in fold change values rarely affected
the selection of deregulated miRNA species. The canonical
or annotated miRNA sequences were not always the most
dominant species in the miRNA locus. They had even lower
levels of expression. The qRT-PCR primers used here were
designed according to the canonical miRNA sequences in the
miRBase database (Release 19.0, http://www.mirbase.org/)
[29]. For this reason, in order to further validate deregulated
miRNAs using qRT-PCR technique, we randomly selected
several abnormally expressed miRNAs (miR-15b, miR-103a,
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Figure 1: The miRNA-mRNA integrative analysis.
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Figure 2: (a) miRNA expression analysis and (b) and further qRT-PCR validation. (a) The fold change values (log 2) differ in the variety
of miRNA sequences involved. “The-most” indicates the most abundant and dominant isomiR sequence. “All-isomiRs” indicates sum of
all isomiRs. “The-canonical” indicates the reference miRNA sequence in the miRBase database. The canonical miRNA sequence may be
consistent or inconsistent with the most abundant isomiR sequence. Different methods of estimation may produce different fold change
values (log 2), but they always show consistent deregulation patterns. (b) Further RT-PCR validation is performed for miR-15b, miR-103a,
and miR-106b, and the experimental results show consistent deregulation patterns. “∗” indicates that the 𝑃 value is less than 0.05.

and miR-106b; their canonical miRNA sequences were the
most abundant isomiRs) for further experimental validation
(Figure 2). Bioinformatic analysis showed that miR-103a and
miR-106b were upregulated in tumor cells, while miR-15b
was identified as downregulated species (Figure 2(a)). As
expected, qRT-PCR experimental validation showed consis-
tent results (Figure 2(b)).

3.2. Expression Patterns of miRNA-miRNA Pairs and miRNA
Gene Clusters and Families. The expression patterns of
miRNA-miRNA pairs that can form miRNA-miRNA
duplexes were also analyzed [18]. Eight miRNA-miRNA
pairs were found to be abundantly expressed in HepG2 or
L02 cells. Expression analysis showed one member of each
natural miRNA-miRNA pair to be abundantly expressed
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Table 1: Differences in expression between natural sense and antisense miRNAs.

miRNA/miRNA The most abundant isomiR Sum of all isomiRs The canonical miRNA
HepG2 L02 HepG2 L02 HepG2 L02

103a/103b 9232/— 1833/— 10639/— 2525/— 9232/— 1833/—
122/3591 163/— 938/— 837/— 3550/— 10/— 17/—
203/3545 —/— 216/— —/— 705/— —/— 12/—
24/3074 787/2 14998/— 6618/3 29094/— 3592/— 1597/—
423-5p/3184-3p 1208/— 3159/— 1882/— 5790/— 1208/— 3159/—
423-3p/3184-5p 981/— 5036/1 1934/— 8290/1 981/— 5036/—
7-5p/3529-3p 1132/— 939/— 1931/— 2397/— 238/— 386/—
374b-5p/374c-3p 137/— 67/— 318/— 203/— 137/— 67/—
Based on the different methods of estimation, the most abundant isomiR, sum of all isomiRs, and the canonical miRNA, relative expression levels of these pairs
of miRNA pairs were determined. They are presented here using normalized data. One member of each pair was always far more abundantly expressed than
the other. “—” indicates an undetectable miRNA.
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Figure 3: Examples of (a) deregulated miRNA gene clusters and (b) gene families. (a) Clustered and (b) homologous miRNAs are always
consistently upregulated or downregulated in tumor cells, although they can differ in fold change values (log 2) and relative expression levels.
miRNAs shown here to have zero change (such asmiR-25) are not detected or did not show significant differences between tumor and normal
cells.

and the other to be quite rare (Table 1). For example, the
miR-103a/miR-103b pairs showed a pronounced difference
in the degree of expression: miR-103a was abundantly
expressed (normalized sequence count was more than 9,232
in tumor cells), and miR-103b was not detected. Pronounced
differences in degree of expression were quite common
between these two members of each miRNA-miRNA pair
(Table 1).

The expression patterns of miRNAs that might have
potential functional relationships were also analyzed. Clus-
tered and homologous miRNAs always showed consistent
patterns of deregulation (Figure 3), although they could differ
in relative level of expression, sometimes showing large
differences. These differences in expression may have led to
the various fold change values observed between these related
miRNAmembers (Figure 3). For example, the miRNA in the
miR-23b gene cluster were downregulated, showing similar
fold change values, and those of the miR-106b gene cluster
showed highly different fold change values (Figure 3(a)).

3.3. Expression and Regulatory Patterns of miRNAs/mRNAs
and Functional Enrichment Analysis. Although each aber-
rantly expressed miRNA can negatively regulate target
mRNAs via miRNA-mRNA association, their potential tar-
gets always show dramatically different expression pat-
terns (Figure 4). Common target mRNAs might be detected
between different deregulated miRNAs, even between upreg-
ulated and downregulated miRNAs (according to validated
miRNA-mRNA interaction, E2F3 can be negatively regu-
lated by upregulatedmiR-106b and downregulatedmiR-125b,
Figure 4). Targets of miRNAs of the same gene clusters and
families also showed complex expression patterns, although
these related miRNAs were downregulated in tumor cells
(Figure 4(b)).These homologous and clusteredmiRNAswere
always simultaneously upregulated or downregulated. They
might negatively target the same mRNAs (Figure 4(b)).

Functional enrichment analysis based on the deregulated
targetmRNAs suggestedmultiple biological roles (Figures S2,
S3, and S4).Theywere found to contribute tomany biological
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Figure 4: Examples of flexible and selective regulatory network between miRNAs and mRNAs. (a) Selected overexpressed (miR-103a,
miR-106b, and miR-194) and underexpressed (miR-15b, miR-100, and miR-125b) miRNAs are used to reconstruct the regulatory network.
Their experimentally validated target mRNAs show various expression patterns: some are stably expressed, and others are upregulated or
downregulated. Overexpressed miRNAs and mRNAs are here highlighted in red octagons and ellipse, respectively, and underexpressed
miRNAs and mRNAs are highlighted in green octagon and ellipse, respectively. Grey ellipses indicate stably expressed mRNAs and mRNAs
are not detected in the present study.The targets common to differentmiRNAs are highlighted in blue rectangles. (b) Selected underexpressed
miRNA gene clusters (miR-23b and let-7a-1) and gene families (miR-23 andmiR-27) also show complex regulatory networks.These clustered
and homologous members are consistently downregulated in tumor cells, and their validated targets show various expression patterns.
miRNAs in the let-7a-1 gene cluster are also members of the let-7 gene family.The targets common to these miRNAs have shown upregulated,
downregulated, and stable patterns of expression.

processes, such as the cell cycle, calcium signaling pathway,
p53 signaling pathway, and T cell receptor signaling pathway.
These aberrantly expressed mRNA species are also involved
in some human diseases, including pancreatic cancer, renal
cell carcinoma, prostate cancer, and colorectal cancer.

4. Discussion

In the study, integrative analysis of miRNA-mRNA is per-
formed using biological characteristic of miRNAs, and
miRNA-miRNA interaction is simultaneously analyzed based
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on the relationships between different miRNAs (Figure 1).
Compared to other algorithms or tools of miRNA-mRNA
analysis [25, 26], the approach aims to track miRNA-mRNA
and miRNA-miRNA interactions based on characteristic of
miRNAs. Specifically, (1) miRNAs are prone to detected
homologous miRNAs with higher level of sequence simi-
larity, (2) miRNAs are prone to cluster together with close
physical distance, (3) some miRNAs are located on sense
and antisense strands of specific genomic regions, and (4)
miRNA locus can generate multiple isomiRs with various
sequences and expression levels, and so forth. Although these
specific features of miRNAs have been widely concerned
in miRNA study, they are rarely mentioned or involved
in miRNA-mRNA analysis. Indeed, many miRNAs coordi-
nately contribute to biological processes, and one specific
biological pathway will involved in a series of mRNAs
and regulatory miRNAs. Therefore, it is quite necessary
to study miRNA-mRNA interactions using characteristic of
miRNAs, especially homologous and/or clustered miRNAs
are prone to have functional relationships. More importantly,
the canonical or annotated miRNA sequence is only one
specific member of the multiple isomiRs, and the study at
the isomiR level will enrich miRNA study. IsomiR expression
patterns contribute to tracking pre-miRNA processing and
miRNA maturation processes and understanding regulatory
network at the isomiR levels.

According to the integrative analysismethod, firstly, aber-
rantly expressed miRNA and mRNA profiles were collected
based on fold change analysis. To further validate these
deregulated miRNA species, several deregulated miRNAs
that had been experimentally validated using qRT-PCR
were randomly selected. As expected, qRT-PCR experiments
showed results consistent with those of bioinformatic analysis
(Figure 2). As in other reports, miR-103a, and miR-106b were
overexpressed in hepatocellular carcinoma (HCC) and served
as important negative regulators [33, 34]. However, miR-15b
was found to be upregulated [35].The overexpression ofmiR-
15b may restrict cell proliferation and increase the rate of
cellular apoptosis, and abundant expression may indicate a
low risk of HCC recurrence [36]. The dynamic expression of
miR-15b may play multiple biological roles in tumorigenesis.

Many reports have shown that multiple isomiRs (miRNA
variants) can be detected at the same miRNA locus. This
is due to imprecise and alternative cleavage of Drosha and
Dicer [23, 27, 28]. According to three different methods of
estimation methods, the most abundant isomiR, the sum
of all isomiRs, and the canonical miRNA, the phenomenon
of the multiple miRNA variants may influence the relative
expression levels and lead to various fold change values
(Figure 2(a)) [24, 28]. This is mainly because of differences
among isomiR repertoires and expression patterns, although
they are always well conserved across different tissues and
animal species [28, 37, 38]. Differences in isomiR expression
profiles may play a role in occurrence and development of
disease [28]. Generally, consistent deregulatedmiRNAs could
be identified using different methods of estimation methods,
even if they have different fold change values (Figure 2(a)).
However, if abnormal miRNA expression profiles are col-
lected using the typical methods of analysis of canonical

miRNA or the sum of all isomiRs, the difference in fold
change valuesmay affect the collection of deregulatedmiRNA
species and may require further experimental validation.
Among multiple isomiRs, the canonical miRNAs are not
always the most abundant (Figure 2(a)). Some of them can
be very rare. Other abundant isomiR species, especially
isomiRs with novel 5󸀠 ends and seed sequences (5󸀠 isomiRs),
may also be regulatory molecules. These 5󸀠 isomiRs may
have novel potential target mRNAs and may contribute to
the regulation of previously unknown biological processes.
Collectively, it may be best to observe deregulated miRNAs
through bioinformatic analysis at the miRNA level using the
most abundant and dominant isomiR sequence and isomiR
profiles through bioinformatic analysis at the isomiR level
based on variations in sequence and expression levels.

miRNAs negatively regulate mRNA expression and con-
tribute to many biological processes through complementary
binding to their target mRNAs. Some miRNAs can interact
with the 3󸀠-untranslated region (UTR) of target mRNA
and reduce the level of mRNA expression [39]. An attempt
was here made to reconstruct the coding-noncoding RNA
regulatory network according to negative regulation and
the deregulation of miRNAs and target mRNAs. Although
miRNAs can be either downregulated or upregulated in
tumor cells, their experimentally validated and predicted
targets may show consistent or inconsistent deregulation pat-
terns (Figure 4). Abnormal miRNA and mRNA expression
profiles complicate the regulatory network, although they
showed close functional relationships by forming miRNA-
mRNA duplexes. A single miRNA can regulate multiple
target mRNAs and vice versa. The fact that a single miRNA
can engage inmany possible miRNA-mRNA interactions can
render regulatory networks highly complex. Flexible regu-
latory patterns indicate that a specific miRNA may regulate
selected specific targets and so contribute to specific stages of
development.miRNA-mRNAmay affect the spatial-temporal
expression patterns of miRNAs, but these interactions can
also be more strictly regulated during specific stages of
development. The selection of regulated target mRNAs may
have been driven by functional pressure in cellular envi-
ronments through complex regulatory mechanisms. In this
way, overexpressed, underexpressed, and stably expressed
target mRNAs can be identified for specific upregulated
and downregulated miRNAs (Figure 4). A single mRNA can
be negatively regulated by selected specific miRNAs. The
coding-noncoding RNA regulatory network is more com-
plexity than previously thought, especially for complicated
and selective multiple interactions of miRNAs and mRNAs
(Figure 4).

Functional miRNA groups also contribute to the com-
plexity of regulatory networks. miRNAs that have completely
or partially complementary structures can form miRNA-
miRNA duplexes through reverse complementary binding
events. They can also form miRNA:miRNA∗ or miRNA-#-
5p:mRNA-#-3p duplexes [14, 16–18]. miRNA:miRNA inter-
actions are specific phenomenon. They are especially com-
mon between natural or endogenous sense and anti-
sense miRNAs. Possibly because of restricted interactions,
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these miRNA-miRNA pairs show greater differences in the
level expression than other miRNAs do: one member typ-
ically has a far higher level of enrichment than the other,
which can be quite rare (Table 1).This indicates that restricted
interactions may be a regulatory pattern in the miRNA
world. Another, very different, type of interaction between
miRNAs, termed coordinated interaction, also contributes to
the pronounced efficiency of the regulatory process. Some
miRNAs, such as clustered and homologous miRNA species,
may coregulate or coordinately regulate biological processes
[19, 40]. They may be located close to another (clustered in
the same genomic region, miRNA gene cluster) or may share
sequence similarity (homologous miRNAs, miRNA gene
family). Some clustered miRNAs share sequence similarity
and are identified as both members of the same cluster and of
the same family.These phenomena are not randombut rather
derived from functional and evolutionary pressures. These
related miRNAs always show similar or consistent patterns
of deregulation (Figure 3), although they may have different
levels of enrichment because of maturation and degradation
mechanisms. Deregulation patterns may cause functional
relationships. This indicates that collaborative interactions
may take place within the coding-noncoding RNA regulatory
network. Therefore, related miRNAs further complicate the
regulatory patterns, especially when they share specific target
mRNAs. In summary, coordinated interactions and restricted
interactions both exist in the world of small, noncoding
RNA. Although they can be thought of as indirect and direct
interactions, respectively, these interactions represent the
versatility and complexity of the functional and evolution-
ary relationships among different miRNAs. miRNA-miRNA
interactions enrich and complicate the coding-noncoding
RNA regulatory network and contribute to the robustness of
the regulatory network in organism.
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