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Abstract

The current interest in epigenetic priming is underpinned by the belief that remodelling of the epigenetic landscape will
sensitise tumours to subsequent therapy. In this pre-clinical study, paediatric AML cells expanded in culture and primary
AML xenografts were treated with decitabine, a DNA demethylating agent, and cytarabine, a frontline cytotoxic agent used
in the treatment of AML, either alone or in combination. Sequential treatment with decitabine and cytarabine was found to
be more effective in reducing tumour burden than treatment with cytarabine alone suggesting that the sequential delivery
of these agents may a have real clinical advantage in the treatment of paediatric AML. However we found no evidence to
suggest that this outcome was dependent on priming with a hypomethylating agent, as the benefits observed were
independent of the order in which these drugs were administered.
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Introduction

Survival rates for patients with acute myeloid leukemia (AML)

remain inadequate with an overall survival of 40–45% reported in

younger adults, and 63% in under 16 year olds who have a relapse

rate of 35% [1]. While both anthracyclines and cytarabine (Ara-C)

provide an effective backbone for most AML treatment protocols,

new therapies offering a survival advantage over current standard

treatments have been elusive, with the possible exception of the

calicheamicin-conjugated antibody gemtuzumab ozogamicin [2].

Increasing interest in targeting epigenetic pathways has led to

multiple studies of DNA demethylating agents, including decita-

bine (DAC) administered in low dose regimens [3–5]. DAC is a

nucleoside analog believed to have multiple distinct mechanisms of

action, including; activation of methylation-silenced tumor-sup-

pressor genes, up-regulation of microRNA and induction of DNA

damage responses [6–10]. DAC achieved marketing authorisation

for the treatment of MDS (approved in the US, based on

randomised study versus best supportive care) and for AML in

older patients (approved in the EU, following randomised

controlled study versus cytarabine or best supportive care)

[3,11,12]. More recently, DAC has shown to be active in the

treatment of very high risk relapsed or refractory AML in children

[13]. Although studies in leukaemic cell lines have suggested

additive effects from combining DAC and Ara-C, the potential

benefit of adding DAC to the multi-agent treatment regimens that

are standard care for AML in children and young adults has not

been explored [14]. Using primary AML samples, we investigated

the most effective scheduling of DAC and Ara-C, both in vitro and

in primary AML xenografts and explored the epigenetic and

transcriptional changes associated with their use.

Methods

Patient Ethics
Paediatric AML bone marrow (BM) cells were obtained from

the Birmingham Children’s Hospital with fully informed written

consent from parents. This study was approved by the Multicentre

Research Ethics Committee, Birmingham Children’s Hospital,

Childhood Cancer and Leukaemic Group (MREC number;

CCLG08/H0405/22).

Cell Culture
Following positive isolation using magnetic cell separation

(Miltenyl Biotec Inc, Germany), 56104 CD34+ blasts were

cultured on MS5 stromal cells and expanded in hematopoietic

media (Myelocult/Stemcell, Grenoble, France) containing 1 mM

hydrocortisone, IL-3, GCSF and TPO (20 ng/ml) (Peprotech,

Rocky Hill, NJ, USA). Following weekly demi-depopulation, long-

term cultures were established from 8 of 11 patient samples as

previously described [15,16].
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Drug Treatment
For growth inhibition assays, primary AML cells were plated at

a density of 56103/mL in 1 mL medium 24 h before treatment.

Cells were treated with serial dilutions of DAC (0.005–50 mM) or

Ara-C (0.001–10 mM) at 0, 24, 48, 72 and 96 h. Cell viability was

measured by trypan blue exclusion and cell proliferation using the

CellTiter96 assay (Promega, Madison, WI, USA). When measur-

ing the half maximal (50%) inhibitory concentration (IC50), fresh

DAC was added every 24 h without changing the medium. The

doses that inhibited proliferation to 50% (IC50) after 120 h of

treatment were analysed using the median-effect method. In

sequential studies using DAC and Ara-C, 5 AML cultures were

treated with the first drug for 5 days followed by the second for 5

more. Cell cycle analysis was performed on treated cells stained

with propidium iodide. DNA and RNA were extracted from cells

using an Allprep kit (Qiagen, Valencia, CA, USA).

Murine Studies
The Birmingham Biomedical Ethics Review Subcommittee

(BERSC) approved all animal protocols in this study. In vivo

experiments were performed on 6–8 week female NOD/Shi-scid/

IL-2Rcnull (NOG) and were carried out in accordance with UK

Home Office Guidelines. Three xenografts were established (36

mice per experiment), using primary paediatric AML patient

samples with different cytogenetic profiles (AML–XG1- FLT3-

ITD mutation with uniparental disomy on chromosome 13;

AML–XG2 - MLL rearrangement; AML–XG3 - translocation 45,

XX). 10–20 weeks following tail vein injection with 7.7-106105

bulk primary cells, the 36 animals were randomised using

GraphPad Software random number generator into 6 groups of

6 mice. Animals were treated with vehicle (PBS), 0.5 mg/kg DAC

or 75 mg/kg Ara-C by intraperitoneal injection either alone or in

combination as set out in Table 1. For the final xenograft

experiment, all animals were treated for 10 days so as to ensure

that all groups had the same duration of treatment. Time to AML

engraftment had previously been established for each sample by

measuring levels of human CD45+/CD33+ cells in the BM from

animals culled at intervals. Following 5 or 10 days of treatment,

depending on the treatment regimen, animals were sacrificed and

single cell suspensions were prepared from the spleen and BM.

Flow cytometry using the BD LSRII was performed on these

samples, which were stained for human CD45 and CD33 and for

mouse CD45 (e-Bioscience, San Diego, CA, USA) and analysed

using FACsDIVA software. The proportion of human cells

(CD45+) which were CD45+CD33+ defined the level of leukaemic

engraftment. Cells from the same treatment groups were pooled

before magnetic isolation of either CD34+ or CD38+ cells

(depending on the leukaemic subset present), and DNA and

RNA extracted as before.

Pyrosequencing Analysis
100 ng of DNA from primary AML cells treated for 5 days with

or without DAC was bisulphite converted using the EZ DNA

methylation kit (Zymo Research, Irvine, CA, USA). 20 ng of

bisulphite modified DNA was used in each PCR and products run

on a Qiagen pyromark system. Pyrosequencing primers were

designed using PSQ primer design software (Qiagen). The PCR

was performed in a total volume of 50 ml using 25 ml hotstart taq

master mix (Thermo Scientific, Waltham, MA, USA), 5 pmol

biotinylated primer, 10 pmol non-biotinylated primer and 10 ml

bisulphite modified DNA. The pyrosequencing reactions were

performed on a Pyromark ID system (Qiagen) and analysed using

Pyro Q-CpG software (Qiagen).

Quantitative PCR (Q-PCR)
mRNA levels following treatment were assayed using Q-PCR.

cDNA was generated from 500 ng of xenograft RNA using the

Superscript III First-strand synthesis system (Invitrogen, Carlsbad,

CA, USA) with random primers (Promega). Q-PCR assays were

prepared in a final volume of 25 ml which contained 1 ml cDNA,

TaqMan universal PCR mastermix (Applied Biosystems, Foster

City, CA, USA), B2M house-keeping assay (Applied Biosystems)

and commercial Taqman assay for target genes; FLT3, MLL5,

CTBP1, ILF3 and MARCKS. Q-PCR assays were performed in

triplicate using an ABI Prism 7700 sequence detection system

(Applied Biosystems). The 2-DD CT method was used to quantify

expression relative to the housekeeping control.

Methylation and Transcriptional Analysis
Infinium Illumina Methylation450 arrays were used to measure

the difference in global DNA methylation between PBS and drug

treated AML xenografts. 1 mg of control and drug treated DNA

was bisulphite converted using the EZ DNA methylation kit

(Zymo Research). Methylation data were normalized and back-

ground subtracted using Genome studio (Illumina, San Diego,

CA, USA). Differentially methylated CpG sites were identified

using Genome Studio; results were filtered to retain CpG in which

the change in beta values between PBS and drug treated samples

was .60.2. Methylation data have been deposited in the Gene

Expression Omnibus under accession number 44830.

Affymetrix U133 Plus 2 microarrays (Affymetrix, Santa Clara,

CA, USA) were used to measure the difference in gene expression

between PBS and drug treated AML xenografts. RNA quality was

tested using a bioanalyzer and hybridized to microarray chips,

which were analysed using the GCOS Software from Affymetrix,

Inc. Probe level quantile normalization and robust multiarray

analysis were performed using the Affymetrix package of the

Bioconductor project. Differentially expressed genes were identi-

fied using Limma analysis with a fold-change threshold of 1.3.

Transcriptional data have been deposited in the Gene Expression

Omnibus under accession number 44857.

Results

Treatment of primary AML cultures
To compare the effect of DAC alone and in combination with

Ara-C, 8 primary AML cultures were established in vitro and

treated daily for 5 days with DAC and Ara-C either as single

agents, in sequence or simultaneously. When administered as a

single agent, Ara-C inhibited proliferation and reduced cell

viability in a dose dependant manner in 7/8 primary AML

Table 1. Xenograft drug schedule.

Week 1 (5 days) Week 2 (5 days)

PBS

DAC alone 0.5 mg/kg

Ara-C alone 75 mg/kg

DAC 0.5 mg/kg with Ara-C
75 mg/kg (D+A)

DAC alone 0.5 mg/kg Ara-C alone 75 mg/kg (D/A)

Ara-C alone 75 mg/kg DAC alone 0.5 mg/kg (A/D)

6 mice in each arm were administered DAC or Ara-C IP in the sequence and
dose shown.
doi:10.1371/journal.pone.0087475.t001

Sequential Administration of DAC and Ara-C in AML
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cultures with IC50s ranging from 0.006 –0.04 mM. The remaining

culture, AML-1, was relatively resistant to treatment with Ara-C

(IC50 53 mM). Similarly, DAC also demonstrated cytotoxic and

anti-proliferative activity against the same panel of primary AML

cultures (IC50s 0.01 –0.06 mM, AML-1 4.5 mM) (Figure 1 and

Table 2).

When selecting the dose of DAC for use in combination with

Ara-C, we aimed to identify that dose which achieved maximum

demethylation in our panel of primary AML cultures. Using

pyrosequencing, we examined the methylation of four candidate

tumour suppressor genes, known to be hypermethylated in

haematological malignancies. We found that in each primary

culture, maximum demethylation was induced following treatment

with 0.05 mM DAC; however, the level of demethylation achieved

with this dose of DAC differed across the panel of AML samples,

and did not correspond to the IC50 (Figure 2).

We next explored the effect of low dose DAC treatment

(0.05 mM) combined with the sample-specific IC50 dose of Ara-C,

on 5/8 AML primary cultures for which sufficient cell number

Figure 1. The in vitro effects of DAC and Ara-C in primary paediatric AML. A). Changes in viability following treatment with DAC or Ara-C at a
range of concentrations in 8 primary AML patient samples. B) Changes in proliferation following treatment with DAC or Ara-C at the IC50 dose in 8
primary AML patient cultures. Cells were treated at 0, 24, 48, 72 and 96 h, both cell viability and proliferation were measured at 120 h. All experiments
were performed in triplicate.
doi:10.1371/journal.pone.0087475.g001

Table 2. IC50 dose following treatment with DAC and Ara-C
alone.

DAC IC50 Ara-C IC50

AML-1 4.5 mM 53 mM

AML-2 0.04 mM 0.008 mM

AML-3 0.03 mM 0.007 mM

AML-4 0.04 mM 0.03 mM

AML-5 0.02 mM 0.04 mM

AML-6 0.06 mM 0.01 mM

AML-7 0.01 mM 0.02 mM

AML-8 0.04 mM 0.006 mM

Cells were treated at 0, 24, 48, 72 and 96 h and the IC50 measured at 120 h.
doi:10.1371/journal.pone.0087475.t002

Sequential Administration of DAC and Ara-C in AML

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e87475



were available. We showed that both sequential and simultaneous

administration of DAC and Ara-C induced a greater decrease in

cell viability than either drug alone. When the drugs were

administered sequentially, the decrease in viability was greatest

when cells were treated with DAC for 5 days followed by Ara-C

for 5 days in 4/5 samples tested. In the remaining sample, AML-3,

the decrease was greater when Ara-C was followed by DAC

(Figure 3A). Cell cycle analysis following treatment of primary

AML cultures with DAC and Ara-C at the concentrations

described above, revealed a decrease in the proportion of cells in

G0/G1 phase and an increase in the proportion of cells in G2/M

phase. Both sequential and simultaneous treatment resulted in a

depletion of cells in G0/G1 phase and an increase in apoptotic

cells; treatment with DAC followed by Ara-C caused the greatest

increase in apoptosis (Figure 3B).

Treatment of AML xenografts
We next examined the impact of DAC and Ara-C alone or in

combination, on human AML blast cell survival in three primary

paediatric AML xenografts according to the schedules set out in

Table 1. Two of these xenografts were established using those

samples which had shown the greatest decrease in methylation

following DAC treatment in vitro (AML-6, AML-XG1 and AML-

7, AML-XG2). The remaining xenograft was established using a

sample which had shown little methylation change when treated

with DAC in primary culture but had shown the greatest change

in cellular proliferation following DAC treatment in vitro (AML-4,

AML-XG3). The endpoint of these experiments was the level of

BM engraftment human CD45+/CD33+ at a fixed time point

following one cycle of treatment. Notably, treatment with Ara-C

or DAC alone or when administered simultaneously did not

reduce the proportion of human CD45+/CD33+ BM engraftment

compared to PBS controls in any of the three xenografts. In

contrast, sequential administration of Ara-C and DAC induced a

significant decrease in these cell populations when compared to

both PBS controls and Ara-C alone (Figure 4A and B). It is

conceivable that the decrease observed in the first two xenograft

experiments (AML-XG1 and AML-XG2), was a result of

sequential treatment being delivered for 10 days whereas the

DAC and Ara-C alone groups were treated for 5 days. However, a

significant decrease was observed in the final xenograft experiment

when the DAC and Ara-C alone groups were also treated for 10

days. DAC and Ara-C injected as single agents and in

combination were well tolerated following days of treatment, with

,10% weight loss observed in those animals given a second week

of treatment. In the single xenograft (AML-XG1) in which splenic

AML engraftment was observed, the proportion of human

CD45+/CD33+ cells in the spleen were significantly lower in all

treatment groups when compared with controls (Figure 4C).

Genome-wide expression and methylation profiling
DNA methylation and gene expression profiling were per-

formed on AML blasts from all three xenografts following

treatment with PBS, DAC, Ara-C, or both, delivered either

sequentially or simultaneously. Pyrosequencing was used to

validate methylation changes at selected CpG sites and Q-PCR

Figure 2. Pyrosequencing analysis of 4 tumour suppressor genes following DAC treatment. Changes in methylation status of a CpG site
for 4 representative candidate genes (CSMD1, RARB, CADM1 and CDH13), following treatment with DAC at a range of concentrations in 8 primary
AML patient cultures. Cells were treated at 0, 24, 48, 72 and 96 h, DNA methylation was measured at 120 h. All experiments were performed in
duplicate.
doi:10.1371/journal.pone.0087475.g002

Sequential Administration of DAC and Ara-C in AML
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used to validate changes in concordantly regulated candidate

genes, some of which are known to be associated with reduced cell

proliferation, invasion and survival in AML or other tumour types

(Figure 5).

DNA methylation profiling revealed that less than 4% of all

CpG sites were changed with DAC treatment alone, whereas

approximately a third of all CpG sites were changed following

either of the sequential treatments. The ratio of hypomethylation

to hypermethylation changes also differed dependent on the drug

treatment schedule. While DAC was almost exclusively a

hypomethylating agent in all xenografts, treatment schedules that

included Ara-C were associated with a greater proportion of

hypermethylation changes. Interestingly, both hypermethylation

and hypomethylation changes were less pronounced when Ara-C

and DAC were given simultaneously (Table 3).

Hypomethylation changes following treatment with any drug

combination, were most common at CpG sites which had high

beta values (high level methylation) in control-treated cells, and

irrespective of the regimen used, hypomethylation occurred more

commonly in gene bodies than in CpG sites closer to transcrip-

tional start sites. In contrast, hypermethylation changes following

treatment with any drug combination were most common at CpG

sites which had low beta values (low level methylation) in control-

treated cells and occurred more frequently at transcriptional start

sites (Figure S1, Table S1). Although extensive DNA methylation

changes were observed with all drug combinations tested, the

overlap between the top 1000 concordantly changed CpG sites

across the three xenografts was small (Figure S2).

Genome wide profiling revealed a substantial number of

transcriptional changes following drug treatment of each xenograft

(Table S2). However, for each drug treatment, the number of

genes concordantly changed across the three xenografts was small

and these common transcriptional changes were unique to that

treatment (Figure S3, Table S3). However, within each xenograft

there was a modest but significant overlap in the transcriptional

changes induced following sequential treatments, Ara-C followed

by DAC and DAC followed by Ara-C (Figure S4).

Discussion

Our results support previous studies showing that low doses of

DAC have both cytotoxic and anti-proliferative effects on primary

AML samples in vitro and are associated with DNA demethylation

[17–19]. Our in vitro and in vivo data are also consistent with

clinical reports indicating that low dose DAC is an active agent in

the treatment of AML [11,13]. However, our most compelling

observation is the substantially increased anti-leukemia effect when

DAC is given sequentially with Ara-C compared to when DAC

and Ara-C were given alone. This effect could not be attributed to

the longer duration of the sequential treatment which was

Figure 3. The in vitro effects of DAC and Ara-C in combination in primary paediatric AML. A) The percentage of viable cells following
treatment with each drug regimen compared to PBS controls in 5 primary AML patient cultures (* P,0.01). All experiments were performed in
triplicate. B) The percentage of cells in each phase of cell cycle following treatment with each drug regimen, for a representative primary AML sample
(AML-7). All experiments were performed in duplicate.
doi:10.1371/journal.pone.0087475.g003

Sequential Administration of DAC and Ara-C in AML
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delivered for 10 days compared to the DAC and Ara-C alone

groups which were treated for 5 days because a significant

decrease was observed in the final xenograft experiment when the

DAC and Ara-C alone groups were also treated for 10 days. We

have shown using AML xenografts that low dose DAC when given

sequentially with Ara-C, regardless of the schedule has a

substantially increased anti-leukemia effect compared to Ara-C

alone.

Consistent with recent reports we confirmed using genome-wide

methylation profiling that DAC is an effective demethylating agent

when used to treat AML cells and that demethylation is more

likely to occur at CpG sites which are heavily methylated ab initio

[17]. Although the number of CpG sites demethylated following

treatment with Ara-C was 10 times greater than that observed

following DAC we found that Ara-C, unlike DAC frequently

induces hypermethylation changes which is consistent with

previous reports of AraC’s epigenetic modulating activity

[20,21]. Simultaneous treatment with Ara-C and DAC resulted

in substantially fewer hypomethylation and hypermethylation

changes than were seen with use of either drug alone whereas

sequential treatment resulted in substantially more. Consistent

with our finding that sequential treatment was found to be

effective in reducing tumour burden irrespective of the order in

which these agents were administered, there was a significant and

substantial overlap in the transcriptional changes observed in the

same xenograft following treatment with DAC followed by Ara-C

and Ara-C followed by DAC. However, the absence of any

methylation or transcriptional overlap between xenografts follow-

Figure 4. The in vivo effects of DAC and Ara-C in primary paediatric AML xenografts. A and B) Cells isolated from BM of three xenografts
following 5 or 10 days of treatment were stained for human CD45 and CD33 and for mouse CD45; the proportion of human cells which were
CD45+CD33+ from each treatment group were compared to Ara-C treatment alone in the BM. C) Cells isolated from the spleen which were human
CD45+CD33+ compared to PBS (* P ,0.001).
doi:10.1371/journal.pone.0087475.g004

Sequential Administration of DAC and Ara-C in AML
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ing treatment with these sequential regimens may reflect the

variability in their cytogenetic profiles. Given our small sample size

and the absence of a xenograft that did not respond to sequential

treatment, we were unable to identify predictive markers of drug

response.

While we were unable to provide a mechanistic explanation for

the benefits of combined sequential treatment, we were able to

show using genome-wide methylation and expression profiling that

‘‘epigenetic priming’’ which is often advanced as a justification for

combining cytotoxic agents with a demethylating agent is an

implausible explanation for the beneficial effects of combined

therapy observed in this study. It is likely that these issues will only

be adequately addressed in the context of a clinical trial in which

samples are prospectively collected from a cohort of responding

and non-responding patients. Our findings lend critical weight to

the need for clinical studies evaluating the use of combined

therapy in paediatric AML patients.

Figure 5. Q-PCR analysis of candidate genes identified from the expression arrays. Changes in the expression of 5 genes which were
concordantly de-regulated in all three xenografts following sequential treatment with either Ara-C followed by DAC (ILF3 and MARCKS) or DAC
followed by Ara-C (FLT3, CTBP1 and MLL5). Assays were carried out in triplicate.
doi:10.1371/journal.pone.0087475.g005

Table 3. Summary of methylation changes following treatment with different drug regimens.

AML – XG1

Total number
of CpG sites
changed

% of total CpG
sites changed Hypomethylated Hypermethylated

Ratio of hypomethylated
to hypermethylated
changes

Median
change in
Beta Value

PBS vs DAC 17275 3.8 17258 17 1015:1 20.032

PBS vs Ara-C 122690 26.4 85702 36988 2:1 0.025

PBS vs D+A 9906 2.0 5223 4683 1:1 0.015

PBS vs A/D 164220 34.4 156585 7635 21:1 20.028

PBS vs D/A 162719 35.7 123987 38732 3:1 20.064

AML - XG2

PBS vs DAC 14879 3.0 14857 22 675:1 20.042

PBS vs Ara-C 156544 33.3 118532 38012 3:1 0.04

PBS vs D+A 12809 2.8 9611 3198 3:1 0.0255

PBS vs A/D 111255 22.9 102419 8836 12:1 20.047

PBS vs D/A 170595 35.8 110686 59909 2:1 20.078

AML - XG3

PBS vs DAC 10304 2.2 10290 14 735:1 20.0485

PBS vs Ara-C 137804 28.9 84792 53012 2:1 0.011

PBS vs D+A 8831 1.9 3433 5398 1:1 0.005

PBS vs A/D 99420 21.3 93227 6193 15:1 20.0195

PBS vs D/A 204784 43.2 143348 61436 2:1 20.092

For each xenograft, the number of hypomethylation and hypermethylation changes as well as the median change in beta value following treatment with each drug
regimen. Differentially methylated CpG sites were identified using Genome Studio; results were filtered to retain CpG in which the change in beta values between PBS
and drug treated samples was .60.2.
doi:10.1371/journal.pone.0087475.t003

Sequential Administration of DAC and Ara-C in AML
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Supporting Information

Figure S1 Change in methylation values upon treatment with

different drug regimens, versus methylation in mock-treated

samples, for a representative primary AML sample (AML-XG1).

(TIF)

Figure S2 Number of concordant changes in methylation

following treatment with each drug regimen. Results for both

hypermethylation and hypomethylation changes are shown. There

was no overlap for CpG sites hypermethylated following treatment

with DAC alone.

(TIF)

Figure S3 Number of concordantly regulated genes across the

three xenografts following treatment with each drug regimen.

(TIF)

Figure S4 Concordantly regulated genes following sequential

treatment within the same xenograft.

(TIF)

Table S1 Methylation changes across different regions of the

genome following treatment with different drug regimens. The

frequency with which methylation changes were found at different

locations in a xenograft following treatment based on the Illumina

gene annotation (TSS1500, TSS200, 59 UTR, 1st Exon, gene body

and 39UTR).

(TIF)

Table S2 Summary of transcriptional changes following treat-

ment with different drug regimens. For each xenograft, the

number of up-regulated and down-regulated genes is shown.

(TIF)

Table S3 List of genes concordantly regulated following

treatment with each drug regimen.

(XLSX)
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