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Abstract

Kentucky bluegrass (Poa pratensis L.) is an excellent cool-season turfgrass utilized widely

in Northern China. However, turf quality of Kentucky bluegrass declines significantly due to

drought. Ethephon seeds-soaking treatment has been proved to effectively improve the

drought tolerance of Kentucky bluegrass seedlings. In order to investigate the effect of ethe-

phon leaf-spraying method on drought tolerance of Kentucky bluegrass and understand the

underlying mechanism, Kentucky bluegrass plants sprayed with and without ethephon are

subjected to either drought or well watered treatments. The relative water content and mal-

ondialdehyde conent were measured. Meanwhile, samples were sequenced through Illu-

mina. Results showed that ethephon could improve the drought tolerance of Kentucky

bluegrass by elevating relative water content and decreasing malondialdehyde content

under drought. Transcriptome analysis showed that 58.43% transcripts (254,331 out of

435,250) were detected as unigenes. A total of 9.69% (24,643 out of 254,331) unigenes

were identified as differentially expressed genes in one or more of the pairwise compari-

sons. Differentially expressed genes due to drought stress with or without ethephon pre-

treatment showed that ethephon application affected genes associated with plant hormone,

signal transduction pathway and plant defense, protein degradation and stabilization, trans-

portation and osmosis, antioxidant system and the glyoxalase pathway, cell wall and cuticu-

lar wax, fatty acid unsaturation and photosynthesis. This study provides a theoretical basis

for revealing the mechanism for how ethephon regulates drought response and improves

drought tolerance of Kentucky bluegrass.

1. Introduction

Environmental factors (such as light, temperature, water, soil, etc.) are very important to the

growth and survival of plants, because slight changes of these environmental factors may make

plants suffer from stress, thus affecting their normal growth and survival [1]. Drought stress is

one of the major factors limiting plant growth and crop productivity in many areas [2]. It

reduces the turf quality of Kentucky bluegrass by influencing the shoot density, texture, unifor-

mity, color, growth habit and recuperative capacity [3, 4]. The common responses of plants to

drought stress include the expression changes of many genes, such as genes related to signal
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transduction, and the transcription and regulation of thousands of functional proteins, which

are involved in the molecular regulation of drought resistance [5].

The phytohormone ethylene is a key signaling molecule in plants for regulating multiple

developmental processes and stress responses [6, 7]. As an ethylene releasing reagent, ethe-

phon can overcome the disadvantage of inconvenient application of gaseous ethylene and has

great potential in practice for various reasons [8, 9]. For example, researches on Maize (Zea
myus) [10], rice (Oryza sativa) [11] and Arabidopsis thaliana [12] have revealed that ethephon

could improve plants drought tolerance. Few studies focused on the potential of ethephon

application in turfgrass species for water saving reasons. Zhang et al. [13] found that ethephon

seeds treatment improved drought tolerance of Kentucky bluegrass seedlings by increasing

antioxidant enzyme activity and soluble protein content under PEG-induced drought condi-

tions. Han [14] found that specific concentration of ethephon could effectively improve the

drought tolerance of Kentucky bluegrass. However, it is still unclear how ethephon affect the

response mechanism of Kentucky bluegrass under drought.

At present, a large number of studies have revealed the mechanism for plants drought toler-

ance through transcriptome sequencing [15–18]. Illumina sequencing technology has been

used in the study of turfgrass genome such as Lolium temulentum L. [19], orchardgrass (Dacty-
lis glomerata L.) [20] and creeping bentgrass (Agrostis stolonifera) [21]. For species without

genome information, transcriptome sequencing can effectively characterize and identify the

biosynthesis pathway of secondary metabolites in plants, reveal the growth, development,

physiological adaptability of plants, and explore the gene sequence and expression level [22–

24]. Zhang et al. [25] compared the transcriptome of drought resistant and sensitive plants col-

lections of Qinghai wild Poa pratensis under drought, and found that genes involved in the

starch and sucrose metabolism pathways, and bHLH, AP2/EREPB and C2H2 zinc finger family

transcription factors played important roles in drought tolerance of Kentucky bluegrass. Leng

et al. [26] revealed that genes encoding protein kinase, protein phosphatase, genes involved in

carbon metabolism and ABA synthesis and transduction are crucial in Kentucky bluegrass
’Nuglade’ drought defense responses. Gene expression changes on a whole transcriptome level

associated with ethephon pre-treatment under drought stress of Kentucky bluegrass have not

been well-studied yet.

The objective of this study is to investigate the effect of ethephon on drought tolerance of

Kentucky bluegrass and to understand the underlying mechanism by analyzing and identify-

ing genes involved in ethephon mediated drought tolerance improvement.

2. Materials and method

2.1 Plant materials and treatment

Seeds of Kentucky bluegrass (cv. Nuglade) were from Beijing Top Green Company. All materi-

als were planted in the greenhouse of Turfgrass Reasearch Station of Beijing Forestry Univer-

sity, Bajia nursery, Beijing, China. The plants were grown in plastic pots (diameter: 20 cm,

depth: 18 cm) filled with a mixture of peat, vermiculite and perlite (2:1:1). Plants were watered

every 2 days to keep the soil moisture conditions at field capacity. Drought stress was imposed

by withdrawing water for 13 days until soil moisture drop to 4% (portable time domain reflec-

tometry)(TZS-I, Zhejiang TOP Instrument Co., Ltd, China). Ethephon solution (200 mg/L)

was foliar-sprayed 7 days ahead of drought treatment. After 15 days of drought treatment, the

upper 3–5 leaves were sampled from well-watered control plants without ethephon application

(CK), drought treated plants without ethphon application (Drought), and droughttreated

plants with ethephon pre-treatment (ETH_D) for RNA sequencing and real-time PCR analysis

(Fig 1).
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2.2 Relative water content and malondialdehyde content

The relative water content (RWC) of leaves was determined by drying method [27]. The con-

tent of malondialdehyde (MDA) (μmol�g-1) was determined by thiobarbituric acid method

[28].

2.3 RNA isolation and library preparation

Total RNA was extracted using TRIzol kit (Invitrogen, CA, USA) according to the manufac-

turer’s instructions and was treated with DNaseI. RNA purity was checked using the Nano-

Photometer1 spectrophotometer (IMPLEN, CA, USA); RNA integrity was assessed using the

RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies, CA,

USA). RNA integrity number for the RNA samples are in the range from 6.3 to 7.2.

The cDNA library was prepared by pooling RNA from the leaf samples of CK, Drought,

ETH_D. Three biological replicates for each treatment were used for RNA sequencing and

real-time PCR analysis.

A total amount of 3 μg RNA per sample was used as input material for the RNA sample

preparations. Sequencing libraries were generated using NEBNext1UltraTM RNA Library

Prep Kit for Illumina1 (NEB, USA) following manufacturer’s recommendations and index

codes were added to attribute sequences to each sample. Briefly, mRNA was purified from

total RNA using poly-T oligo-attached magnetic beads. Fragmentation was carried out using

divalent cations under elevated temperature in NEBNext First Strand Synthesis Reaction

Buffer (5X). First strand cDNA was synthesized using random hexamer primer and M-MuLV

Reverse Transcriptase (RNase H-). Second strand cDNA synthesis was subsequently

Fig 1. Schematic overview of the experimental design for well-watered control plants without ethephon

application (CK), drought control plants without ehtphon application (Drought), and drought control plants

with ethephon pre-treatment (ETH_D). CK means well-watered control plants without ethephon application.

Drought means drought-stressed plants without ethephon application. ETH_D means drought-stressed plants with

ethephon pre-treatment.

https://doi.org/10.1371/journal.pone.0261472.g001
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performed using DNA Polymerase I and RNase H. Remaining overhangs were converted into

blunt ends via exonuclease/polymerase activities. After adenylation of 3’ ends of DNA frag-

ments, NEBNext Adaptor with hairpin loop structure were ligated to prepare for hybridiza-

tion. In order to select cDNA fragments of preferentially 150~200 bp in length, the library

fragments were purified with AMPure XP system (Beckman Coulter, Beverly, USA). Then 3 μl

USER Enzyme (NEB, USA) was used with size-selected, adaptor-ligated cDNA at 37˚C for 15

min followed by 5 min at 95˚C before PCR. Then PCR was performed with Phusion High-

Fidelity DNA polymerase, Universal PCR primers and Index (X) Primer. At last, PCR prod-

ucts were purified (AMPure XP system) and library quality was assessed on the Agilent Bioa-

nalyzer 2100 system.

2.4 Sequencing, assembly, and annotation

Sequencing, assembly, and annotation were performed by Novogene Bioinformatics Technol-

ogy Co. Ltd (https://www.novogene.com/). The clustering of the index-coded samples was per-

formed on a cBot Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS

(Illumia) according to the manufacturer’s instructions. After cluster generation, the library

preparations were sequenced on an Illumina Hiseq platform and paired-end reads were

generated.

The raw reads were sequenced on the Illumina HiSeq™ 4000 platform. After the raw reads

containing adapter sequences, reads containing ploy-N (�10%) and low quality reads had

been removed, the clean reads were assembled de novo using the Trinity (http://trinityrnaseq.

github.io) as previous described [22]. It was a K-mer length of 25 and a minimum assembly

length at 200bp that default parameters were set for fast and efficient transcript assembly. The

longest transcript of each gene is used as a representative of the gene, called Unigene, for sub-

sequent analysis. Taxonomic and functional annotation of all spliced sequences was obtained

by comparing with seven databases which were the NCBI non-redundant protein sequences

(NR) database, NCBI nucleotide sequences (NT) database, protein family (PFAM) database,

eukaryotic ortholog groups (KOG) database, Swiss-Prot database, Kyoto Encyclopedia of

Genes and Genomes (KEGG) database and Gene Ontology (GO) database. Based on the pro-

tein annotation result of NR and PFAM, analysis of the Gene Ontology (GO) term was con-

ducted for functional annotations (E-values<10−6). The KAAS software was used to blast the

gene sequences in the unigene and the KEGG gene database.

2.5 Identification of differentially expressed genes

The transcriptome obtained by Trinity splicing were the reference sequence, and the clean

reads of each sample were mapped directly to the reference transcriptome libraries using the

RSEM (v1.2.15) software [29] with default parameters. Readcount for each gene was obtained

from the mapping results. Differential expression analysis of three treatments was performed

using the DESeq R package [30]. The resulting P values were adjusted using the Benjamini and

Hochberg’s approach for controlling the false discovery rate [31]. Genes with an adjusted P-

value <0.05 found by DESeq were assigned as differentially expressed.

GO enrichment analysis of differentially expressed genes (DEGs) was performed by GOseq

method [32] based on Wallenius non-central hyper-geometric distribution. The analysis first

mapped all the differentially expressed genes to each term of the Gene Ontology database, cal-

culated the number of genes for each term, and then found the significant enrichment in the

differentially expressed genes compared to the entire genome background. Simultaneously, up

regulated and down regulated genes was performed separately for enrichment analysis in

order to better study the function of differential genes.
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2.6 Validation of differential expression genes by qRT-PCR

Eight differentially expressed genes were randomly selected for qRT-PCR analysis, and high-

through put data were validated (the prime pairs of these eight genes were listed in S1 Data).

Total RNA was extracted respectively from the leaves of each sample as previous described.

Complementary DNA from total RNA was prepared using HiScript1 II Q RT SuperMix for

qPCR kit (with the gDNA wiper) (Vazyme Biotech Co., Ltd, Nanjing, China) according to the

manufacturer’s protocol. The primers were designed for qRT-PCR and the Actin gene was

used as the internal reference gene. The qRT-PCR was carried out using the Applied Biosys-

tems 7500 real-time PCR system. The relative quantitative data were calculated using the 2-ΔΔ

CT method [33].

3. Results and discussion

3.1 Relative water content and malondialdehyde content

Relative water content (RWC) can be used as an index to measure the internal water loss and

water holding capacity of plants. Higher RWC under drought stressed conditions means better

drought tolerance of Kentucky bluegrass [2, 34]. The value of RWC in Kentucky bluegrass

leaves decreased significantly by drought. Ethephon pre-treated plants maintained a higher

level of RWC under drought stress relative to non-ethephon treated control plants (Fig 2A).

Therefore, ethephon could improve the drought tolerance of Kentucky bluegrass. Malondial-

dehyde (MDA) is a final product of plant cell membrane lipid peroxidation and is widely used

as a biomarker of oxidative stress in plants [35]. Under drought stress, lower MDA content is

associated with better stress tolerance of turfgrasses [36]. MDA content in Kentucky bluegrass

leaves increased significantly by drought, ethephon pre-treatment lowered the level of MDA

under drought (Fig 2B). These results together confirmed that ethephon could improve the

drought tolerance of Kentucky bluegrass by combining the photos of ethephon and drought

treatment (Fig 3).

3.2 Sequence assembly

A set of 435,250 transcripts was produced using Trinity. We selected 254,331 sequences

(58.43% of the total transcripts) as unigenes, with a mean length of 581 bp and an N50 of 818

bp (see S2–S4 Data for data used to summarize the quality of sequencing, assembly and align-

ment). The Kentucky bluegrass 254,331 assembled unigenes were queried against seven

Fig 2. A. Relative water content of each samples B. Malondialdehyde content of each treatment. CK means well-

watered control plants without ethephon application. Drought means drought-stressed plants without ethephon

application. ETH_D means drought-stressed plants with ethephon pre-treatment.

https://doi.org/10.1371/journal.pone.0261472.g002
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protein databases, results showed that among the NR BLASTx best hits, Kentucky bluegrass

unigenes were significantly similar to Brachypodium distachyon proteins (14,815, 19.1%), fol-

lowed by Aegilops tauschii (14,710, 18.9%), Hordeum vulgare (10,517, 13.5%), Triticum urartu
(7,283, 9.4%) and Oryza sativa (5,988, 7.7%) (Fig 4).

3.3 Differential expression and gene ontology

A total of 24,643 transcripts were identified as DEGs in one or more of the pairwise compari-

sons (Fig 5A). A large change of the transcriptome occurred in Kentucky bluegrass in response

to drought stress (Fig 5A). A relative smaller change of transcriptome occurred in Kentucky

blue grass in response to drought due to ETH pre-treatment (Fig 5A). The heatmap also indi-

cates the overall effect of drought stress on transcription and allows for visualization of how

ETH moderated the effects of drought stress on the transcriptome (Fig 6).

A total of 24,465 genes were either up- or down-regulated when comparing drought

stressed to well-watered control plants (Fig 5A). Gene ontology (GO) and enrichment analysis

identified 2877 biological processes, 1422 molecular functions, and 622 cellular components

(Fig 7A). A total of 3,890 genes were either up- or down-regulated when comparing ETH

Fig 3. Effects of ethephon on Kentucky bluegrass under drought. CK means well-watered control plants without

ethephon application. Drought means drought-stressed plants without ethephon pre-treatment. ETH_D means

drought-stressed plants with ethephon pre-treatment.

https://doi.org/10.1371/journal.pone.0261472.g003

Fig 4. Summary and taxonomic source of BLASTx matches for Kentucky bluegrass unigenes. Percentage of unique

best BLASTx matches of unigenes grouped by genus.

https://doi.org/10.1371/journal.pone.0261472.g004
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primed drought stressed to well-watered control plants (Fig 5A). Gene ontology (GO) and

enrichment analysis identified 1892 biological processes, 863 molecular functions, and 404 cel-

lular components (Fig 7B).

It seemed that ETH treatment help plants dealing with drought by regulating muchlesser

genes (3,890 vs 24,465) (Fig 5A). Therefore, only the genes most relevant to drought stress and

ETH application are focused on the discussion part.

3.4 qRT-PCR validation of RNA-Seq results

Eight differentially expressed genes were randomly selected, including four genes from CK.

(c111268_g1, c145507_g1, c117236_g1, c119413_g2) and four genes from ETH_D (c145664_g1,

c128115_g1, c135104_g1, c93924_g1). Results showed that these genes used for qRT-PCR were

all consistent with the RNA-Seq results (Pearson’s r = 0.98, P<0.001, Fig 8) (see S5 Data for

data used to calculate the qRT-PCR validation of RNA-Seq).

3.5 Differentially expressed genes due to drought and ETH

Drought caused extensive gene expression changes while drought and ETH caused less gene

expression changes in Kentucky bluegrass plants, which indicated that ETH help plants coping

with drought by mediating the regulation of fewer genes in response to drought. Therefore, in

order to find the genes only regulated by ETH under drought stress, DEGs of these two com-

parisons [(ETH_D vs CK) vs (Drought vs CK)] were compared. Results showed 5.8% (123 out

of 2105) of the transcripts were up-regulated (Fig 5B) and 2.5% (44 out of 1785) were down-

regulated (Fig 5C) (DEGs up-regulated and down-regulated of [(ETH_D vs CK) vs (Drought

vs CK)] were listed in S6 and S7 Data respectively). The mechanism of ethephon on drought

tolerance of Kentucky bluegrass was analyzed by identifying DEGs involved in [(ETH_D vs

CK) vs (Drought vs CK)] (Fig 9).

3.5.1 Plant hormone, signal transduction and plant defense. Ethylene Responsive Fac-

tor (AP2/ERF) family are conservatively widespread in the plant kingdom. Although the

Fig 5. A. Venn diagram for all differentially expressed genes (DEGs) in Kentucky bluegrass B. Venn diagram for up-

regulated genes in Kentucky bluegrass C. Venn diagram for down-regulated genes in Kentucky bluegrass. ‘CK’ means

well-watered control plants without ethephon pre-treatment. ‘Drought’ means drought-stressed plants without

ethephon application. ‘ETH_D’ means drought stressed plants with ethephon pre-treatment. DEGs were quantified at

false discovery rate threshold (FDR) of 0.001 and log2 (fold change) larger than 2. Total DEGs for each comparison are

shown in parenthesis.

https://doi.org/10.1371/journal.pone.0261472.g005
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Fig 6. Heat map of all differentially expressed genes in Kentucky bluegrass. ‘CK’ means well-watered control plants

without ethephon pre-treatment. ‘Drought’ means drought-stressed plants without ethephon application. ‘ETH_D’

means drought-stressed plants with ethephon pre-treatment.

https://doi.org/10.1371/journal.pone.0261472.g006
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original acronym ERF, Ethylene-responsive transcription factor, has been maintained, respon-

siveness to the growth regulator ethylene is not a universal feature of this protein superfamily

[37]. Two ERF genes were up regulated by ETH under drought in our study, ERF113 (2.3 fold)

and ERF115 (2.4 fold). ERF113, also known as RELATED TO APETALA2.6L (RAP2.6L) in

Arabidopsis, is induced by salt stress and drought [38, 39]. Additionally, ERF113 transcription

is responsive to JA, salicylic acid, ABA and ethylene [39]. Correspondingly, ERF113 overex-

pression confers resistance to stresses that activate these hormones. For instance, overexpres-

sion of ERF113 triggers stomatal closure and enhances waterlogging tolerance [40]. In

addition to the response to hormonal cues, ERF113 activity can further be linked to

Fig 7. Enriched GO terms. A. Drought vs CK; B. ETH_D vs CK. ‘CK’ means well-watered control plants without

ethephon pre-treatment. ‘Drought’ means drought-stressed plants without ethephon application. ‘ETH_D’ means

drought-stressed plants with ethephon pre-treatment.

https://doi.org/10.1371/journal.pone.0261472.g007

Fig 8. Validation of DEGs data by qRT-PCR. ‘CK’ means well-watered control plants without ethephon pre-

treatment. ‘Drought’ means drought-stressed plants without ethephon application. ‘ETH_D’ means drought-stressed

plants with ethephon pre-treatment.

https://doi.org/10.1371/journal.pone.0261472.g008
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developmental processes, such as shoot regeneration from root explants and ovule develop-

ment [41]. ERF113 also has a role in promoting cell division that is induced by wounding [38,

42]. ERF115 drives the quiescent center (QC) cell division in a brassinosteroid-dependent way

but is restrained through proteolysis by ubiquitin ligase. The QC plays an essential role during

root development by creating a microenvironment that preserves the stem cell fate of its sur-

rounding cells. Maintaining a stem cell subpopulation that is used to replace damaged stem

cells might represent a general mechanism to maintain a functional stem cell niche under

stress conditions [43].

It is well known that phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) plays important

roles not only as a precursor lipid for generating second messengers but also as a regulator of

cytoskeletal re-organization [44]. Recent examples of ion channel regulation by PI(4,5)P2 have

been recently reported in plants. Since PI(4,5)P2 is mostly found in the plasma membrane, PI

(4,5)P2 dependence is thought to restrict channel/transporter activity into this compartment

and is important for stomatal opening [45]. As for the metabolizing pathways of PI(4,5)P2,

there are three possible routes. One is conversion to PI(3,4,5)P3 by phosphatidylinositol

3-kinase. Second is hydrolysis to I(1,4,5)P3 and diacylglycerol by phospholipase C (PLC).

Third is hydrolysis by PI(4,5)P2 phosphatase to PI(4)P [46]. Thus, PI(4,5)P2 levels are regu-

lated by a balance of these metabolizing enzymes and synthesizing enzymes [47]. Type II PI
(4,5)P2 phosphatase (Transmembrane protein 55A, 4.7 fold) is involved in the third PI(4,5)P2

metabolizing route: dephosphorylating the D4 position of PI(4,5)P2. Therefore, up regulation

of this gene might decreased content of PI(4,5)P2 which may assist plant drought adaptation

through stomata closure, ion channels activity and other transduction pathways involving sec-

ond messengers derived from PI(4,5)P2 [48].

Transcript of a remorin gene (c103095_g1, Inf) was only detected in drought-stressed plants

with ETH pre-treatment. This protein was named remorin due to its hydrophilic profile and

its ability to attach to plasma membrane [49]. They probably facilitate cellular signal transduc-

tion by direct interaction with signaling proteins such as receptor-like kinases and may

dynamically modulate their lateral segregation within plasma membranes [50]. The diverse

and precise biological roles of different remorins remain to be investigated. However, the

absence of remorins in algae, but their presence in mosses, ferns, and higher plants, suggests

that the emergence of remorins coincided with the colonization of land and dealing with

adverse drought and other osmotic stressed conditions [51, 52]. Transgenic Arabidopsis plants

overexpressed heterologous remorin gene from mulberry [53] or foxtail millet (Setaria italica)

[49] showed improved tolerance to abiotic stress including dehydration and salinity. How

ETH treatment regulated remorin gene in response to drought is not clear. Yue et al. [49]

Fig 9. The mechanism for how ethephon regulates drought response and improves drought tolerance of Kentucky

bluegrass. The gene in red indicates that the gene is up-regulated and the gene in green indicates that the gene is

down-regulated.

https://doi.org/10.1371/journal.pone.0261472.g009
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reported that there is an DRE core elements in the promoter region of foxtail millet remorin
gene 6 (SiREM6). One ABA responsive DREB transcription factor can bind to the DRE core

elements. These results together suggest that ETH treatment might promote gene expression

of remorin gene during drought stress in an ABA dependent signal transduction pathway.

Plant defensin (c126749_g1) gene is up regulated in ETH pre-treated Kentucky bluegrass

plants under drought stressed conditions (2.7 fold). Plant defensins are small, highly stable,

cysteine-rich peptides and they constitute an important part of the innate immune system pri-

marily against fungal pathogens [54, 55]. In addition to their role in biotic response, plant

defensin also has potential in inducing abiotic stress tolerance. Many reports revealed that

plant defensin is also up regulated by salicylic acid, abscisic acid, ethephon and wounding [56–

58]. Therefore, under drought stress conditions ethephon may up-regulate defensin expression

to induce drought tolerance.

3.5.2 Protein degradation and stabilization. A few genes associated with protein degra-

dation and stabilization were up-regulated by ETH and drought treatment. For instance, a

gene encoding chaperone protein ClpD1 (3.7 fold) was up-regulated in ETH treated plants

under drought. ClpD1 may interact with a ClpP-like protease involved in degradation of dena-

tured proteins in the chloroplast [59]. Previous studies revealed that ClpD1 plays a positive

role during dehydration and salt stress [59, 60]. Ubiquitin (1.7817 fold) was also up-regulated

by ETH under drought. The major function of ubiquitin is to facilitate protein degradation as

an important component of the ubiquitin 26S proteasome system (UPS) in plant responses to

abiotic stresses [61]. Proteasome activator pa28 beta subunit gene (1.8587 fold) was up regu-

lated by ETH under drought. PA28 are activators that bind to proteasomes and stimulate the

hydrolysis of peptides [62, 63]. Proteins of these up-regulated genes might perform an impor-

tant role of removing potentially toxic proteins and misfolded or oxidized proteins that may

accumulate as a result of exposure to drought stress. However, a cysteine proteinase inhibitor
gene (1.74 fold) was up-regulated by ETH under drought. Cysteine proteases play an essential

role in plant growth and development but also in senescence and programmed cell death [64].

They are among the plant proteases and are increased in their activity following stress [65, 66].

If the activity of the cysteine proteinases is too high, proteins required for metabolic processes

degraded rapidly due to proteolysis [67]. It is therefore of great importance that the activity of

the cysteine proteinases are accurately controlled in order to cope with drought. This is

achieved, possibly through up regulation of cysteine proteinase inhibitor. Previous transgenic

studies confirmed that cysteine proteinase inhibitor played active role in response to stress

including drought [67–69].

3.5.3 Transportation and osmosis. ARFs confers tolerance to biotic and abiotic stresses

in plant species [70]. Overexpression of an adenosine diphosphate-ribosylation factor gene

from the halophytic grass Spartina alterniflora confers salinity and drought tolerance in trans-

genic Arabidopsis [71]. Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth

cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice

and Arabidopsis [72]. ADP-ribosylation factor-like protein (ARL) (Inf) (If the normalized read-

counts of one particular gene in one sample is 0 and not 0 in another sample, fold change

would be Inf or -Inf) belong to Ras superfamily of small GTP-binding proteins (GTPases).

ARLs were identified on the basis of their sequence similarity with ARFs. GTP-binding has

been shown for most ARL proteins, but all ARLs are essentially devoid of GTPase activity and

activities described for ARF isotypes. Some ARLs appear to be involved in the regulation of

protein and/or vesicle transport between cell organelles (ARL1, ARL4) or in the regulation of

enzymatic activities controlling these processes (Arfrp1). In potato (Solanum tuberosum), six

clones of ADP-ribosylation factor-like protein were up-regulated by salt treatment [73]. Gene

expression induction of ARL in ETH treated plants under drought might facilitate the plants
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for higher exchange rates of ions, proteins and other molecules by protein and/or vesicle trans-

port pathway.

Amino acids are essential components of plant metabolism, not only as constituents of pro-

teins, but also as precursors of important secondary metabolites and as carriers of organic

nitrogen between the organs of the plant. Transport across intracellular membranes and trans-

location of amino acids within the plant are mediated by membrane amino acid transporters.

However, the substrate selectivity and affinity of membrane amino acid transporters are gener-

ally different. Amino acid transport also plays a key role in leaf senescence and seed germina-

tion. Clearly, amino acid transport is a fundamental activity in plant growth [74]. A putative
amino acid permease (AAP, 4.6 fold) was identified in ETH treated drought stressed plants.

AAP is a family of amino acid transporters that preferentially transport glutamine, asparagine,

glutamate, and neutral amino acids into plant cells [75]. GABA is a key regulator of ion chan-

nels in plants and animals [76]. Abiotic stresses including salt, anoxia, hypoxia, heat, mechani-

cal damages, drought, cold, and waterlogging drive GABA accumulation in plants [77].

Vesicular GABA transporter (VGAT) belongs to solute carrier family 32 (vesicular inhibitory

amino acid transporter) [78]. We identified a VGAT like protein (5.3 fold) regulated by ETH

and drought in Kentucky bluegrass. The VGAT is known as the amino acid/auxin permease

superfamily [79]. Two genes with low similarity to a vesicular GABA transporter, potentially

functioning in cellular transport processes were also found to be commonly up-regulated in

response to cellular water deficit in Arabidopsis [80]. It is possible that up-regulation of these

amino acid transporters might be involved in amino acid-based osmotic regulation under

drought in response to ETH treatment.

Sulfur plays a pivotal role in plant metabolism and development. Evidence is emerging that

a number of non-protein and protein thiols, together with a network of sulphur-containing

molecules and related compounds, also fundamentally contribute to plant stress tolerance

[81]. A serine acetyltransferase like protein (SERAT like, 4.6 fold) and a probable thiol methyl-
transferase 2 (2.6 fold) were up regulated by ETH and drought. Cysteine (Cys), as the first

organic-reduced sulfur compound, contributes not only to life as building blocks in proteins,

but it also serves as a precursor for the synthesis of Methionine (Met), glutathione (GSH),

cofactors, essential vitamins, sulfur esters, and other sulfur derivatives. Cys synthesis is cata-

lyzed by the sequential action of SERAT and O-acetylserine (thiol)lyase (OASTL), links Ser

metabolism to Cys biosynthesis [82]. Overexpressing of bacterial SERAT in transgenic tobacco

plants lead to increased resistance to oxidative stress [83]. Sulfite exporter TauE/SafE family
gene (2.5 fold) were involved in regulation of plant-type hypersensitive response and they

were defense-related and enriched with clock regulatory elements [84]. The proteins are

involved in the transport of anions across the cytoplasmic membrane during taurine metabo-

lism as an exporter of sulfoacetate [85]. Sulfite exporter TauE/SafE gene was also up-regulated

in drought-stressed P. euphratica leaves [86].

Biopterin transporter (BT1 family, transmembrane protein, 4.1 fold, PFAM ID PF03092)

belongs to the folate-biopterin transporter (FBT) family [87]. Folates take part in virtually

every aspect of plant physiology. They play a role of donors and acceptors of one-carbon

groups in one-carbon transfer reactions that take part in formation of numerous important

biomolecules, such as nucleic acids, panthothenate (vitamin B5), amino acids [88]. The role of

folates in plant stress response are also important. Folate supplementation was demonstrated

to improve plant biotic stress resistance. Moreover, folate metabolism was shown to be differ-

entially regulated in response to various abiotic stress conditions that pointed out its impor-

tance and possible specific adjustment in response to different stresses. Altogether these

findings indicate that physiological roles and regulation of folate metabolism during develop-

ment and stress response are important elements to be considered in the pursuit of crops with
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better productivity and improved stress tolerance [88]. Folate/biopterin transporter gene was

induced by 48-h rehydration and inhibited by drought stress in shoot and panicle of rice

(Oryza sativa) [89]. BT1 is also induced by Nitro-Linolenic Acid which plays strong signaling

role in the defense mechanism against different abiotic-stress situations in Arabidopsis [90].

3.5.4 Antioxidant system and the glyoxalase pathway. Oxidative stress is one of the

common consequences of abiotic stress including drought in plants, which is caused by excess

generation of reactive oxygen species (ROS). SRG1 protein (c127636_g2, 2.3 fold), senescence-

related gene, is a new member of the Fe(II)/ascorbate oxidase superfamily and SRG1 protein

detoxify reactive oxygen produced during the oxidative stress induced by drought. It is

revealed that SRG1 homolog gene in potato putatively contributes to potato drought tolerance

[91]. SRG1 is regulated by WRKY transcription factors and involved in defense signaling path-

ways in Arabidopsis [92]. Therefore, up regulation of SRG1 protein by ETH might help improv-

ing ROS scavenging ability of Kentucky bluegrass under drought.

In line with ROS, plants also produce a high amount of methylglyoxal (MG) in response to

various abiotic stresses, which is highly reactive and cytotoxic. MG and ROS accumulation

results in an imbalance in different cellular metabolic processes. The glyoxalase pathway acts

to control excessive accumulation of MG and ROS in the system, either directly or in coopera-

tion with other pathways involved in stress response [93, 94]. In addition, transgenic

approaches in various plant models also have demonstrated the ability of glyoxalases in

imparting abiotic stress tolerance [95, 96]. Therefore, we propose that up regulation of glyoxa-
lase (c124305_g1, 3.8 fold) by ETH might help Kentucky bluegrass plants detoxify MG and

improve plants performance under drought.

Two proline dehydrogenase unigene (-2.3 and -2.6) catalyzes the first step in proline degra-

dation and it is the rate-limiting enzyme in proline degradation [97]. Down regulation of pro-
line dehydrogenase gene could lead to slower degradation of proline which would be an

advantage [98].

3.5.5 Cell wall and cuticular wax. During drought, it is important for plants that the cell

wall is rigid enough to resist internal turgor pressure. The plant invertase/pectin methyl esterase
inhibitor (PMEI, c133760_g1, 2.1 fold) inhibits demethylesterification of pectins by inhibition

of endogenous PME, which keeps up highly methylated pectin [99]. Pectin, one of major com-

ponents of the plant cell wall, has been shown to play a key role in modulating cell wall struc-

ture in response to drought stress [100, 101]. Degree of methylesterification of pectins related

to interaction of PME and PMEI could affect mechanical properties of cell wall such as plastic-

ity, extensibility, fluidity and thickening and those properties could enable adaptation and/or

resistance to abiotic stress [102, 103]. In addition, pectin may play important roles in drought

adaptation through modulating stomata movement [99, 104]. Our study suggested that induc-

tions of PMEI expression provide beneficial effects in plants drought responses and this result

was consistent with other studies [86, 105]. A reduced amount of pectin, coincided with an

increase in firmness. Putative galacturonosyltransferase (GAUT, c121058_g1, -2.8 fold) are

required for the synthesis of pectin [106, 107]. Expansins are cell wall proteins that are impli-

cated in the control of cell extension via the disruption of hydrogen bonds between cellulose

and matrix glucans. Since they function as cell wall-loosening proteins [108], down regulation

of expansin (EXPB2, c139601_g1,-1.9 fold) by ETH may improve cell wall plasticity of plants

during prolonged drought.

Cuticular wax has been implicated in defense mechanisms against biotic and abiotic stress

including drought [109–111], possibly because the waterproof cuticular wax can counteract

non-stomatal water loss during periodic drying and drought stress [112]. Two genes contribut-

ing to cuticular wax synthesis were identified in ETH and drought treated Kentucky bluegrass

plants, ECERIFERUM3 (CER3, c90612_g1, 2.5 fold) andWAX2 (c135869_g1, Inf). CER3 is
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important for cuticular wax synthesis [113]. WAX2 is involved in synthesis of leaf cuticular

wax and also cutin composition [114, 115]. One plant non-specific lipid-transfer protein
(nsLTP, c120612_g1, 2.6 fold) was also up regulated by ETH in Kentucky bluegrass under

drought. Plant non-specific lipid-transfer protein form a protein family of small, basic proteins

ubiquitously distributed throughout the plant kingdom [116]. The members of this family are

located extracellularly, usually associated with plant cell walls, and possess a broad lipid-bind-

ing specificity [117]. Plenty of studies reported that nsLTP genes played important roles in

plants’ drought responses. For example, three nsLTPs genes are drought inducible in tomato

[118] and one sugarcane (Saccharum hybrid complex) NsLTPs gene was up-regulated by

PEG-simulated drought [119]. Over expression of nsLTP gene from Setaria italic in tobacco

resulted in higher levels drought tolerance compared to wild type plants [120]. Similarly,

enhanced drought tolerance of transgenic potato plants over-expressing non-specific lipid
transfer protein-1 (STnsLTP1) was also observed [121]. While the mechanisms remain eluci-

dated, one possible role of LTP in elevating drought tolerance is to promote cuticle deposition

[117, 122].

3.5.6 Fatty acid unsaturation. Glycerol-3-phosphate acyltransferase (GPAT, 2.9 fold) cata-

lyzes the transfer of an acyl group from an acyl donor to the sn-1 position of glycerol 3-phos-

phate. There are three types of GPAT in plant cells; they are localized in plastids (including

chloroplasts), in the cytoplasm, and in mitochondria, respectively. Genetic engineering of the

unsaturation of fatty acids has been achieved by manipulation of the cDNA for the GPAT

found in chloroplasts and has allowed modification of the ability of tobacco to tolerate chilling

temperatures [123]. Introduction of the cDNA for shape Arabidopsis glycerol-3-phosphate

acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosyn-

thesis on rice [124]. Xu et al. [125] suggest that leaf dehydration tolerance and post-drought

recovery in Kentucky bluegrass was associated with their ability to maintain relative higher

proportion and level of unsaturated fatty acids. These studies together with ours suggested that

higher expression of GPAT by ETH may lead to higher level of unsaturated fatty acids and

therefore increased drought performance of ETH treated Kentucky bluegrass.

3.5.7 Photosynthesis. Photosynthesis is one of the key processes to be affected by water

deficits [126]. RbcS gene was down regulated under both drought (-5.5 fold) and ETH treated

drought (-3.2 fold) conditions while down regulation of RbcL (-3.1 fold) was only detected in

drought treated plants. This indicates CO2 assimilation in ETH treated plant might be less

inhibited by drought. Proton-transporting ATP synthase complex, coupling factor F0 (-3.2068

fold) was only down regulated in ETH treated plants under drought. ATP synthase activity is

strictly related to photosynthesis because it transfers protons through the thylakoid membrane.

Decrease expression of ATP synthase complex coupling factor F0may protect the photosyn-

thetic apparatus from photo-damage by mediating non-photochemical quenching [127]. In

addition, decreased ATP under low RWC impairs protein synthesis, through inadequate

energy supply, but may increase some types of proteins, e.g. molecular chaperones, because

their production is regulated in different ways.

Three up-regulated DEGs (ETH_D vs Drought) related to Photosystem II and electron

transport were found in our study, cytochrome b559, plastocyanin like protein and Photosystem
II reaction centre N protein (PsbN). Cytochrome b559 [alpha (gene psbE) and beta (gene psbF)
subunits (2.9 fold)] is an essential component of photosystem II, catalyzing photosynthetic

oxygen evolution [128]. Cytochrome b559 also plays a significant protective role for Photosys-

tem II against photo inhibition during drought stress [129–132]. Plastocyanin like protein (3.1

fold) is involved in electron transport and it is responsive to drought both in barley and cassava

[133, 134]. PsbN (2.8 fold) is required for hetero-dimerization of PSII reaction center in the

stroma lamellae, and is required for early PSII assembly and repair [135, 136]. In summary,
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ETH pre-treatment might help plants maintain higher O2 evolution rate under drought and

protect photosystem from photo-damages.

4. Conclusion

Ethephon could improve the drought tolerance of Kentucky bluegrass by elevating RWC and

decreasing MDA under drought. On a whole transcriptome level, ethephon application

affected genes associated with plant hormone, signal transduction pathway, plant defense, pro-

tein degradation and stabilization, transportation, osmosis, antioxidant system, the glyoxalase

pathway, cell wall, cuticular wax, fatty acid unsaturation and photosynthesis of Kentucky blue-

grass under drought stress. Genes mentioned in the discussion may be beneficial to better

understand the mechanism of ethephon affecting plants stress responses.
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